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Optimal Control of a Class of 
Discrete Multivariable Nonlinear 
Systems. Application to a 
Fermentation Process. 
The optimal control of a class of discrete multivariable nonlinear systems given by: 
xk+i = a(xk) + B (xk) uk, yk = C xk, is analyzed. A closed-loop structure is 
obtained with the proposed performance index. The addition of numerical in
tegrators to the output error and the design of an optimal control law for the 
resultant augmented system lead to a very robust control structure. The per
formance of this control law is evaluated by applying it to a simulated continuous 
culture fermentation process. 

Introduction 

The synthesis of control laws for nonlinear systems is a 
problem which has recently begun to be studied from dif
ferent points of view [1-6]. However, most of the published 
papers are concerned only with the continuous case and the 
implementation of different analog control devices is not very 
performant. This is mainly due to the presence of multipliers 
and dividers needed to synthesize the control law [6]. 

The improvement in the use of microcomputers for process 
control in the last few years has made the research on control 
of discrete nonlinear systems be very attractive, because of the 
facility for programing any control algorithm. 

In this paper a technique for synthesizing a control law for 
a class of discrete nonlinear systems is proposed. This control 
law is optimal with respect to a given performance index. 
Some properties of the resultant closed-loop system are 
presented and the elimination of the steady state error is 
discussed. A scheme based on a set of integrators and am
plifiers is proposed in order to obtain a very robust control 
structure. 

The control law is applied to a simulated continuous culture 
fermentation process. There has been some attempts to ac
complish a digital optimal control of this kind of processes -
[7, 8]; however, it still remains some problems unsolved. They 
are originated by the high nonlinearity of the plant model and 
the typical parameter variations presented when changes in 
the environment occur [10]. This work probably represents a 
first solution to these problems. 

Discrete Nonlinear Systems 

The nonlinear systems considered are those described by the 
following equations: 

X/t+i=a(x / t)+5(x^)u J t (1) 

(2) 

Contributed by the Dynamic Systems and Control Division for publication in 
the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT AND CONTROL, Manuscript 

received by the Dynamic Systems and Control Division, April 16, 1982. 

where \k eR", uk e Rr and y* e R'" are the state, control and 
output vectors, respectively; a(xk) and B(xk) are vector and 
matrix functions of class C°°. C is a constant matrix of proper 
dimensions. Moreover, in this paper the following hypothesis 
are proposed: 

HI) The state x is measurable. This condition is necessary 
in order to obtain an optimal controller, as it will be shown 
later. 

H2) m=r, that is, the system has an equal number of 
inputs and outputs. This is a frequently used hypothesis in the 
design of control algorithms for multivariable systems - [1 ,9] , 

Measure of Performance 

The general problem can be stated as to find a control 
sequence which transfers the system output to a specified 
value and maintains it there even under the presence of in
ternal or external perturbations. 

The design of the control law is performed by means of 
optimal control theory. It is then necessary to define the 
performance measure to be minimized when the control law is 
applied. This measure is selected as follows: if it is desired to 
drive the output vector to a given one (reference), it must 
contain an output error function. This may be accomplished 
by means of a non-negative definite and differentiable penalty 
function of the error, h (ek). Furthermore, if it is desired to 
prevent large excursions of the control vector from one 
sampling time to the next, a penalty function of the control 
or, more precisely, of the difference û . — uk_l can be in
troduced. However, the introduction of this function makes 
very difficult to obtain an explicit solution of the control, thus 
precluding a closed-loop control scheme. It is then proposed 
not to consider the control difference, uk — uk_lt but the -
error difference ek+l - e^. As it will be seen later, this 
consideration permits to obtain an explicit solution of the 
control. 

The following performance measure is then proposed: 
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/ = D (h(ek) + (ek+1 ~ek)
T(ek + ] — eA)) 

where [O, N] is the observation time and: 

e*; -y* 

(3) 

(4) 
ek is the output error and zk the reference vector. The problem 
can then be reformulated as to find an optimal control 
sequence, uk, k = 0, 1, . . . ,N— 1, such that the performance 
measure given by (3) be minimized over the trajectories 
defined by (1) and (2). 

Optimal Control Law 

For the system given by (1) and (2), under the hypothesis 
HI and H2, we will show in this section that the control law 
minimizing the performance measure (3) is given by: 

u | = (CB(x / t ) ) - ' ( z , + l - C a ( x , ) + ( ' / 2 M , - Q - I ) e , ) (5) 

where / is the identity matrix, Mk and Q are (wxw)-matrix 
that will be defined later. 

The Hamiltonian of the system is: 

H(ek,uk,pk + I,k) ^Hk=h(ek) + ( e* + , -ek)
T{ek + l -ek) + 

+ Pj+ie/t + i (6) 

where p .̂ is the system costate vector. 
The optimal control is the control that minimizes the 

Hamiltonian. Since u^ e Rr is not constrained, the derivative 
of equation (6) can be taken with respect to uk in order to 
obtain an expression for this control. On the other hand, from 
(1), (2), and (4) it follows that: 

ek + \=zk + l-Ca(xk)-CB(xk)uk (7) 

Substituting (7) in (6), taking the derivative of the resultant 
equation with respect to uk and making it equal to zero, we 
obtain: 

- 2 ( C B ( x , ) ) r ( z , + 1 - C a ( x , ) - C B ( x , ) u / t - e , + '/2P^+1) = 0 

(8) 

By hypothesis H2, CB(xk) is a (mxm)-matrix. Let's assume 
that CB(xk) is nonsingular. The control law is then given by: 

u | = (CB(x t ) ) "'fan-i -Ca(xk)-ek + Vipk + 1) (9) 

It can be observed that d2Uk/du2
k = 2(CB(xk))

T (CB(xk)) 
is a positive definite matrix; then the calculated control vector 
minimizes the performance index. 

Note: It has been assumed that matrix CB(xk) is non-
singular. If a region of the state space exists where this matrix 
is singular, the optimal input signal may become unbounded. 
This doesn't invalidate the optimality of the solution, but it 
implies that the optimal control law cannot be implemented in 
practice. 

We can now obtain the equation for p^. This equation is 
given by pk = dHk/dek. From (6), (7), and (9) it follows that: 

dh(ek) 
Pk + i = ~-~jLl+Pk (10) 

dek 

and from (7), (9), and (10) we obtain: 
dh(ek) 

e* + , = e t + H - ^ - H p t (11) 
dek 

Expressions (9) to (11) form a system of equations which 
must be satisfied for (3) to be a minimum. 

Let us propose: 

h(ek)=elQek (12) 

where Q is a (mxm) positive definite matrix which, by sim
plicity, is taken as a diagonal matrix. Then equations (10) and 
(11) become: 

e * + i = ( / + Q ) e * - ^ p * (13) 

Pk+i = ~2Qek+pk (14) 

It can be shown (see Appendix A) that the solution of 
system (13)-(14), for the costate vector, gives a linear error 
function: 

Pk=Mktk (15) 
Mk being a time varying matrix. Then, from (9), (14), and 

(15) it follows equation (5). 
An expression for Mk can easily be obtained from (13) to 

(15) as: 

(Mk+](I+Q)-V2Mk+lMk-Mk+2Q)ek=0 

This equation must be satisfied for any ek. Therefore: 

Mk + l(I+Q)-V2Mk+lMk-Mk+2Q = 0 (16) 

Equation (16) is a first order quadratic equation. It can be 
solved starting from the boundary conditions given by pN = 0 
[11]. Then, from (15), MN = 0. 

In summary, to obtain the control law it is necessary to 
solve equation (16) starting from the boundary condition MN 

= 0. Notice that Q is assumed to be diagonal, then Mk is also 
diagonal for every k. Equation (16) is then a decoupled first 
order system of quadratic equations. After Mk is obtained for 
k = N- 1, N—2, . . . , 0, these values are used to calculate 
uk, k = 0, 1, . . . , N- 1, by means of equation (5). 

Optimal Control Law When N ~ co. For practical purposes 
it is useful to consider an infinite observation horizon (N — 
oo). In this case it is possible to show that equation (16) 
converges to a unique and constant solution (see Appendix B). 
This solution is given by: 

M= diag(?, + \/<7,(<7/+4)) (17) 

where qt is the weighting factor corresponding to the rth error 
component (Q = diag (#,)). The control law is then 

u*k = (CB(xk))-
[(zk+l~Ca(xk)+Mek) (18) 

where M = diag (Visfq^qt +4)-Vigi-l)mxm 

We can obtain an expression for the error from (13), (15), 
and (17): 

ek + l = -Mek (19) 

M is a diagonal matrix such that its elements have 
magnitude less than one if q, > 0. Then the proposed control 
law makes the error converge to zero. It can be observed, 
from (19), that all the outputs are decoupled since M i s a 
diagonal matrix. Moreover, q, is directly related to the 
dynamics of the closed-loop system and it acts as an ac
celeration factor. This fact may be considered in order to 
propose a satisfactory value for q,. 

Proportional-Integral Control Law 

An efficient controller must be robust; that is, it must keep 
the output at the desired steady state value even when external 
or internal (parametric) disturbances are present. The results 
obtained in the above section about the error convergence are 
valid only when the controller is designed using the real 
process parameter values. However, when these values are not 
known precisely or a parameter variation occurs and this is 
not taken into account by the controller, a non-zero steady 
state error may exist. 

h 

9 proc©§8 —$Qj—* 

% 

integrators 

+ 
-* \ 

Fig. 1 Addition of error amplifiers and integrators 
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If unknown nonzero mean external disturbances are 
present, their effect may be eliminated by addition of a set of 
integrators on the output error. On the other hand, the 
transient response can be set by addition of error amplifiers. 
This results in the scheme shown in Fig. 1. 

Let us now define an augmented system whose state vector 
is formed by x and v, the input vector is u and the output 
vector is v. Notice that, if v is taken as the regulated (constant) 
output of the augmented system, the error signal must be zero 
at steady state. 

Let us consider a process described by the equations (1) and 
(2). The output error is given by equation (4). The relation 
between ek and v^ is as follows: 

vk + i=vk + (Kp+K,)ek + l-Kpek (20) 

where Kp and Kj are weighting factors of the proportional 
and integral actions, respectively. 

From (1), (2), (4), and (20) we can obtain: 

\k+] =\k+KpCxk- (Kp+K,)Ca(xk) + (Kp+K,)zk+l -

~Kpzk-(Kp+K,)CB(xk)uk (21) 

The equations representing the augmented system are the 
following: 

xk+l=a(xk)+B(xk)uk (22) 

y* = Cxk (23) 

(24) 

where xt = 

e*=z * -y * 

;a (x*) = 

1? 

I.I . 

10 

vv^ ^^--^ 
/ Kp=ip, ' 

/ / 
1 / 

1 1 » 1 

4 

Fig. 2(a) 

• t(h) 

a(*A-) 

yk+KpCxk- (Kp+K,)C*(xk)-

+ (Kp+K,)zk+l-Kpzk 

B(xk): 
fB(xk) 

(Kp+KI)CB(xk) 
;y* = v*;C = (07) 

and ik is the reference vector for v*. As it has been mentioned 
above, ik must be constant (ik = z) and it can be chosen 
arbitrarily. 

Considering a performance index given by (3), where ek is 
replaced by ek, and from the above equations, the optimal 
control can be expressed as: 

(CB(xk))-
1 

»t= - „ „ {Kpyk-(Kp+K,)Cz{xk) 
Kp+K, 

- (I+M) (z-vk) + (Kp +K,)zk + l ~Kpzk) (25) 

where M = Vi M-Q-I. In this case, the observation time is 
considered to be infinite. 

Application to a Fermentation Process 

The control law obtained (25) has been applied to a 
simulated continuous culture fermentation process. This 

Fig. 2 Output and control time responses for a change in the 
reference vector 
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process produces single cell protein from yeast grown on 
methanol. More details about the process are given in [10]. 

Process Model. The process is described by the following 
equations: 

x=(n-D)x (26) 

is the feed 
R, and K are characteristic 

s = D(Sa-s)-^x (27) 

H = l>-m TT— (28) 
A -TS 

where x and s are the biomass and substrate concentrations 
(g//), respectively, D is the dilution rate (fi~'), S, 
substrate concentration and ^ 
parameters of the process. 

In an industrial continuous culture fermentation process to 
produce biomass, one of the main requirements is to operate 
it at optimal productivity conditions. Normally, the control 
variables are kept constant at the maximum productivity 
point. For a continuous culture fermentation process, 
productivity is defined as: 

P=Dx (29) 

where P is given in (g/l.h) 
The optimal substrate concentration, that is, the value of s 

which maximize P, is given by: [12] 

s* = {K)Vl { (K+Sa)
 Vl -(K) v'} (30) 

s* is function only of K and Sa and is independent of fi„, and 
R. Most of the problems in a fermentation process are 
reflected in \>.m and R variations; then we can make a static 
optimization by controlling s at its optimal value s*. Sa can be 

measured from the process and A' is a constant process 
parameter. 

Another important requirement in an industrial fer
mentation process is to maintain a certain biomass rate 
production. Then it is necessary to regulate the biomass 
concentration x at a specified value x*. 

The two requirements mentioned above make necessary to 
design a multivariable control law. From the physical point of 
view the selection of D and Sa as the control variables is 
adequate because of the facility to handle them. 

Discrete Model. We have applied the forward Euler 
algorithm to discretize the analog process model (26)-(28) and 
obtain the discrete model needed to calculate the control law. 
In spite of the existence of better choices, we have found this 
algorithm well adapted to this problem, as it will be shown 
later. 

Applying this algorithm to the analog process model we 
obtain the following: 

x* + i = a(xk)+B(xk)uk 

y/< = Cxk 

where x^ = {xksk)
T;uk = (DkDk-Sak)

T 

a(xk) = 
xk+Hjxkxk 

H 
' —jT Hkxk+Sk 

;B(xk)=H 
-xk 0^ 

-sk 1_ 

(32) 

C = I\\x.k=\x„ 
K+sk 

H is the sampled period. As it may be seen, det(CB(xk)) = 
— Hxk = 0 if xk = 0 . An analysis of the physical process 

. . 3.02 

. . 3.01 

8 t ( h ) 

Fig. 3(a) 

4 
Fig. 3(b) 

Fig. 3 Output and control time responses for a disturbance of 25 
percent on the dilution rate 
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Fig. 4 System response for a change of 25 percent in nm 
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4 
Fig. 5(b) 

Fig. 5 System response for a change of 25 percent in R 

shows that this situation seldom occurs in practice, so we can 
say that matrix CB(\k) is nonsingular and the control law 
will be bounded. 

Control Law. We will show the case when regulation is 
desired, that is, the output reference is a constant vector: zk = 
(x*,s*)T. Also, we assume that z = zk. 

Application of equation (25) gives the following expressions 
for Dt and S*k (S*ak = (Dk • Sak ) */D*k): 

D*k = ( 
Kp +Kj \ Hx, 

K'x*+~+(Kp+K,)vck-
1 

H Hxk 
-vrk + 

>ak —Sk 
(Kp+K,)HDk 

(KP+K,)H 

Hxk
 xk ) 

-((\-~Kl)s*+K,sk 

(33) 

Rr 
f-ckxk ~ 

Vsk + KS (S* • • V s k ) . (34) 

where /j.ck = nmc skl {Kc +sk). The subindex c is associated to 
the controller parameters. vxk and vsk are the added state 
components when the PI block is included. Kx and Ks are 
given by expressions of the form Kj = Vi Vg, (<?, + 4) - Vi q, 
- 1 and (jj is the ith component of the diagonal of the Q 
matrix. 

Simulation Results. The control law (33)-(34) was applied 
to the process whose characteristics are given by \x„, = 0.2 
(h~]),R = 0 .3 , A" = 0.1 (g/l). 

The reference was fixed to z = (x*, s*)T = (3, l ) r . Also, we 
have chosen Q = I&ndK, = 1. 

Figure 2 shows what happens when the reference vector 

2.98 

2.96 

Fig. 6(a) 
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Fig. 6 System response for changes in D (25 percent), Sa (25 percent), 
fl (25 percent), ^ m ( - 25 percent) and K(50 percent) 

changes by a prespecified amount (x*: 3 — 3.6; s*: 1 — 1.2). 
The output and control responses are shown for two values of 
Kp: 3 and 10. Notice that if the proportional action increases, 
the system becomes slower and the control vector has smaller 
excursions from one sampling time to the next. 

For the remaining experiments, Kp has been chosen equal 
to 3. Figure 3 shows the output and control evolution in time 
when a step disturbance of 0.045 (25 percent) on the dilution 
rate has been introduced. This is a typical event occurring in 
the real process. Both output variables return to their nominal 
values in about 4 hours after the disturbance has been 
produced. 

In the aforementioned experiments it has been assumed that 
the control parameters (timc, Rc, and Kc) are equal to the 
process parameters (/z„,, R, and K). If changes in the process 
parameters occur and are undetected by the controller, 
responses shown in Figs. 4, 5, and 6 are obtained. 

Figure 4 shows what happens when a change in JX,„ is 
produced after the system has attained a steady state. nm has 
changed from 0.2 to 0.25 (25 percent) following a first order 
system dynamics with a constant time of approximately one 
hour. This is a more realistic parametric change than a step 
disturbance. Moreover, the dynamics of the simulated 
parametric change is rather fast, so it could be expected a 
better performance if the perturbation has a slower dynamics. 
A good regulation of the process output can be observed. 

Figure 5 shows the results obtained when R is changed from 
0.3 to 0.375 (25 percent) on the same conditions mentioned 
for fj.„,. Only the substrate concentration is disturbed in this 
case, and it returns to its nominal value in about five hours. 

Finally, in Fig. 6 it is shown what happens when disturb
ances are presented on D(25 percent), S„(25 percent), R(25 
percent), fim( — 25 percent) and K(50 percent). As it can be 
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observed, in spite of the strong disturbances introduced into 
the process, the controller is able to effect a very good 
regulation. 

Conclusions 

In this paper a technique for the synthesis of control laws of 
a certain class of discrete nonlinear systems has been 
proposed. The use of optimal control theory and an adequate 
selection of the performance index allowed us to obtain a 
control law which is an explicit function of the state vector, so 
a closed loop scheme is obtained. By appropriate selection of 
the penalty function of the error vector, it is possible to 
change easily the system dynamics or to bound the maximum 
magnitude of the control. 

On the other hand, the addition of a block of error am
plifiers-integrators has reduced the steady state error to zero 
when internal or external disturbances are present. 

The obtained control law has been applied to a simulated 
continuous culture fermentation process with good results. 
However, since this approach assumes that the state vector is 
accessible and in most fermentation processes there is no 
access to the whole state vector, it is necessary to build an 
observer whose design is still an unsolved problem for the 
general case of discrete nonlinear systems. 

In the experiments presented in this paper we only try to 
show the robustness of the scheme to regulate s and x. It must 
be noted that Sa has been taken as a control input, so when Sa 

varies, s* must follow these variations by means of equation 
(30) in order to always be operating at the optimal produc
tivity conditions. 
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A P P E N D I X A 

Equations (13) and (14) can be expressed as: 

Y/k+1 = AdWk 

where 
rI+Q - ViV 

•2Q 

(35) 

(36) 

Ad is a matrix whose determinant is equal to one, so Ad' 
exists for every positive integer /. 

The solution of (35) is: 

v/k =/l*-*ow0 (37) 

which is valid for every k and k0. Let k = N and k0 = k, then 

WN=A%-kY/k 

thus 

where/ = N—k. 
From (36) and (38): 

Y/k=Ak
d
 NwN=Ad'wN 

tk=AnkeN+AmpN 

Pk=AllkeN+A22kpN 

(38) 

(39) 

(40) 

where A jjk are submatrix of Ad ' of dimension mxm. 

Akf 
A, 

From the boundary conditions we have pN •-
(39) and (40): 

Pk=A2lkAii\ek^Mkek 

0. Then, from 

(41) 

A P P E N D I X B 

Since Q was assumed to be diagonal and it was shown that 
Mis also diagonal, namely: 

Q = diag((y') and M= diag(m') 

In this case, analysis of equation (16) can be reduced to the 
analysis of the following scalar equation: 

(l+q)mk+l-'/imk + lmk-mk+2q = 0 (42) 

where the superindex (/) has been omitted. 
Then 

(l+q)mk+l+2q 
mk = 

l + Vimk + l 

Since mk is evaluated from k = N—\ to k = 0, (43) is 
calculated as follows: 

(43) 

{\+q)mN + 2q 

1 + VimN 

(1 +q)ml +2q 

1 + Vim, 

This is equivalent to have a system like the following: 

(l+q)mj+2q ._ 
mj+\ = 1 + Vim, 

-j = 0, . . . , N-l,m0=0 (44) 

When N — oo (J — oo), (44) can be seen as the problem of 
evaluating the roots of the function: 

(\+q)m + 2q 
f(m)=m —— =0 

1 + Vim 

by means of the successive approximation method. It is 
known that this method converges when 

dmj+] 

dirij 
<1 

Then, from (44): 

dmj+1 

dm, 
1 

T < 1 for m, >0 or m, < - 4 
(l + Vimj)2 J J 

If we start from m0 = 0 then m, = 2q > 0. On the other 
hand, if j — oo the equilibrium points of (44) are: 

m+=q + Jq(q~+4)>0 

and 

m„=q--Jq(q + 4)<0 

System (44) then converges, starting from m. 2q, to mi. 
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