
MicroFuge: A Middleware Approach to Providing Performance Isolation in Cloud
Storage Systems

Akshay K. Singh, Xu Cui, Benjamin Cassell, Bernard Wong and Khuzaima Daudjee
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

{ak5singh, xcui, becassel, bernard, kdaudjee}@uwaterloo.ca

Abstract—Most cloud providers improve resource utilization
by having multiple tenants share the same resources. However,
this comes at the cost of reduced isolation between tenants,
which can lead to inconsistent and unpredictable performance.
This performance variability is a significant impediment for
tenants running services with strict latency deadlines. Pro-
viding predictable performance is particularly important for
cloud storage systems. The storage system is the performance
bottleneck for many cloud-based services and therefore often
determines their overall performance characteristics.

In this paper, we introduce MicroFuge, a new distributed
caching and scheduling middleware that provides performance
isolation for cloud storage systems. MicroFuge addresses the
performance isolation problem by building an empirically-
driven performance model of the underlying storage system
based on measured data. Using this model, MicroFuge reduces
deadline misses through adaptive deadline-aware cache evic-
tion, scheduling and load-balancing policies. MicroFuge can
also perform early rejection of requests that are unlikely to
make their deadlines. Using workloads from the YCSB bench-
mark on an EC2 deployment, we show that adding MicroFuge
to the storage stack substantially reduces the deadline miss rate
of a distributed storage system compared to using a deadline
oblivious distributed caching middleware such as Memcached.

Keywords-caching; middleware; performance isolation; stor-
age; scheduling

I. INTRODUCTION

Cloud computing has had a transformative effect on
how businesses host their online services and manage their
computational needs. As increasing numbers of users take
advantage of the cloud, the associated rise in resource de-
mands has cloud providers focusing on efficiently monitor-
ing and allocating resources between users. By consolidating
services from different tenants onto the same physical ma-
chines, a cloud provider can significantly increase resource
utilization. This in turn allows cloud providers to offer a
price-competitive hosting service to their tenants.

However, service consolidation can lead to poor perfor-
mance if multiple tenants require the use of their resource
reservations concurrently. For a resource such as memory,
where tenants are generally more concerned about capacity
than throughput and access latency is largely unaffected by
concurrent access, resource sharing does not affect perfor-

mance unless there is capacity oversubscription. Unfortu-
nately, the opposite is true for storage where throughput
and latency are of much greater concern than capacity,
and resource sharing can significantly degrade a storage
system’s performance. This can lead to highly unpredictable
performance for cloud storage clients that is unacceptable
for those that have strict access latency requirements.

Therefore, it is critically important for cloud storage
providers to offer performance isolation in their storage
systems. Perfect isolation ensures that client performance
is completely unaffected by other clients. This generally
requires dedicated disks per client, significantly reducing
resource utilization and inflating operating costs. Many
clients instead prefer to enter into a performance-based
Service-Level Agreement (SLA) with their cloud provider,
in which they specify their performance requirements that
must be met in spite of competing requests [1]. One of
the key elements of an SLA is the response time service
level objective (SLO) which can be naturally represented as
request deadlines. Along with the response time SLO, an
SLA ensures predictable performance for the clients and,
compared to perfect isolation, provides additional resource
sharing opportunities for the cloud storage providers.

In this paper, we introduce MicroFuge, a distributed
middleware that tackles the performance isolation problem
by building a lightweight and accurate performance model
of the underlying storage system using measured data,
and then adding a deadline-conscious, performance model-
driven caching and scheduling layer to the cloud storage
stack. The performance modeling component is crucial for
determining cache eviction, scheduling, and load-balancing
policies that minimize deadline misses for a given storage
system. The MicroFuge middleware layer is similar to the
external caching layer that is commonly used in most web
service deployments.

Using this additional middleware abstraction, we demon-
strate that cloud storage systems are able to effectively
provide much stronger performance isolation for multiple
cloud tenants. We define performance isolation as a property
where a tenant can meet its performance requirements in
spite of concurrent actions from other tenants, which closely

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357588976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

models real-world, performance-based SLAs. By targeting
the caching and scheduling layers, which only hold soft-
state, and offering the same caching interface as Mem-
cached, we greatly reduce MicroFuge’s barrier to adoption.

Some latency-sensitive requests must be served from the
cache, as they would otherwise miss their deadlines. Unfor-
tunately, popular caching systems, such as Memcached, are
deadline-oblivious and use a single LRU queue to manage
cache eviction. In contrast, MicroFuge’s cache eviction
policy aims to minimize deadline misses. Instead of a
single LRU queue, MicroFuge introduces a separate LRU
queue for each deadline range. To make use of the multiple
LRU queues, MicroFuge builds a performance model of the
storage system using feedback from the clients. This model
determines the likelihood that a particular cache eviction
would lead to a deadline miss and is used to determine a
cache eviction policy across queues.

Working in conjunction with the caching system is a
distributed deadline-aware request scheduling layer that con-
trols access to the cloud storage system. The scheduler keeps
track of the pending requests of each storage server, directs
client requests to storage replicas with lighter loads, and
creates a latency model of the storage system to perform a
variant of earliest deadline first scheduling while ensuring
requests with unmeetable deadlines only minimally impact
other requests.

Although an effective deadline-aware cache and scheduler
can help meet performance requirements, it is nevertheless
impossible to meet aggressive latency deadlines given an ar-
bitrary request load. We address this problem in MicroFuge
by adding an optional admission control component to our
distributed scheduler. When activated, the scheduler uses
its latency model of the storage system to provide early
rejection of incoming requests that are unlikely to meet
their latency requirements. This protects the storage system
from being overloaded and ensures that a certain number
of requests can still meet their performance requirements
regardless of workload characteristics. The applications issu-
ing these rejected requests can then make informed decisions
on their next course of action.

An alternative to MicroFuge’s middleware approach to
performance isolation is to directly incorporate deadline-
aware caching and scheduling into existing cloud storage
systems. However, the current cloud storage ecosystem is
greatly varied; there are dozens of systems that are widely
in use today. Any effort to design a cache and scheduler for
a specific system would only affect a small fraction of cloud
applications and therefore will likely have minimal impact
on future cloud application design.

The main contributions of this paper are as follows:
• The design and implementation of a deadline-aware,

model-driven distributed caching system.
• A distributed scheduling system that performs a variant

of earliest deadline first scheduling and request admis-

// Retrieve a value from the cache
CacheResult get(String key, double deadline);

// Insert a value into the cache
long put(double deadline, String key, String val,

boolean overwrite, boolean isMissed);

// Remove a value from the cache
void erase(String key);

Listing 1: DLC interface functions.

sion control.
• An evaluation that demonstrates the effectiveness of

MicroFuge in an EC2 deployment using the YCSB [2]
benchmark.

The remainder of this paper begins with a description of
MicroFuge’s system architecture in Section II. Section III
details our experimental setup and workloads, and Sec-
tion IV presents our evaluation results. Section V surveys
related work, and Section VI concludes.

II. SYSTEM ARCHITECTURE

The MicroFuge system is a multi-component middleware
consisting of a distributed caching layer and a distributed
scheduling layer. Both layers share a similar, scalable de-
sign in which coordination between servers is performed
completely through communication between the servers and
clients. This section describes the design of both layers, as
well as the overall MicroFuge protocol.

A. Deadline Cache

MicroFuge’s distributed caching layer, which we have
named Deadline Cache (DLC), exposes a key-value store
interface similar to that of Memcached. This interface is
shown in Listing 1. The get operation fetches a key-
value pair from the cache, and the put operation populates
the cache, usually following a cache miss. Much like in
Memcached, data stored in DLC is partitioned across the
cache servers based on the hash of the key value, and DLC
clients are provided the full list of cache servers at startup,
which enables them to independently determine the cache
server to contact for each request.

DLC’s put operation includes a deadline field, which
is used by the client to specify the maximum acceptable
latency for servicing get requests for this key. It also
includes a deadline missed field, which allows the client
to specify if the put operation was performed in response
to a cache miss which resulted in a deadline violation. This
provides empirical feedback to the cache which is used to
build a performance model of the underlying storage system.
Both fields are used by the cache server to determine an
appropriate eviction policy for a given deployment. DLC’s
get operation also includes a deadline field, which can be
used to update the deadline for the specified data item.

Figure 1: High-level layout of the DLC architecture.

The DLC server architecture is illustrated in Figure 1
and consists of three main components: a table for fast key
lookups, multiple request queues for performing deadline-
aware LRU eviction, and a performance modeling compo-
nent that collects feedback from the clients to determine a
cross-queue eviction policy in order to minimize deadline
misses. We look at the latter two components in detail in
the next subsections.

1) Multiple LRU Queues: Past work has shown that LRU-
based cache eviction, where items are ordered by their last
access time in a queue, offers near-optimal caching perfor-
mance for general workloads [3]. Although LRU achieves
high cache hit-rate and good performance, it is a deadline-
oblivious eviction policy. In a system with strict performance
requirements, the cost of a cache miss is substantially higher
if it leads to a deadline miss, and the likelihood of a deadline
miss is much higher for requests with short deadlines than
those with long deadlines.

To minimize the cost of cache misses, DLC uses mul-
tiple LRU-ordered queues to manage cache eviction. Each
queue is responsible for maintaining the relative ordering
of key-value pairs with deadlines spanning a particular
deadline range. The i-th queue is responsible for deadlines
[(i−1)·D

n , i·Dn) where n is the number of queues in the cache
server and D is the maximum deadline length. Items with
deadlines larger than D are stored in the n-th queue. This
multi-queue organization is illustrated in Figure 1.

The LRU queues ensure that items in the same queue are
evicted in LRU order. However, determining which LRU
queue to evict from to minimize the deadline miss rate
requires knowing the likelihood that a particular eviction
would eventually lead to a deadline violation. This de-
termination is performed by DLC’s performance modeling
component.

2) Performance Modeling and Cache Eviction: DLC in-
corporates the cost of deadline misses into its eviction policy

by applying a queue-specific multiplier 1
mi

to the difference
between the current time and the last access time of an item.
We call this product the Modified Recency Value (MRV) for
each eviction candidate. The eviction candidates are the least
recently used item from each queue, and the candidate with
the largest MRV is selected for eviction.

An adaptive eviction policy must account for both the
client request rate for each deadline range and the underlying
storage system’s performance. In a workload with requests
that have a uniform deadline distribution, tuning a simple
static multiplier assignment such that mi−1 > mi may be
sufficient. However, such a scheme would perform poorly
if only a very small percentage of requests have short
deadlines. In this type of degenerate case, the short deadline
data items will not be evicted even if they are only accessed
infrequently, resulting in a low overall cache hit rate.

Similarly, an eviction policy that does not account for
the underlying storage system’s performance does not know
whether the storage system can meet a given deadline
under a particular client request load. Statically assigning
a multiplier value that overestimates the performance of the
storage system will lead to small multipliers for deadlines
that the storage system cannot satisfy, resulting in additional
deadline violations. Underestimating the storage system’s
performance will lead to apportioning more memory than
necessary to store long deadline items. This will, in turn,
lower the cache hit rate for short deadline requests (whose
deadline satisfaction is much more cache hit rate-dependent),
resulting in deadline violations. Therefore, it is critically
important that a deadline-aware cache adapts its cache
eviction policy based on deadline violation feedback from
its clients, accounting for both client request rates and the
storage system’s performance.

MicroFuge’s queue multipliers are adaptively computed
using empirical measurements to reflect the likelihood that
a cache eviction would eventually lead to a deadline miss.
Its design follows that of a simple proportional-integral
controller. In this design, the multipliers are initialized to
1 and the system maintains the following invariant:

n∑
i=1

mi = n (1)

where n is the number of queues in the cache server. Upon
receiving a put request with a deadline within the range
of queue i and with the deadline missed flag set to true
(indicating that a deadline violation occurred due to a cache
miss), the multiplier mi is incremented by ε. The value of ε
affects the convergence rate and the amount of perturbation
from new updates at steady state. In order to maintain the
invariant in Equation 1, all of the queue multipliers are
renormalized by multiplying by n

n+ε . The relative increase
in mi reflects the increased number of observed deadline
misses in the deadline range of queue i.

Figure 2: High-level layout of the DLS architecture.

B. Deadline Scheduler
The second major component of MicroFuge is its dis-

tributed scheduling layer, the Deadline Scheduler (DLS),
which is typically deployed on the same servers as DLC,
and collectively tracks the outstanding requests of each
storage server. The DLS interface is shown in Listing 2 and
provides a ticket-based approach to perform reservations.
By serving as an intermediary between the clients and the
storage servers, it can perform load-balancing of requests
across replicas, control the ordering of client requests to
reduce the number of deadline violations, and optionally
perform admission control to provide early rejection of
requests that cannot make their deadlines. Three mechanisms
work in unison to provide DLS with its capabilities. These
mechanisms are:

• A ticket-based load-balancing system that directs each
client to the server that is the most likely to be able to
meet the request’s deadline.

• A variant of earliest deadline first scheduling that
uses performance statistics from the underlying storage
system to limit the impact of deadline violations on
other requests.

• A tunable admission control system that uses perfor-
mance statistics to minimize the number of rejections
while meeting a deadline miss rate target.

We describe each of these mechanisms in turn in the fol-
lowing sections. A high-level depiction of clients interacting
with the scheduling layer and the data store can be seen in
Figure 2.

1) Ticket-Based Load-Balancing: Most cloud storage
systems [4], [5], [6] perform data replication to provide
fault tolerance, increase availability and improve read perfor-
mance. The amount of flexibility available in replica selec-
tion for reads depends on the storage system’s consistency
model. Systems that offer strong consistency may require
that the primary replica service all of the read operations.

In contrast, eventually consistent systems, which make up
the majority of current cloud storage systems, can service
reads from any replica, with most of these systems using
some type of randomized selection technique. Unfortunately,
randomized selection can lead to unpredictable hotspots
which may cause deadline violations.

MicroFuge leverages the replica selection flexibility in
current cloud storage systems to both improve load bal-
ancing and reduce deadline violations. The basic approach
follows the load balancing algorithm proposed by Mitzen-
macher [7] in which a client that wishes to issue a read
request will randomly choose two of the replicas as potential
read candidates. It will then send ticket requests to the DLS
servers responsible for these storage servers, where each
ticket represents a read reservation. The tickets will include
the deadline for the read request, and the DLS servers will
determine, based on the number of outstanding requests to
the server and the server’s performance model, whether or
not it believes the storage server can service the request
within its deadline. Unlike in Mitzenmacher [7] where the
less loaded of the two servers is always selected, the client
will first select a server that can satisfy its request deadline
while not causing someone else to miss their deadlines
and only use system load to render a decision if both of
the servers are either able or unable to satisfy the request
deadline.

After selecting one of the replicas, the client cancels its
ticket on the other replica, and sends a waitOnTicket
request to the scheduler to wait for its turn to access
the storage system. Upon receiving a response from the
waitOnTicket request, the client can issue its read re-
quest to the storage server. Once the read completes, the
client sends a final releaseTicket request to DLS to
notify the scheduler that the request has completed. DLS
uses the releaseTicket request to both determine when
it can allow the next client to issue its request to the storage
server and build a performance model for the response times
of the read requests.

2) Scheduling Algorithm: DLS uses a variant of earliest
deadline first (EDF) scheduling to determine the ordering
of pending requests (tickets)1. EDF is known to be optimal
for single-resource scheduling with preemption if a schedule
exists where all of the request deadlines can be met [8].
However, in overloaded situations where not all deadlines
can be met, EDF scheduling can lead to additional deadline
violations by attempting to schedule requests that either
cannot meet their deadlines or have already missed their
deadlines.

The DLS variant of EDF examines the response time
performance model of the storage server in order to deter-
mine whether a pending request should be scheduled using

1We would like to point out that DLS provides write monotonicity. In
other words, writes are never reordered by the scheduler.

// Request a ticket from the scheduler
int getTicket(enum opType, double deadline,

boolean bestEffort);

// Wait on a ticket until it is scheduled to
proceed

boolean waitOnTicket(int ticketId, enum opType,
int dbServerId);

// Cancel a request and remove it from the queue
void cancelTicket(int ticketId, enum opType,

int dbServerId);

// Remove a completed request and update latency
void releaseTicket(int ticketId, double

dbLatencyMs,
enum opType);

// Combine the get and wait actions (best effort)
boolean getTicketAndWait(enum opType,

double deadline);

Listing 2: DLS interface functions.

its specified deadline, or rescheduled using a much larger
artificial deadline in the case where a deadline violation
is inevitable. By rescheduling these requests with a larger
deadline, despite the fact that these requests will miss their
own deadlines, DLS enables other requests to be scheduled
earlier and increases the likelihood of them meeting their
deadlines. To prevent starvation, DLS only allows a request
to be rescheduled once.

DLS’s response time performance model uses request
latencies from a past window of requests to generate a
latency distribution. The request latencies are provided by
the clients as part of the releaseTicket operation. DLS
determines that a request is unable to meet its deadline if
the time remaining to meet its deadline is less than the
α-percentile request latency in the latency distribution of
the response time performance model, where α is a system
parameter. The remaining time is calculated using the dif-
ference between the request deadline and either the current
time if the storage server is idle or the estimated completion
time of the previous request using the performance model.

3) Request Admission Control: MicroFuge is primarily
designed to prevent deadline violations. Deadline-awareness
in the cache eviction policy helps reduce the chance of
misses by increasing the cost of cache evictions that are
likely to cause deadline violations. The ticket-based schedul-
ing algorithm helps distribute load and further reduce dead-
line misses by both scheduling earlier deadline requests
ahead of later deadline requests and rescheduling requests
that will inevitably cause deadline violations to minimize
their impact on other requests’ response times. Despite all
this, as the load on the system increases, deadline misses
are unavoidable, and previous work has shown that out-
standing requests on a data store can significantly impact
an application’s response time [9]. Therefore, to satisfy the

performance requirements of at least a subset of the requests,
a portion of new requests must be rejected by an admission
control system.

DLS provides an optional admission control mechanism
that uses the performance model described in Section II-B2
to determine, given the current list of pending requests, if
the new request will likely miss its deadline or cause one
of the pending requests to miss its deadline due to the EDF
scheduling policy. In either case, if the admission control is
enabled, DLS will reject the getTicket operation instead
of returning a ticket. The admission control mechanism
uses the β-percentile latency in the latency distribution to
estimate the completion time of pending requests, where β
is a tunable parameter. A higher β value will lead to fewer
deadline violations and a higher rejection rate, while a lower
β value has the opposite effect.

By allowing applications to define their own deadlines
on storage requests, MicroFuge allows the hosting of appli-
cations to cater to clients with a variety of latency needs.
Performance is bounded by client-defined performance met-
rics, and not the generic (and possibly unhelpful) decisions
of the scheduler inside the data store itself. It furthermore
empowers clients to know almost immediately if a request
will not be serviceable within desired time limits, allowing
clients to react quickly and effectively when I/O deadlines
cannot be met. For example, a web application client can,
upon receiving a rejection from both tickets, serve a static
advertisement, which does not require a read request to the
storage system, instead of displaying a list of recommended
or related items.

C. MicroFuge Protocol

The MicroFuge request protocol combines both sequential
and concurrent requests to DLC, DLS and the underlying
storage system. A MicroFuge read request begins with the
client issuing a key lookup request to the DLC. The request
completes if the key is available in the cache. Otherwise,
the client randomly selects two storage servers with a copy
of the request data item, and issues a getTicket request
to each of the DLS servers that are managing the pending
requests for these storage servers.

The client waits until it has received a response from each
getTicket request. Responses returned may be marked
as successful, which means the scheduler believes that the
storage server will service the request within the request’s
deadline and, if the admission control is enabled, will not
cause other pending requests to miss their deadlines, or
unsuccessful, which means the request will likely miss its
deadline. Responses also include an indication of how long
the scheduler believes it should take to service the request.
If only one of the two responses are marked successful, then
the storage server with the successful response is selected.
If both responses are marked as unsuccessful and admission
control is enabled, then the request is rejected. Otherwise,

Figure 3: Sample timeline for a read request from a client. For this request, the requested item is not contained in the cache
and both schedulers accept the ensuing ticket requests.

// Retrieve a value from MicroFuge
public String read(String key, double deadline,

boolean bestEffort);

// ... Other code here

String myVal = read("myKey", 12345, true);

Listing 3: MicroFuge read operation interface.

the storage server with the shorter expected service time is
selected.

After selecting a storage server, the client concurrently
cancels the ticket for the unselected server, and issues a
waitOnTicket operation to the scheduler for the selected
server. Once the waitOnTicket operation completes, the
client can then issue a read request to the storage server
to retrieve the requested data item. Finally, upon receiving
the result from the storage server, it concurrently issues a
releaseTicket operation to the scheduler and a put
operation to the cache to populate this data item.

Managing the interactions between DLC, DLS, clients
and storage systems can be complicated. These systems can
be neatly encapsulated into a very simple and easy-to-use
client protocol, exposing only operations such as read and
write to the user. As an example, the MicroFuge interface
that exposes a read operation can be seen in Listing 3. This
interface performs all the necessary operations to retrieve a
value from DLC and DLS.

We illustrate the request protocol in Figure 3, which
outlines the steps taken to perform a read request. This
example assumes that the data is not in the DLC and the data
store is busy processing another request when the sample
request is issued. After contacting the appropriate scheduling
nodes, the client is informed that both scheduling nodes are
successfully able to complete its request. The client selects
the first scheduling node (which reports an earlier comple-
tion time estimate than the second node), cancels its request
to the second node and then waits on notification from the

storage layer before performing its read. Immediately after
the completion of its read, the sample request releases its
ticket, concurrently updates the DLC with the data value
and the scheduler with the latency information.

III. EXPERIMENTAL SETUP

We deployed our system on a twenty-node test cluster on
Amazon Web Services. Each cluster node is an m1.medium
EC2 instance with two elastic compute units, 1 virtual
CPU, 3.7 GB memory, 410 GB of (non-EBS) storage and
moderate network performance. All nodes run 64-bit Ubuntu
Server 12.04.3 and we manually set the memory size for
each node to 2 GB to cut down on the time required to
warm up the cache for the experiments. Four instances
were configured as clients to run YCSB benchmarks. The
rest of the (sixteen) instances were configured as servers,
each running MicroFuge or Memcached on top of our
cloud storage system. All machines are in the same subnet
within AWS’s network which would be representative of a
datacenter setup.

Our data set consists of 80 million records 86.4 GB in
size. The total cache capacity of our system is 19.2 GB,
about 1/5th the size of the data set. The data was stored in
a simple custom data storage system based on leveldb [10].

We used YCSB [2] to generate our workloads. Each
request generated by YCSB was for a 13-byte key associated
with a 1 KB value. We modified YCSB to generate a
deadline for each request. Deadlines are generated using
the hash of the key so requests for the same key will
always have the same deadline. This represents the scenario
where each key is associated with a particular application,
and, for a given key, the application uses the same request
deadline. The generated deadlines fall into one of 3 ranges of
deadlines: [10-30) milliseconds, [30-100) milliseconds and
[100-1000] milliseconds with a distribution ratio of 2:3:5
respectively. These ranges essentially represent classes of
clients where each class has a fixed range of response time
requirements.

Figure 4: Deadline miss rate for 192 concurrent clients with
DLC and Memcached.

Each data point on the performance graphs in the next
section is the average value of 5 independent runs after the
system has warmed up with the system parameters α and β
set to default values of 15 and 88 respectively. Both values
are determined by empirical experimentation. A small α
value enables the underlying storage system to aggressively
schedule client requests so it can utilize the system resources
at full capacity while a large β value will minimize the
deadline miss rate in order to satisfy requests with very
strict service level objectives. The 95th percentile confidence
intervals on the relevant graphs are shown as error bars
around the data points.

IV. PERFORMANCE EVALUATION

The first goal of our experiments is to compare the
deadline miss rates of our adaptive deadline-aware caching
and scheduling layer running on top of our simple data
storage system against Memcached running with the same
storage system. The second goal is to show that our cache is
deadline-aware, retaining data items with shorter deadlines
in the cache by evicting data items with longer deadlines.
The third goal is to illustrate the tunable admission control
mechanism, which can further bound the deadline miss
rate of the underlying storage system to a desired upper
limit. Lastly, we want to show a comparison of the overall
deadline miss rates and overall cache hit rates of the different
components described in this paper while running the YCSB
workload. Where appropriate, we include measurements for
our storage system as a baseline comparison. Note that the
baseline storage system refers to simply using the storage
layer without any caching, scheduling or admission control
components.

Figures 4, 5 and 6 show the deadline miss rates for
requests with varying deadlines. Figure 4 shows that Mi-
croFuge’s caching layer does better than Memcached in
reducing deadline misses for requests with shorter deadlines.
Our caching layer favours requests with shorter deadlines
since longer deadline requests are unlikely to be missed. Our

Figure 5: Deadline miss rate for 192 concurrent clients with
DLC + DLS and Memcached.

Figure 6: Deadline miss rate for 192 concurrent clients with
DLC + DLS + AC and Memcached.

scheduler, which adds adaptivity to MicroFuge, balances the
load of the storage system so that the deadline miss rate for
requests with long deadlines is also reduced as seen in Fig.
5. If we turn on our admission control inside MicroFuge’s
scheduling layer, we can further reduce overall deadline miss
rates to less than 5%, which is almost a 74% improvement
over Memcached’s overall deadline miss rate for 192 clients.
(This deadline miss rate does not include the 7.14% rejection
rate.) As seen in Figure 6, the scheduler rejects any requests
with short deadlines that are unlikely to be met. This is
part of our design, as we would like to inform the client
without any further delay that we are unlikely to meet its
deadline, thereby allowing the client to decide on the next
most desirable course of action.

Figures 7, 8 and 9 show the cache hit rates for both
MicroFuge and Memcached. MicroFuge’s overall cache hit
rate is marginally lower than that of Memcached. However,
our results also demonstrate that our system is deadline-
aware, as we tend to keep items with lower deadlines in the
cache. Memcached, which has no deadline-awareness, has
an almost uniform cache hit rate across different request
deadlines. By using both DLC and DLS, additional requests

Figure 7: Cache hit rate for 192 concurrent clients with DLC
and Memcached.

Figure 8: Cache hit rate for 192 concurrent clients with DLC
+ DLS and Memcached.

with long deadlines can be satisfied from the disk compared
to just using DLC. Therefore, there is a reduced need
to cache items with long deadlines, which leads to more
resources being available to cache items with short deadlines
and a higher cache hit rate for requests with deadlines less
than 30 ms as shown in Figure 8. In Figure 9, with admission
control enabled, there is a lower cache hit rate for deadlines
less than 30 ms. This is because short deadline items are
often rejected and therefore are less likely to be inserted
into the cache. Requests with deadlines between 30 ms and
100 ms have a higher cache hit rate as they are less likely
to be rejected and there are more resources available due to
the low occupancy of short deadline items. Lastly, Figure 10
shows a snapshot of DLC’s underlying performance model
where there is a multiplier associated with each queue, as
described in Section II-A2. Our performance model favours
requests with shorter deadlines as they are given much larger
multipliers, increasing the likelihood that these requests
are kept in the cache. Although we omit some adaptive
multipliers due to space constraints, these omitted values
follow the same trends shown in Figure 10.

Figure 11 shows that our tunable admission control mech-

Figure 9: Cache hit for 192 concurrent clients with DLC +
DLS + AC and Memcached.

Figure 10: A snapshot of the converged adaptive multipliers
for 192 concurrent clients with DLC only.

anism can reduce overall system deadline miss rates to as
low as 3%-4%. By varying the system parameter β, the sum
of the rejection rate and deadline miss rate is approximately
the same as the deadline miss rate for DLC and DLS without
admission control. This gives the cloud service provider a
useful knob that can be varied to protect servers against
overloading.

The graphs in Figures 12 and 13 demonstrate the overall
deadline miss and cache hit rates for various system setups.
They show that each of MicroFuge’s components contribute
to reducing deadline misses. The overall cache hit rate is
only marginally lower than Memcached’s cache hit rate
due to the non-uniform cache eviction policy of MicroFuge
which shows that MicroFuge’s cache is as effective as
Memcached’s. Figures 12 and 13 also show that a 10% write
and 90% read workload has minimal impact on the overall
deadline miss rate and overall cache hit rate. The deadline
miss rate of our simple cloud storage layer included as a
baseline is over 20% at just 96 clients. This depicts the
significant performance degradation that a storage system
can suffer from if a concerted effort is not made to provide
deadline-aware mechanisms such as caching, scheduling and

Figure 11: Deadline miss vs. rejection rates with respect to
various values of system parameter β for 192 clients.

Figure 12: Overall deadline miss rate with various system
setups for 96 and 192 concurrent clients.

admission control.
Based on our experimental results, MicroFuge’s caching

layer outperforms Memcached by 22.6% for 192 clients. If
we combine our scheduling layer with our caching layer,
we can further decrease the deadline miss rate by 43.3%. If
we turn on our admission control, we can keep the overall
deadline miss rate below 5%.

V. RELATED WORK

Previous work has examined cache sharing and scheduling
for multi-tenant systems. The Argon storage system [11]
shares some similarities with MicroFuge. It introduces a
storage server that provides intelligent cache sharing be-
tween multi-tenant workloads, in addition to explicit work-
load isolation guaranteed by disk-head time slicing. The
focus of Argon was not on meeting deadlines in the system,
however, but rather on how to use isolation to provide
improved throughput and accurate exertion-based billing,
where every user of the system is charged based on their
usage patterns (ensuring that users with poor access patterns
pay more than users who are efficiently using the disk).
Argon focuses on disk-head time slicing and simple cache

Figure 13: Overall cache hit rates with various system setups
for 92 and 192 concurrent clients

sharing, whereas MicroFuge makes explicit considerations
for deadline-based requests when scheduling through the
use of latency metadata collection. Furthermore MicroFuge
directly addresses performance isolation through its multiple
deadline-oriented LRU queues, and its eviction policy that
favours data with shorter deadlines.

Work similar to our own is the Frosting system [12],
which proposes a request scheduling layer on top of a
distributed storage system. Like MicroFuge, Frosting allows
applications to specify high-level Service Level Objectives
(SLOs), which are in turn automatically mapped into sched-
uler decisions. A feedback controller is employed to make
scheduling decisions more predictable, and Frosting attempts
to bound outstanding requests while minimizing queuing
at the data store layer (in an effort to reduce response
times). In a manner more similar to Argon than MicroFuge,
however, Frosting focuses primarily on system throughput
and fairness, not on strict performance isolation.

The Sparrow system acts as a decentralized, stateless
scheduler and is geared towards workloads with high degrees
of parallelization in addition to workloads that require low
latencies [13]. Sparrow demonstrates that high volumes
of low priority tasks can have detrimental effects on the
scheduling response times of high priority tasks, and that
their system can greatly improve median scheduling re-
sponse times. Sparrow differs from MicroFuge, however, in
that it focuses on minimizing overall scheduling response
time in a system, and is not concerned with accommodating
and meeting user-imposed scheduling deadlines per request.

Memcached [14] is designed to provide a scalable
memory-based caching layer for data stores, thereby improv-
ing access latencies. As a simple external cache application,
however, Memcached does not provide performance isola-
tion. Additionally, unlike MicroFuge, Memcached does not
perform deadline-aware caching and scheduling. As a result
it also provides no admission control.

MemC3 [15] proposes the use of optimistic hashing
with CLOCK-based cache management to improve access

latencies in Memcached. Despite further improvements to
access times for items resulting from the more advanced
cache eviction algorithm, the system still does not provide
the performance isolation that MicroFuge offers through
the use of deadline-based caching and scheduling. Nahanni
similarly modifies Memcached to provide inter-VM shared
memory [16], with a good degree of success and the po-
tential for complementary usage of its presented techniques
with other caching systems. Unlike MicroFuge, however,
Nahanni is limited to VMs running on a physical host and
provides almost no performance isolation guarantees.

Pisces [17] proposes a group of mechanisms for parti-
tioning resources between users. The paper suggests that by
considering partition placement, weight allocation, replica
selection and fair queuing for resources, the system can
split aggregate throughput in the system between clients.
Although Pisces does provide throughput isolation for per-
formance, its scope does not extend to the deadline and
latency-aware mechanisms that MicroFuge uses to provide
performance isolation.

The FAST system [18] introduces a block-level replicated
storage service that helps provide performance predictability
by overlapping similar operations (sequential reads versus
random writes, for example) on the same machines, which
minimizes interference. Unlike MicroFuge, FAST’s primary
focus is on system fairness, and it additionally does not
consider explicitly-defined request deadlines.

In the BASIL system, a scheduler automatically manages
virtual disk placement and performs load balancing across
physical devices, without assuming any underlying storage
array support. Load-balancing in the system is based around
I/O load, and not simply data volume. While this emphasizes
the need to control access to data stores, it does not focus
on cloud data stores and cloud-like access patterns. Further-
more, BASIL does not provide the type of client-specified,
deadline-oriented service that MicroFuge does.

Similar to the ticket-based reservation system used by
MicroFuge’s scheduling layer, SQLVM [19] proposes using
both resource reservations and metering techniques to help
share resources between clients in a multi-tenant database
environment. SQLVM is not implemented as middleware
for distributed storage systems, but rather as an environment
for multiple DBMS systems running on the same physical
machine. It also does not allow client-specified deadline
requirements for requests.

As the popularity of cloud-based applications has in-
creased, several key-value stores have been proposed to pro-
vide enhanced performance over relational database systems
by relaxing ACID properties [4], [20], [21]. These key-value
stores, designed with the cloud in mind, can often suffer
from poor performance isolation.

Performance modeling in datacenters is increasingly com-
mon as more applications move into the cloud. Data Center
TCP [22] presented a model of underlying network traffic

patterns inside datacenters, and proposed a new datacenter-
oriented version of TCP communication to help deal with the
problems typically associated with these patterns. iCBS [23]
presents a method for quickly determining effective order-
ings for generic requests given arbitrary SLA cost functions,
but does not deal with deadline-specific concerns within the
context of a distributed key value store.

There are many approaches to performing both external
and internal scheduling for admission control. Schroeder et
al. [24] considers optimizing concurrency levels in database
systems through admission control. Abbott and Garcia-
Molina [25] propose models for performing admission con-
trol aimed at real-time database systems using deadlines.
They use simulations to understand the performance trade-
offs of utilizing transactional commit behaviors for admis-
sion control. MicroFuge makes use of admission control and
scheduling in order to provide multiple tenants using the
same storage system with performance isolation. Our system
ensures that a certain subset of all requests with client-
provided access deadlines can still be completed regardless
of system load.

VI. CONCLUSION

In this paper we introduced MicroFuge, a new middle-
ware layer that provides distributed scheduling and caching
services to cloud storage systems. MicroFuge focuses on
deadline-awareness across all of its layers to help provide
performance isolation that is typically difficult to obtain in-
side multi-tenant systems. MicroFuge is built with a similar
API as Memcached, and is easy to layer on top of cloud
storage systems.

MicroFuge’s distributed caching layer, DLC, uses an
adaptive and deadline-aware cache eviction policy to isolate
performance and ensure that additional caching memory is
allocated towards requests which are more likely to miss
their deadlines. This is performed with the use of multiple
LRU queues based on deadline ranges in combination with
adaptive policies.

MicroFuge’s distributed scheduling layer, DLS, uses a
ticket-based scheduling system that helps to not only balance
load, but also to service requests according to their deadline
requirements. Additionally, the scheduling layer collects
latency metadata from completed requests, and uses this
data to generate latency estimates for future requests. These
estimates are, in turn, used to provide admission control,
rejecting requests with deadlines that are unlikely to be met
(based on the underlying performance model).

Through experimentation, we have demonstrated that
MicroFuge offers significantly better performance isolation
than Memcached, the current industry standard. With admis-
sion control enabled, MicroFuge can limit overall deadline
miss percentages to less than 5%.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments. This work is supported by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] P. Patel, A. Ranabahu, and A. Sheth, “Service level agree-
ment in cloud computing,” in Cloud Workshops at Object-
Oriented Programming, Systems, Languages & Applications,
ORLANDO, FLORIDA, USA, 2009.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in ACM Symposium on Cloud Computing, Indianapolis, Indi-
ana, USA, 2010.

[3] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “An optimality
proof of the LRU-K page replacement algorithm,” Journal of
the ACM, vol. 46, 1999.

[4] A. Lakshman and P. Malik, “Cassandra: A decentral-
ized structured storage system,” Operating Systems Review,
vol. 44, 2010.

[5] “Apache HBase,” http://hbase.apache.org.
[6] “MongoDB,” https://www.mongodb.org/.
[7] M. Mitzenmacher, “How useful is old information?” IEEE

Transactions on Parallel and Distributed Systems, vol. 11,
2000.

[8] T. Baker, “Deadline scheduling,” http://www.cs.fsu.edu/
∼baker/realtime/restricted/notes/edfscheduling.html.

[9] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar, “Basil:
Automated IO load balancing across storage devices,” in
USENIX Conference on File and Storage Technologies, San
Jose, California, USA, 2010.

[10] Google Inc., “leveldb: A fast and lightweight key/-
value database library by google.” http://code.google.com/p/
leveldb/.

[11] M. Wachs, L. Xu, A. Kanevsky, and G. R. Ganger, “Exertion-
based billing for cloud storage access,” in USENIX Workshop
on Hot Topics in Cloud Computing, Portland, Oregon, USA,
2011.

[12] A. Wang, S. Venkataraman, S. Alspaugh, I. Stoica, and
R. Katz, “Sweet storage SLOs with frosting,” in USENIX
Workshop on Hot Topics in Cloud Computing, Boston, Mas-
sachusetts, USA, 2012.

[13] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Spar-
row: distributed, low latency scheduling,” in ACM Symposium
on Operating Systems Principles, Farmington, Pennsylvania,
USA, 2013.

[14] “memcached - a distributed memory object caching system,”
http://memcached.org.

[15] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3:
Compact and concurrent MemCache with dumber caching
and smarter hashing,” in USENIX Symposium on Networked
Systems Design and Implementation, Lombard, Illinois, USA,
2013.

[16] A. W. Gordon and P. Lu, “Low-latency caching for cloud-
based web applications,” in Workshop on Networking Meets
Databases, Athens, Greece, 2011.

[17] D. Shue, M. J. Freedman, and A. Shaikh, “Fairness and isola-
tion in multi-tenant storage as optimization decomposition,”
ACM SIGOPS Operating Systems Review, vol. 47, 2013.

[18] X. Lin, Y. Mao, F. Li, and R. Ricci, “Towards fair sharing of
block storage in a multi-tenant cloud,” in USENIX Workshop
on Hot Topics in Cloud Computing, Boston, Massachusetts,
USA, 2012.

[19] V. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri, “SQLVM: Performance isolation in multi-
tenant relational databases-as-a-service,” in Biennial Con-
ference on Innovative Data Systems Research, Asilomar,
California, USA, 2013.

[20] “Project Voldemort,” http://project-voldemort.com, 2013.
[21] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The

Hadoop distributed file system,” in IEEE Symposium on Mass
Storage Systems and Technologies, Incline Village, Nevada,
USA, 2010.

[22] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center
TCP (DCTCP),” ACM SIGCOMM computer communication
review, vol. 41, 2011.

[23] Y. Chi, H. J. Moon, and H. Hacigümüş, “iCBS: incremental
cost-based scheduling under piecewise linear SLAs,” Pro-
ceedings of the VLDB Endowment, vol. 4, 2011.

[24] D. T. McWherter, B. Schroeder, A. Ailamaki, and
M. Harchol-Balter, “Priority mechanisms for OLTP and trans-
actional web applications,” in IEEE International Conference
on Data Engineering, Boston, Massachusetts, USA, 2004.

[25] R. K. Abbott and H. Garcia-Molina, “Scheduling I/O requests
with deadlines: A performance evaluation,” in IEEE Real-
Time Systems Symposium, Lake Buena Vista, Florida, USA,
1990.

