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Research on the performance of neural networks in modeling nonlinear

time series has produced mixed results. While neural networks have great

potential because of their status as universal approximators (Hornik, Stinch-

combe, and White 1989), their flexibility can lead to estimation problems.

When Faraway and Chatfield (1998) used an autoregressive neural network

to forecast airline data, they found that the neural networks they speci-

fied frequently would not converge. When they did converge, they failed to

find the global minimum of the objective function. In some cases, neu-

ral networks that fit the in-sample data well performed poorly on hold-

out samples. In conducting the NN3 competition, a time series forecasting

competition designed to showcase autoregressive neural networks and other

computationally-intensive methods of forecasting, standard methods such as

ARIMA models still out-performed autoregressive neural networks (Crone et
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al 2008).

A comparison of linear methods, smooth transition autoregressive meth-

ods, and autoregressive neural networks performed in Terasvirta (2005) may

shed some light on neural network estimation problems and general poor

performance. In Terasvirta (2005) it was discovered that when estimated

without constraints, autoregressive neural networks tended to yield explosive

forecasts, and only by hand-tuning the models or applying a post-estimation

filter to the resulting parameter estimates could they remove the worst of

the offenders. In addition, while some researchers claim that autoregressive

neural networks could estimate trend and seasonality (Gorr 1994, Sharda and

Patil 1992), in an empirical study on simulated series with seasonality and

trends Zhang and Qi (2005) showed that the neural network performed much

better after the series was adjusted for trends and seasonality. As Faraway

and Chatfield (1998) discovered, the autoregressive neural network could not

be treated as a “black box”.

In recent years, some researchers have made an attempt to open the box

and better understand the properties of autoregressive neural networks. In

Trapletti et al (2000), Trappletti, Leisch, and Hornik showed that an autore-

gressive neural network is stationary and ergodic (under certain sufficient

but not necessary regularity conditions). In Leoni (2009) sufficient condi-

tions whereby the skeleton of an autoregressive neural network approaches a

unique attraction point were defined.

We propose to build on the results in Trapletti et al (2000) and Leoni
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(2009) by examining the practical aspects of forecasting with neural networks,

including starting value selection, forecast performance, and the behavior of

series generated from a neural network with known parameters. We begin

by deriving some theoretical properties of an AR-NN with one lag. We

then shift to simulated results and focus on an autoregressive neural network

model with one lag and one hidden unit, where the noise term is distributed

N(0, 1). We find that the general properties derived in the first section

hold for our simple model, and that even when the AR-NN is reduced to

its simplest form, the practical aspects of model estimation can still cause

problems in using an AR-NN to forecast a nonlinear time series. We end

with some general conclusions, including cautions about some of the pitfalls

of AR-NN and recommendations for avoiding them.

1 Statement of the Problem

Consider the one-lag autoregressive neural network (AR-NN):

Yt = α0 + ρYt−1 +
k∑
j=1

λjg(γjrt−1,j) + et (1)

where rt−1,j = Yt−1− cj, Yt−1 is the first lag of Yt and {c1, ..., ck} are location

parameters for the activation function g. The parameters {γ1, ..., γk} are

slope parameters for the activation function and the vector λ = {λ1, ..., λk}

is a vector of weights.

Let the activation function g be bounded and continuous, let ρ be such
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that |ρ| < 1, and let the et be iid with probability distribution function that

is positive everywhere in (−∞,∞). These assumptions are necessary for the

stability conditions shown in Trapletti et al (2000).

1.1 Process Skeleton and Attractors

In Tong (1993), it is suggested that simulation is often necessary for studying

nonlinear time series, as general analytical results are difficult to obtain and

often require restrictive assumptions. Even with modern computing power,

simulations for AR-NN can quickly grow too large to be practical. The

following results assume that the parameters for the AR-NN are given and

examine the theoretical behavior of the series under the regularity conditions

described above.

In Tong (1993), the behavior of a nonlinear time series is described in

terms of the skeleton and the skeleton’s equilibrium point(s). The skeleton,

as described in Tong (1993), is the relationship between Yt and Yt−1 when

the noise term et is set identically equal to 0 for all t. Denote the skeleton of

the series as St. The skeleton of the AR-NN described in (1) is:

St = α0 + ρSt−1 +
k∑
j=1

λjg(γjr
s
t−1,j) (2)

where rst−1,j = St−1 − cj

The skeleton has also been called the deterministic portion of the random

process.
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We can rewrite St as:

St = (α0 +
k∑
j=1

λjg(γjr
s
t−1,j))(1− ρB)−1 (3)

where B is the backshift operator.

This expresses the skeleton as a weighted sum of the previous value of the

skeleton and the nonlinear operation on the previous value of the skeleton.

Because g is a bounded function and |ρ| < 1, for t large enough, we can

expect St to be bounded:

St ∈ [min(α0+
k∑
j=1

λjg(γjr
s
t−1,j))(1−ρ)−1,max(α0+

k∑
j=1

λjg(γjr
s
t−1,j))(1−ρ)−1]

(4)

within a finite number of steps.

If |g| ≤ 1 (as with the logistic and hyperbolic tangent basis functions)

then the above range becomes:

St ∈
[(
α∗
0 −

k∑
j=1

|λj|
)(

1− ρ
)−1

,
(
α∗
0 +

k∑
j=1

|λj|
)(

1− ρ
)−1
]

We have assumed that the noise term et is iid, and therefore we know

that for any ε > 0, there exists M such that P
(
|et| ≤M

)
> (1− ε) i.e. that

et is bounded in probability. We can therefore place et inside a finite range

such that the probability of observing a value for et outside this range can

be shrunk arbitrarily close to 0. This allows us to stay within the conditions



1 STATEMENT OF THE PROBLEM 6

set in Trapletti et al (2000), yet have an expected range for the noise term.

The bounds on the St and et imply that there is a practical range for Yt

that depends on the activation function g and the parameters {λ1, ...λk}, and

M . For the normal distribution with mean 0, a popular default distributional

assumption in the statistical literature, and a basis function g that is bounded

such that |g| < 1, M = 3σ, and the range for Yt is:

Yt ∈
[(
α∗
0 −

k∑
j=1

|λj|
)(

1− ρ
)−1 − 3σ,

(
α∗
0 +

k∑
j=1

|λj|
)(

1− ρ
)−1

+ 3σ
]

The practical range for Yt may be further reduced by the presence of

equilibria and whether those points are attractors for the series. We use the

definitions of equilibrium and attraction point as defined in Tong (1993).

A point Y ∗ is an equilibrium point if it satisfies the condition:

Y ∗ = α0 + ρY ∗ +
k∑
j=1

λjg(γj(Y
∗ − cj)) (5)

i.e. if it is a point where the result from the skeleton is the same as the

value going into the skeleton. Once St reaches Y ∗ it will remain at the same

value for all t → ∞. The long-run behavior of the AR-NN is dependent on

the existence of Y ∗ and whether it is stable or unstable. We begin by deriving

some basic properties of Y ∗ for a series that meets the stability conditions

set forth in Trapletti et al (2000).

Theorem 1. Suppose Yt is an AR-NN with one lag and an arbitrary number
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of hidden units that meets the stability conditions in Trapletti et al (2000),

then if Y ∗ exists, it can be bounded by a finite range that depends on the

weights of the activation function and the intercept term for the AR-NN.

Proof: We can re-arrange equation (5) as follows:

Y ∗ =
(
α∗
0 +

k∑
j=1

λjg(γj(Y
∗ − cj))

)(
1− ρ

)−1
(6)

The equilibrium point Y ∗ then becomes the solution to equation (6), and

must lie within the same bounds as set for the skeleton in (4).

The properties of the equilibrium, particularly whether it is unique and

stable, now become critical to understanding the behavior of the AR-NN.

We will use the definitions of stability found in Tong (1993).

• We say that Y ∗ is a stable equilibrium if there exists a neighborhood

of Y ∗ such that |Yt − Y ∗| → 0 as t → ∞. We will call this kind of

equilibrium an attraction point or an attractor.

• Y ∗ is an unstable equilibrium if no such neighborhood exists.

• Y ∗ is an equilibrium that is globally and exponentially stable in the large

if it is unique, and ∃ K, c > 0 such that |Yt− Y ∗| ≤ Ke−ct|Y0− Y ∗| ∀ t

for any starting point Y0. We will call this kind of equilibrium a global

attraction point or global attractor.

An attraction point, therefore, is a value to which the skeleton will con-

verge if it becomes sufficiently close to Y ∗. A global attraction point is an
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attraction point to which the skeleton converges from any value on the real

line, and the convergence is exponentially fast. Tong (1993) likens a global

attraction point for a nonlinear time series with additive noise to the mean

for a stationary linear time series. When the noise pushes the Yt away from

the global attractor, the skeleton draws it back exponentially fast.

Now we will show that if Y ∗ exists and is a global attractor, the range

for Yt depends on Y ∗.

Theorem 2. If Y ∗ exists and is globally and exponentially stable in the large,

there is an expected range for Yt based on the value of Y ∗ and the practical

range for the noise term et.

Proof: This result is an obvious consequence of the fact that the noise

term et is additive and iid. If we allow St to represent the skeleton (i.e. the

deterministic portion) of the series, then we can write any Yt as:

Yt = St + et

From the properties of a global attractor, we know that for any arbitrary

Y0, the following inequality holds:

|St − Y ∗| ≤ Ke−ct|Y ∗ − Y0|

By assumption, the noise term has a probability bound |et| < M . There-

fore, we can say:
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|St − Y ∗|+ |et| ≤ Ke−ct|Y0 − Y ∗|+M

|Yt − Y ∗| = |St + et − Y ∗| ≤ |St − Y ∗|+ |et|, and so

|Yt − Y ∗| ≤ Ke−ct|Y0 − Y ∗|+M

In the case of an attraction point that is globally and exponentially stable

in the large, after the series process has been allowed to iterate for a sufficient

number of time periods, we can expect Yt to be inside the range (Y ∗−M,Y ∗+

M), where M depends on the distribution of the noise term et.

We have therefore shown that for any AR-NN of the form in equation

(1), and a noise term that is iid, there is a practical range for Yt. outside of

which we can expect to observe few, if any, values for Yt. If there is a global

and exponentially stable attraction point, that range is Y ∗±M , where Y ∗ is

the global attractor and M is determined by the distribution of et. If there

is no global attractor, then Yt ∈ (M s
1 −M,M s

2 +M), where M s
1 and M s

2 are

the limits on the series skeleton.

We now consider the idea of practical reducibility and its implications for

estimating the parameters of an AR-NN.

2 Practical Reducibility

The conditions for stability in Trapletti et al (2000) and Tong (1993) are

shown using Markov theory. For an AR-NN with additive noise, when the
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distribution of the noise term is positive everywhere in (−∞,∞), it can be

shown that the AR-NN forms an irreducible and aperiodic Markov chain.

The chain is aperiodic because it does not cycle between a set of values at

specified multiples of t. It is irreducible because it is impossible to reduce

the range of Yt from the entire real line (−∞,∞) to a smaller finite set.

These proofs are possible because the noise term is additive. It does not

depend on Yt, and any value of et is possible. Therefore, even if the skeleton

of the series converges to a limit cycle (which would make the series periodic),

or to a single point (which would make the series reducible), the noise term

ensures that Yt is irreducible and aperiodic.

As discussed in the previous section, however, possible is not the same

as likely, and in practice the sample size T is never infinity. We have shown

that for a noise term that is iid, there is a likely range for Yt based on the

parameters of the AR-NN and the noise term et. The probability of observing

a value for Yt outside this range can be shrunk arbitrarily close to 0.

Recall that the activation function g(γjrt−1,j) is a bounded and continuous

function with rt−1,j = Yt−1 − cj, where cj is a location parameter for the

activation function. In order to estimate the parameters {c1, ..., ck} we must

observe values of Yt−1 that are near each cj where j ∈ {1, ..., k}. All of the

location parameters {c1, ..., ck} must therefore be inside the practical range

for Yt−1. If there exists one cj such that cj is not in the practical range for

Yt, we say that the AR-NN is not irreducible in a practical sense.

It may be tempting to ignore the limited range for Yt in applying AR-NN
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to forecasting problems. It can be argued that the AR-NN is an approxima-

tion to an unknown functional form. Activation functions with estimated cj

that are outside the expected range for Yt can be dropped from the model.

These “problem” hidden units are unlikely to help explain or predict the re-

lationship between Yt and its lags, and could therefore be safely eliminated.

While this is true, it is also true that there is currently no method for

deciding how many hidden units should be used in an AR-NN. It is also true

that training an AR-NN is not a simple matter (Hush 1991), and it is possible

for an estimation routine to produce an AR-NN with unacceptable values for

cj as the result of a local minimum. In the following pages, we use the above

understanding of AR-NN to illustrate some of the pitfalls for training AR-

NN and offer some guidelines for avoiding them, such as choosing appropriate

starting values. We use the simplest possible AR-NN (a case with one lag

and one hidden unit) as our example model and derive many of our practices

from a simple re-parameterization that is outlined in the following section.

3 The Simplest Possible AR-NN

Consider the model:

Yt = α0 + α1Yt−1 + λ tanh(γ(Yt−1 − c)) + εt (7)

εt ∼ N(0, σ)
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This is the simplest case of an autoregressive neural network model. In

neural network terminology, it has one hidden unit (λ tanh(γ(Yt−1− c))) and

one shortcut connection (α1Yt−1). We use the tanh(.) function as our acti-

vation function, and while the hyperbolic tangent function is convenient for

our purposes, there are many activation functions to choose from, including

the logistic, the Gaussian radial basis, and the inverse tangent.

All moments of the noise term exist, and as long as the autoregressive

portion (Yt − α0 − α1Yt−1) is stationary, the mean, µy, exists. Taking ex-

pectations of both sides and rearranging gives us µY as a function of the

parameters and the expectation of the hyperbolic tangent function.

µY = E[Yt] = α0 + α1µY + λE[tanh(γ(Yt−1 − c))]

µY (1− α1) = α0 + λE[tanh(γ(Yt−1 − c))]

µY =
(
α0 + λE[tanh(γ(Yt−1 − c))]

)(
1− α1

)−1

The expectation of the hyperbolic tangent function is intractable analyt-

ically, but since it is the expectation of a bounded function, and Yt has a

noise distribution that is N(0, σ), we know it exists.

Now, subtract the mean from both sides, divide by σ, and express the

series in terms of yt−1 = Yt−1−µY
σ

and yt = Yt−µY
σ

:

yt = α∗
0 + ρyt−1 + λ∗ tanh(γ∗(yt−1 − c∗)) + et (8)
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where et ∼ N(0, 1)

ρ = α1

λ∗ =
λ

σ

γ∗ = γσ

c∗ =
c− µY
σ

α∗
0 =

α0 − (1− ρ)µY
σ

The above parameterization expresses the location parameter c∗ in terms

of the number of standard deviations between the center point of the hyper-

bolic tangent function and the series mean. The location parameter α∗
0 is

in terms of the number of standard deviations between the intercept for an

AR(1) model and the intercept for the nonlinear model. The weight on the

activation function (λ∗) and the slope (γ∗) are expressed as multiples of the

standard deviation of the unexplained variation.

One of the most difficult aspects of studying AR-NN is the lack of sim-

ulation results to test and illustrate theoretical conclusions. The above re-

parameterization can be used to determine appropriate ranges for simulated

parameter values and reduce the design space to a few relevant points.

For our simulation, we limit ourselves to an et that is distributed N(0, 1).

We are therefore able to limit the ranges of α∗
0 and c∗ to ±4 (since most

values for Yt will be less than 4 standard deviations from the mean). For our
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Factorial Design for Model Parameters

Low High Increment Number of Levels
α0 -4 4 2 5
ρ 0.2 0.8 0.2 4
λ∗ -8 8 2 8
γ∗ 1 7 2 4
c∗ -4 4 2 5

Table 1: Each parameter combination can have up to 3 equilibria. If there are
multiple attraction points, the equilibrium point for the series can depend
on the starting value for yt (i.e. y0). To account for this, three different
starting points were attempted for each combination y0 = c∗ − 3, y0 = c∗,
and y0 = c∗ + 3. This resulted in 9,600 different parameter/starting value
combinations.

model, the limits on the skeleton described in section 1 are determined by

the weight of the activation function λ. We therefore study values for λ∗ in

[−8, 8], since 8 is the maximum distance between α∗
0 and c∗. The parameter

γ does not have an obvious set of limits. For this study, we set the limits

(somewhat arbitrarily) to γ ∈ [1, 7].

With these ranges in mind, we utilize a full factorial design where the

parameter values are chosen as specified in Table 1. More parsimonious

designs were considered, but because of the unknown nonlinear relationships

between the series behavior and the parameter combinations, sparse designs

were deemed infeasible.

For simplicity, we drop the ∗ notation and refer to the model equation as:

yt = α0 + ρyt−1 + λ tanh (γ(yt−1 − c)) (9)
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4 The AR(1) Model vs AR-NN

In order to study the series generated from the AR-NN described in (9), we

generate S = 10 series of errors from a N(0, 1) distribution. Each series is

length T = 1000, with a leading burn-in period of 500 (1500 periods total).

We choose T = 1000 to ensure that there are enough observed values of Yt

to estimate the parameters. We choose a leading burn-in of 500 to ensure

that the series is allowed to reach its steady state from its starting point Y0.

Because the errors are iid, we are able to use the same 10 sequences of

et for each parameter combination. The sequences, then, are blocks in the

design of experiments sense, which allows us to reduce the extraneous noise

in the simulation.

Producing estimated parameter values from this simulated data is more

difficult than one would expect in this relatively simple case. Even when the

true parameter values were used as starting values, the model often failed

to converge. When the model did converge, some parameter estimates were

unreasonable, with values near ±100. Descriptive statistics, including graphs

of the underlying functions and attraction point for the series, showed that

while some series were following the expected functional form, others, because

of the location of their attraction points, were not (Figure 3).

It is difficult to determine from the parameter values whether an AR-NN

has an attraction point, whether that attraction point is stable, and whether

the natural limits placed on Yt are problematic for model estimation. We

suspect that for some parameter combinations in our factorial design, the
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AR-NN will produce data where the relationship between Yt and Yt−1 is

nearly linear rather than following the functional form of the AR-NN. We

wish to distinguish these models from those series that exhibit nonlinear

behavior.

In order to identify these problem parameter sets, we want to compare

the results from a trained AR-NN to an AR(1) model, but this is impractical

because the AR-NN frequently fails to converge for these data. We need a

statistic that estimates the fit for the AR-NN and can be calculated without

training the AR-NN model.

Therefore, assume that we are able to estimate the parameters of the

autoregressive neural network perfectly. If that were true, our error sum of

squares would be equal to:

SSEsp =
1000∑
t=2

e2st

where the p subscript represents a “perfect model”, and the s subscript rep-

resents a given sequence of errors (s = 1, 2, ..., 10) used to generate data from

the AR-NN.

Now, for each simulated data set (10 data sets per parameter combination,

96,000 data sets in total), we estimate the parameters of an AR(1), i.e. a

linear model with the form:

yt = a0 + a1yt−1 + e∗t
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where e∗t will be distributed N(0, 1) if the true relationship between yt and

its first lag is a straight line.

For each parameter combination, then, we can calculate δ̂k, the average

difference in the MSEs as:

δ̂k =
1

10

10∑
s=1

(
MSEsp −MSEsa

)
(10)

MSEsp =
1

999− 1

1000∑
t=2

e2st

MSEsa =
1

999− 2

1000∑
t=2

(yt − (â0 + â1yt−1))
2

where the est are the true errors used to generate the series and k indexes

the parameter combinations k = 1, ..., 9600.

Under the null hypothesis, we expect δk = E[δ̂k] to be 0 and δ̂k to have

an approximately normal distribution. Under the alternative hypothesis, we

expect δk > 0 , where the magnitude of δk is an indicator of how poorly the

AR(1) fits the generated data.

We know that the skeleton (St) is bounded: St ∈ (α0 − |λ|, α0 + |λ|),

and that the practical range for Yt is (α0 − |λ| − 4, α0 + |λ| + 4). If there

exists Y ∗, a global attractor for Yt, the series may be further bounded to:

Yt ∈ (Y ∗−4, Y ∗+4), (see section 1). If the location parameter c is outside this

range, then we can assume that it will be difficult to estimate the parameters

of the AR-NN, and in fact our small AR-NN will look more like an AR(1)
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than a nonlinear time series.

To test these speculations, we examine the values of δ̂k in terms of the

parameter values for λ, γ, and |α0 − c|.Recall that δ̂k is the mean difference

between the MSE for an AR(1) model and the “true” MSE: the average of

the squared errors that are used to generate the series (see equation (10)).

The subscript k indexes the parameter combinations.

In Figure 1, each point represents a parameter combination. The δ̂k are

plotted on the horizontal axis and the value of λ is plotted on the vertical

axis. The colors of the points are determined by |α0 − c|, with light gray

representing small values of |α0− c| (0-2) and black representing large values

of |α0− c| (6 and up). The fit of the AR(1) as measured by δ̂k is much worse

when λ < 0, but the fit of an AR(1) model is almost the same as that of our

perfect model when λ > 0.

It is not surprising that the AR(1) fits much worse when λ < 0. Recall

that the hyperbolic tangent function is an odd function, i.e. −λ tanh (γ(yt−1 − c)) =

λ tanh (−γ(yt−1 − c)), and so we only consider positive values of γ and allow

the sign of λ to vary. We also limit our simulation to positive values for ρ.

In the simulation, therefore, the sign of λ determines the sign of the slope

of the activation function for the neural network. If the activation function

and the shortcut connection have the same sign, then they are more likely to

be collinear, and an AR(1) model that compromises between them may fit

almost as well as a nonlinear function that attempts to estimate both effects

independently.
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Figure 1: There is a striking contrast between the comparison of model fit
for λ > 0 and λ < 0. The relationship between δ̂k and |α0 − c| depends on
the magnitude of λ. When |λ| is large, location parameters that are far apart
produce a model with nonlinear features. When λ is small, the relationship
is reversed: small values of |α0− c| produce a model with nonlinear features.

When |λ| is small, smaller values of |α0 − c|, are associated with larger

values of δ̂k, i.e. the AR(1) is a poor substitute for the nonlinear model when

|λ| is relatively small and the location parameters are close together. When

|λ| is large, we have the opposite relationship: For large |λ|, small values

for |α0 − c| are associated with small values for δ̂k, i.e the AR(1) gets closer

to fitting the true relationship between yt and its first lag as the distance
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between the location parameters increases (for large |λ|). This is consistent

with our findings from section 1. The weight on the activation function (λ)

determines the limit for the nonlinear function, and the acceptable range for

|α0 − c| depends upon the limit of the activation function and the practical

range of the noise term.

Figure 2 shows the equation that generates the data and the resulting

series, with yt plotted on the vertical axis and yt−1 on the horizontal axis, for

a set of parameters where λ = −8, α0 = 4, c = −4, γ = 1, and ρ = 0.2. These

data scatter evenly on both sides of the location parameter for the hyperbolic

tangent function and close to the location parameter as well. It should be

easy to obtain parameter estimates for this AR-NN model. This is confirmed

by the value of δ̂k, which is 2.77, or nearly three times the magnitude of our

chosen σ2.

Figure 3 shows the data and underlying functions for the exact same

set of parameters as Figure 2, except that λ is positive instead of negative

(8 instead of -8). In this case, the series runs to an attractor that is far

away from the location parameter of the hyperbolic tangent function. The

hyperbolic tangent function adds little more than a constant to the generated

data. It is not surprising that δ̂k < 0.0009 for this series.

In Leoni (2009), it is shown that the presence of a global attraction point

can be determined by the slope parameters alone for some AR-NN. The

results above show that while this may be true, the distance between the

location parameters relative to the weight of the activation function is im-
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Figure 2: The generated data and the function that generated them are
plotted together in order to show how the data relate to the underlying
functions. In this case, the weight on the hyperbolic tangent function (λ)
is negative and large in absolute value and the location parameters are far
apart (|α0 − c|). The data follow the underlying model function closely, and
the parameters for the nonlinear model are easy to estimate.

portant in determining whether it is possible to estimate the parameters of

the neural network.

In later simulations, we choose to exclude parameter combinations where
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Figure 3: The generated data and the function that generated them are plot-
ted together in order to show how the generated data relate to the underlying
functions. In this case, the data cluster near an attractor that is on the flat
portion of the hyperbolic tangent, and the function adds little more than a
constant.

the AR(1) provides a good fit for the generated data. Because of the attrac-

tion points for these series, the data seem to follow a straight line, and it is

unlikely that a researcher trying to forecast such a series would be tempted

to estimate an autoregressive neural network. These series are also those

most likely to exhibit estimation problems. We use the fact that δ̂k is the

mean difference between the MSE estimated by the best-fitting AR(1) and
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the true MSE for each series. For each parameter combination, we conduct

a t-test on δ̂k, where the null hypothesis is that δk ≤ 0 and the alternative

is δk > 0. The p-values for this one-sided hypothesis test are displayed in

Figure 4. In later simulations, we eliminate parameter combinations where

the p-value from this hypothesis test are > 0.05.

Figure 4: Distribution of p-values from a one-sided hypothesis test where
the null hypothesis is δk ≤ 0. For the simulation, we use a cut-off of 0.05
and drop any parameter combination where the p-value from the one-sided
hypothesis test is greater than 0.05.

Because failing to reject the null hypothesis eliminates a model from con-

sideration, higher cutoffs including, p < 0.1 and p < 0.3, were considered.
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It was found, however, that models with p-values between 0.05 and 0.2 were

models where neither the AR(1) nor the AR-NN fit the data well.

4.1 The Importance of Noise

The simulations in this section are produced assuming that the noise term et

is distributed N(0, 1). The normal distribution is a popular default assump-

tion in model estimation, but for a neural network model, it may not be the

appropriate assumption. Recall that the proof in section 1 shows that for a

bounded activation function (which is required in order for the AR-NN to be

stationary) and additive noise that is iid, there is an acceptable range for the

location parameters. If the location parameters are outside of the acceptable

range, the series is not irreducible in a practical sense, and we cannot assume

it is possible to estimate AR-NN parameters.

If et has a heavy-tailed distribution, the range restrictions on the location

parameters can be loosened. To demonstrate, we perform the same simu-

lation as outlined in section 4, except instead of using a noise term that is

distributed N(0, 1), we use the logistic distribution. The pdf of the logistic

distribution is:

e−(x−µ)

s(1 + e−(x−µ)/s)2

with scale parameter s and location parameter µ.

We choose s and µ so that the noise term is distributed with mean 0 and

standard deviation 1. The logistic distribution, however, has more data in
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the “tails”, or at the extremes for et, which gives the series a wider range

and should result in more series with nonlinear behavior than the original

design. Figure 5 shows the p-values for δk when the same simulation is run

using et generated from this distribution.

Figure 5: When the same simulation is run using a heavy-tailed distribution
(in this case, the logistic) for et, the p-values are dramatically different.

In only a few cases were the p-values for the logistic distribution larger

than our cut-off of 0.05, and all of these were parameter combinations where

the generated data were very close to a straight line.

The heavy-tailed distribution may be a more realistic assumption for
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applications such as economic data, where the outcome is expected to have a

great deal of unexplained variation. The simulations for forecast performance

(section 5) will include comparisons between simulations with normal noise

and simulations with logistic noise.
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5 Forecasting With Neural Networks

As pointed out in Gorr (1994), a neural network offers little insight to the

underlying structure of the data. It is an approximation of an unknown rela-

tionship, and the parameter estimates are difficult to interpret. We therefore

estimate parameters from our simulated series and evaluate how well the es-

timated model predicts its own data. We study two different different types

of forecasts: a one-step-ahead forecast, where the most recent lag is used

to predict the next value, and a twelve-period forecast horizon, mimicking a

year-long forecast for a monthly time series. The simulation is limited to the

4800 parameter combinations identified in section 4 as those most likely to

produce series with nonlinear properties.

For each generated series, we reserve the last twelve time periods as a

holdback sample and use them to compare the out-of-sample performance

for the AR-NN with the best-fitting AR(1) model and a naive random walk,

where the next period forecast is the last observed values of yt. The nonlin-

ear model is estimated with nonlinear least squares, and the true parameter

values are used as starting values. The parameters of the AR(1) are calcu-

lated using ordinary least squares. For both types of model, we omit the

first observation of the series (t = 1) to mimic a true time series forecasting

problem, where the lag for the first observation is unavailable. The fitting

routine is Levenberg-Marquardt.

In most cases, the AR(1) model produces a very poor fit, which is not

surprising since we have subset our parameter combinations to the 4800 we
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consider most likely to generate data with nonlinear features (see section 4).

There were also some cases where the nonlinear fitting routine reported a

convergence failure, though these were rare and not consistent for any given

parameter combination. When this happened, we used the results from the

final iteration as our parameter estimates for the forecast. While this may

seem counter-intuitive, we argue that it is a reasonable approximation of what

occurs in the field. “Convergence” for a nonlinear model is often a judgment

call. When working with a fitting routine programmed into a software pack-

age such as SAS or R, modelers will often work around convergence problems

either by changing starting values (sometimes randomly or by a line search),

changing the fitting method, or “loosening” convergence criteria. There are

no standards or best practices for these procedures (Crone et al 2008). Be-

cause the starting values for the model are the true parameters, we argue

that the last iteration from the fitting routine is as likely to be a true mini-

mum for the objective function as any that is found by arbitrarily changing

starting values or fitting criteria.

The estimation procedure for the neural network also sometimes reported

convergence, but for parameter estimates that were unreasonable, with values

for the location parameters near ±90 and of opposite sign or values for ρ

that were larger than 1 in absolute value. This problem is reminiscent of the

troubles reported in Terasvirta (2005), where an “insanity filter” was applied

to keep the AR-NN from generating unreasonable forecasts. It appears that

unreasonable parameter values are possible, even when the architecture of the
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AR-NN is known and the true parameter values are used as starting values

for the nonlinear model. In our simulation, the unreasonable parameter

estimates occurred for only 3% of the cases and not consistently for any

parameter combination. These series were dropped before calculating fit

statistics.

For each model, the forecasts are produced in one of two ways:

1. A point forecast, where the last lag (yt−1) is used to predict the next

value in the sequence (yt). The function is then updated with the true

value for the next period’s forecast.

2. A bootstrap forecast, where at each point 500 different values for yt−1

are generated from the assumed distribution, and the forecast is an

average of the forecasts from these generated values.

i.e. the bootstrap forecast is the result of:

ŷt =
1

500

500∑
i=1

f(yt−1 + εi, θ̂)

where f is the function that describes the neural network relationship, θ̂ is

the vector of parameter estimates, and εi ∼ N(0, 1). In Terasvirta (2005)

this procedure is recommended in order to stabilize forecasts from a neural

network model.

Because the AR(1) is a linear model, the point forecast and the bootstrap

forecasts will be the same, except for the bootstrapping error. There is no
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reason to do both. In the tables, the bootstrap AR-NN predictions are

labeled as BS. Point forecasts are labeled with a P.

A random-walk R-squared (RW R-squared) was used to evaluate the fore-

cast performance on the holdout sample. The RW R-squared is calculated

as follows:

RW R− squared = 1− SSE

RW SSE
∗ T − 2

T
(11)

RW SSE =
T∑
t=2

(yt − yt−1)
2

The RW R-squared can be thought of as a ratio of R-squares from a

random walk forecast (where we simply use the last value of yt as our forecast

for the next value of yt) and the model being evaluated. The RW R-squared is

often a better measure of forecast performance than a standard R-squared, as

it considers a more reasonable naive model than merely using the mean across

all time periods. For each parameter combination, the RW R-squared was

averaged over the 20 different sequences of errors. The descriptive statistics

over all parameter combinations are shown in Table 7.

One of the interesting features of the analysis is the difference between

the bootstrap estimates and the point estimates. The bootstrap estimates

have a lower mean RW R-squared, and their range is much wider. Not only

do the bootstrap estimates perform worse than the point estimates overall,

there is a potential for disastrous performance (an RW R-squared that is less

-1), where the bootstrap forecast performs worse than the naive model.
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Descriptive Statistics of RW R-squared

In-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.846 0.954 0.233 -.117 0.992
AR-NN (BS) 0.714 0.830 0.314 -3.90 0.992
AR(1) 0.475 0.491 0.356 -.594 0.984

Out-of-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.911 0.981 0.137 0.116 0.998
AR-NN (BS) 0.877 0.956 0.164 -1.55 0.998
AR(1) 0.809 0.843 0.149 -.090 0.994

Table 2: Although it is recommended in Terasvirta (2005) that a bootstrap
approach be used to stabilize AR-NN predictions, the point forecasts have
better statistics overall for one-step-ahead forecasts.
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The cases where the RW R-squared for the AR-NN was much higher than

the RW R-squared for the AR(1) are, not surprisingly, cases where the values

of λ are large in absolute value and negative, or when |λ| is small and |α0−c|

is small as well. These are the cases where the relationship between yt−1 and

yt is most obviously nonlinear (Figure 6).

Figure 6: In the above graph, the straight line represents the estimated
AR(1), and the curved line is the estimated nonlinear relationship between
yt and yt−1. In this case, it is obvious that the nonlinear model is a better fit
for the data, and the RW R-squared is close to 1. The bootstrap forecasts
(black squares) are not exactly on the model function because they are an
average of several forecasts for different possible values of yt−1.
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5.1 Prediction At Extremes

While the AR(1) model did not out-perform the AR-NN, the table shows that

it did fairly well. In fact, the ratio of RW R-squares between the forecast for

the AR(1) and the forecast for the AR-NN (point or bootstrap) hovers around

1.25, meaning that the AR-NN only beat the AR(1) model’s performance by

approximately 25% for most cases.

Because of the shape of the hyperbolic tangent function, the nonlinear

features of the series are near the highest and lowest values of yt. For some

applications, such as energy demand and stock prices, it might be most im-

portant to have accurate forecasts for extremes. In that case, a more compli-

cated model would be a better choice, even if its overall performance is similar

to a simpler model. In Table 3, we compare the descriptive statistics for RW

R-squared for different levels of yt: above the series 90th percentile, below

the series 10th percentile, and between the 90th and the 10th percentiles.

The table shows that while the AR(1) model has decent overall perfor-

mance, it mostly does well when yt is in the middle 80% of the data. The

median of the RW R-squared for the point forecasts, however, remains con-

sistently high across the three categories.

The bootstrap forecast does not do as well as the point forecast at ex-

tremes, which is not surprising since it is an average over a selection of

possible values for yt−1 (high and low) over the assumed distribution.
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Descriptive Statistics of RW R-squared
By Percentile of yt

Mean Median Std. Min Max
Lower 10% AR-NN (P) 0.87 0.97 0.21 -0.04 1.00

AR-NN (BS) 0.76 0.89 0.32 -2.70 0.99
AR(1) 0.56 0.73 0.40 -1.22 0.99

Middle 80% AR-NN (P) 0.89 0.97 0.16 0.17 1.00
AR-NN (BS) 0.86 0.95 0.20 -4.90 1.00
AR(1) 0.78 0.81 0.17 0.02 0.99

Upper 90% AR-NN (P) 0.82 0.96 0.30 -0.33 1.00
AR-NN (BS) 0.64 0.86 0.51 -6.67 0.99
AR(1) 0.32 0.67 0.72 -3.14 0.98

Table 3: The AR-NN forecasts were better at extreme values of yt. This
could be useful in models where it is more important to be accurate when
series values are high or low.
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Figure 7: The AR(1) forecast (the gray line in the graph) tends to stay
closer to the series mean than the AR-NN model. This means it is less able
to adjust to dips and spikes that the AR-NN (open circles) can predict rather
well. For the graph above, the AR-NN model performs much better (in terms
of RW R-squared) than the linear model.



5 FORECASTING WITH NEURAL NETWORKS 36

5.2 Long Horizon Forecasts

It has been hypothesized that even when a nonlinear time series model is not

impressive for short forecasts, they could perform better at a long forecast

horizon (Swanson and White 1997). In our study, it appears that the opposite

has happened. Recall that a test sample of 12 time periods was withheld

from each generated series. We now perform a 12-period forecast for both

the estimated AR-NN and the estimated AR(1).

The 12-period forecasts were much worse, as measured by RW R-squared,

than the one-step-ahead forecasts. For these long forecast horizons, however,

the bootstrap forecasts were better than the point forecasts, with a higher

mean and median, though the difference could be explained by random vari-

ation. (Table 4)

Examining the underlying model function and the generated data may

shed some light on why the long horizon forecasts are performing so poorly.

Figure 9 shows the actual model function, the estimated model function, the

data, and three different kinds of forecasts: AR-NN (BS), AR-NN (P) and

random walk. The horizontal line represents the random walk forecast and

is simply the last value of yt that is observed in the training data.

The forecast is actually an estimate of the nonlinear series skeleton, as

defined in Tong (1993) and in section 1. For cases where the skeleton causes

the series to cycle between two extremes, the forecast error will either be close

to 0 (when the model guesses correctly which cluster the next value for yt will

fall into) or close to max(yt)−min(yt) (when the model guesses incorrectly).
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Descriptive Statistics of RW R-squared: 12-Step Forecasts

In-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.18 0.13 0.15 -0.11 0.54
AR-NN (BS) 0.26 0.28 0.11 -0.40 0.54
AR(1) -0.06 0.39 0.95 -4.00 0.50

Out-of-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.38 0.50 0.61 -8.42 0.93
AR-NN (BS) 0.46 0.55 0.76 -24.06 0.93
AR(1) -0.24 0.34 2.13 -54.74 0.92

Table 4: The RW R-squares for the 12-step-ahead forecasts were much worse
than the one-step forecasts.

If the additive noise (et) is large enough compared to the range of the data,

yt can move out of phase with its skeleton. When this happens, the point

forecast will be out of phase with the actual value of yt and will remain out

of phase until another value of et moves it back. This will leave us with a

disproportionate number of residuals that are close to max(yt)−min(yt).

We would expect the errors for the random walk forecast to also be close

to 0 for some points and max(yt)−min(yt) for the rest. If the last observed

yt happens to be in the center of the training data, however, the random

walk forecast errors will be smaller than expected. This leads to a small

denominator in equation (11) and therefore a small RW R-squared.

Meanwhile, the bootstrap estimates are produced by adding random noise
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Figure 8: In the above graph, forecasts are represented with dashed lines.
The estimated model relationship is really an estimate of the series skeleton.
If the estimated skeleton has multiple attraction points, the noise can cause
the series to move out of phase. While the AR-NN forecast may be near the
actual series for the first few steps, it will eventually move in the opposite
direction.

to the last observed value of yt and generating many (in this case 500) possible

forecasts. The bootstrap is then the average of the results, which pulls the

estimates close to the center of the data. This is why the RW R-squares

for the bootstrap forecasts are slightly better than point forecasts at long-

horizons. Neither method, however, performs well, and these results show

that forecasting with a neural network model can be problematic. As we see
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Figure 9: For this model, the parameter estimates were almost exactly equal
to the true parameter values, yet the RW R-squares were very low for both
point (black dots) and bootstrap (black squares) estimates. This is because
the series is moving randomly between extremes.

in section 1, there must be enough random variation in the data to allow the

series to visit all necessary elements of the solution space, yet the noise must

not be the strongest underlying feature in the model.
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5.3 Forecast Performance on Data Simulated with the

Logistic Distribution

In section 4.1, we investigated changing the assumption that et ∼ N(0, 1) and

instead used a logistic distribution with scale and location parameter chosen

so that et has mean 0 and standard deviation 1. The logistic distribution is

symmetric but heavy-tailed, resulting in a broader range of values for yt. The

results in that section showed that when the logistic distribution was used

for yt, almost all of the models exhibited nonlinear behavior, as measured

by the difference between the true mean sum of squares (calculated from the

errors used in the simulation) and the mean squared error from an estimated

AR(1) model.

In Tables 5 and 6, we show the RW R-squared statistics for one-step

and long-horizon forecasts when the data are simulated using a heavy-tailed

distribution. In these tables, it is shown that the predictive performance of

the AR-NN is very poor when the series is generated using a heavy-tailed

distribution. This is not surprising. Assuming a heavy-tailed distribution

for the noise term signifies that we are less certain about the value of yt and

expect more values that are far from what is predicted by the deterministic

portion of the model. It is arguable that no model, even the correct one,

would predict this data well.

One interesting difference between series simulated with the logistic dis-

tribution and series simulated with the normal distribution is the difference

between the long forecast horizons and the short forecast horizons. For the
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Descriptive Statistics of RW R-squared: One-Step-Ahead Forecasts
Logistic Distribution

In-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.347 0.264 0.254 -.030 0.818
AR-NN (BS) 0.338 0.258 0.249 -.032 0.809
AR(1) 0.241 0.184 0.234 -.098 0.724

Out-of-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.645 0.611 0.134 0.217 0.901
AR-NN (BS) 0.644 0.611 0.133 0.276 0.896
AR(1) 0.602 0.583 0.124 0.279 0.856

Table 5: When the logistic distribution is used to create the simulation data,
the RW R-squares have much lower means and medians. The series is more
likely to have some nonlinear features, allowing us to estimate the parameters,
but the heavy tails of the logistic distribution mean there is more inherent
noise.

data simulated with the normal distribution, the long-term forecasts were

much worse than the one-step-ahead forecasts. For the logistic distribution,

performance, although poor, was consistent whether we were predicting at

long horizons or short horizons. This shows, as was shown in section 4, that

the distributional assumptions are very important in nonlinear models. A

small change from a normal to a symmetric heavy-tailed distribution makes

a very large difference, even when the mean and variance of the noise term

are the same.
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Descriptive Statistics of RW R-squared: 12-Step Forecasts
Logistic Distribution

In-Sample Performance
Mean Median Std. Min Max
AR-NN (P) 0.310 0.318 0.061 0.150 0.407
AR-NN (BS) 0.331 0.343 0.056 0.156 0.411
AR(1) 0.405 0.408 0.017 0.164 0.422

Out-of-Sample Performance
Mean Median Std. Min Max

AR-NN (P) 0.428 0.546 0.859 -20.0 0.711
AR-NN (BS) 0.452 0.569 0.849 -19.7 0.744
AR(1) 0.533 0.628 0.558 -11.9 0.782

Table 6: When the logistic distribution is used to create the simulation data,
the RW R-squares have much lower means and medians, but their minimum
values are much higher. The series is more likely to have some nonlinear
features, allowing us to estimate the parameters, but the heavy tails of the
logistic distribution mean there is more inherent noise.
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In this section we investigate how well a neural network model is able to

forecast simulated data with known architecture. We use the actual param-

eter values as starting values in the nonlinear fitting routine and generate

both a one-step-ahead and a twelve period forecast horizon, using both a

point forecast and a bootstrap forecast as suggested in Terasvirta (2005).

We find that the point forecast out-performs the bootstrap model at short

and long horizons. Neither performed well in the twelve-period case. We

have also shown that the assumptions about the noise term matter when

investigating forecast performance. A symmetric heavy-tailed distribution

with zero mean and a standard deviation of 1 produced very different results

from a normal distribution with a zero mean and a standard deviation of 1.

In this investigation, our starting values give the model a performance

“head start”. In the next section, we examine different methods for choosing

starting values for estimating a neural network model when we do not know

the underlying parameters, which is the only case of practical interest.

6 Starting Value Selection

The AR-NN is, at base, a nonlinear model, and the estimates produced for

nonlinear models are notoriously sensitive to starting values. It therefore

makes sense to ask whether we can choose the starting values intelligently

for our AR-NN so as to maximize our chances of producing a model that

fits the data well. Other studies of neural networks for forecasting time
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series either do not consider starting values at all or else use a grid search

mechanism in order to fit the parameters.

Recall that our neural network model is:

yt = α0 + ρyt−1 + λ tanh(γ(yt−1 − c)) + et

et ∼ N(0, 1)

Even under the assumption that the architecture is known, if we use

our factorial design as a guide, grid searching to produce starting values

for this model would require us to try 3200 parameter combinations at the

beginning of the estimation routine. If the grid search were guaranteed to

produce the parameter estimates that minimized the objective function, the

resources required would be justified, but this is not the case. In Hush (1991)

it is shown that training a neural network model with a sigmoidal node is

NP-hard, meaning that an exhaustive search of every possible parameter

combination may be required in order to find the global minimum. If the

parameter space is continuous, which must be the case in practice, then even

our factorial design would not be adequate.

Further, in these results, we will show that a grid search on the ρ param-

eter actually produces worse estimates than simply choosing a value in the

middle of the search space. Our data-based starting value routine, on the

other hand, produces comparable results to using the true parameter values
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as starting values.

6.1 Starting Value Simulation

As in the forecasting simulation, we produce 20 sequences of errors, which we

use to generate 20 different series for each parameter combination. We then

estimate a model from the generated data assuming that the architecture is

known and using the following steps to determine start values:

1. Calculate the overall median of the series. This is the starting value

for the location parameters α0 and c.

2. Calculate the slope parameter from an AR(1) model. Call this number

ρ̂. The starting value for γ is sign(ρ̂).

3. Calculate the largest deviation from the median of the series. This is

the starting value for λ.

4. Set the starting value for ρ to 0.5.

The mean was also considered as a starting point for the location pa-

rameters, but because of the attraction point, many parameter combinations

produced data that were skewed, which made the mean a poor measure of

the distribution’s center. The median’s performance, therefore, was vastly

superior to the mean (results not shown).

Our starting value routine produces convergence almost as often as using

the true parameter values as the starting values. Not only that, but the
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Model Convergence and Parameter Estimates

How Start Values Were Determined

True Start Value Routine
Converged Bad Parameter Est. 9,571 10.0% 6,018 6.3%

Good Parameter Est 78,288 81.4% 81,974 85.3%

Did Not Converge Bad Parameter Est 668 0.7% 365 0.4%
Good Parameter Est 7,633 8.0% 7,803 8.1%

96,160 100.0% 96,160 100.0%

Table 7: Of all the starting value routines that were tried, the Levenberg-
Marquardt estimation method using the median as the starting value for the
location parameters was obviously the best, arguably even better than using
the true values of the parameter estimates.

starting value routine produces reasonable parameter estimates more often

than using the true parameter values.

Recall that the ρ parameter must be bounded between (-1,1), or else the

neural network model is not stationary (Trapletti et al 2000). A grid search

for the starting value of ρ is therefore practical, and we consider a grid search

for ρ instead of the arbitrary point starting value of 0.5. Table 8 shows the

results from using a grid search for ρ while keeping the rest of the starting

value routine the same. For this simulation, grid searching produced much

worse results than simply choosing ρ = 0.5. This could be because having

more starting values to choose from at the beginning increased the probability

that the estimation routine would stop at a local minimum rather than the

global minimum.
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Convergence Rates over 20 Runs
Grid Search on ρ versus Point Starting Values

Reduced Simulation
How Start Values Were Determined

Point Start for ρ Grid Search on ρ
Converged Bad Parameter Est. 6,018 6.3% 4,797 5.0%

Good Parameter Est 81,974 85.3% 54,666 56.9%

Did Not Converge Bad Parameter Est 365 0.4% 381 0.4%
Good Parameter Est 7,803 8.1% 36,697 37.8%

96,160 100.0% 96,160 100.0%

Table 8: Grid searching for the starting values for ρ produced worse results
than using a point value.

While model convergence is important, it is subjective. Different software

packages use different criteria for whether a fitting routine has converged,

and nearly all commercial packages allow the user to change these criteria as

needed. It is therefore necessary to consider not only whether the software

reports convergence, but whether the resulting model is able to perform in

the required manner. For an AR-NN, the primary goal is forecasting, and

therefore it is useful to compare the unexplained variation (i.e. the mean

squared error) resulting from the different starting value methods.

We start by calculating the statistics for the MSE when the true param-

eter values are used as the starting values (Table 9). Right away, we see that

software-reported convergence is not reliable. The MSEs calculated from the

model where the true parameter values are used as the starting value are
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Descriptive Statistics for Mean-Squared Error
True Values as Start

N Mean Median Std Min Max

96,180 1.01 1.00 0.05 0.92 1.10

Table 9: When the true parameter values are used as the start values in the
fitting routine, the mean-squared error from the resulting model is nearly
always approximately 1, i.e. the expected MSE for our model where the
noise term is distributed N(0, 1).

approximately 1 in all cases, i.e. the expected value when our noise term is

distributed N(0, 1). In contrast, the default settings on a nonlinear fitting

routine reported convergence for only 85% of the cases studied.

We now examine the MSE from a model estimated when we use the

starting value routine under study and compare it to the MSE from a model

produced when the true starting values are used as parameter values. Table

10 reports descriptive statistics for the difference between the MSEs across

all parameter combinations.

As with the forecasting study, we exclude models where the parameter

estimates were unreasonable (|ρ| > 1,|α0| > 90, |λ| > 90), or |c| > 90, which

excluded approximately 3% of the replicates. The results from the compari-

son between the grid search and the point starting values for ρ were similar

to results when the convergence was used as a measure of performance: the

original routine worked best. In this case, however, using the true parameter

estimates produced a model with the minimum MSE. The large maximum

difference in model MSEs, even when the insanity filter is applied, shows
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Descriptive Statistics for Mean-Squared Error
Reduced Simulation

Difference in MSE
Between True Parameters as Starting Values

and Starting Value Routines
Method Mean Median Std Min Max
No Grid Search 4.94 0.00 38.92 -0.00 2,693.94
Grid Search 30.17 1.18 81.20 -0.00 3,976.46

Table 10: Because this is a predictive model, it is important to consider how
well the estimated model performs. Here, we measure performance using
the difference between the mean squared error for a model produced using
the true parameters as starting values and the starting value method under
study.

that it is possible to get unreasonable answers even when the starting values

seem to be chosen reasonably. Fitting the nonlinear model, as pointed out

in Hush (1991) and Faraway and Chatfield (1998), is a step that cannot be

ignored.

7 Conclusions

In this paper, we focus on the existing theory for nonlinear time series as

it relates to neural network models, and how that theory can be used as a

guide in applying neural networks to time series forecasting. We have several

results, including:

1. When the activation function is bounded, the process skeleton is also

bounded, and for noise terms distributed iid, the series Yt is bounded
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in probability. This can have a non-trivial effect on whether the pa-

rameters of the AR-NN can be estimated. For simulation, this allows

the researcher to limit the design space. For practical applications, the

researcher can use the theoretical limits as a guide in selecting starting

values.

2. The location of the neural network attraction point(s) is important in

determining long-run behavior of the network. If the attraction point

is such that the generated data are not near the location parameter(s)

for the activation function (called cj in this analysis), it is possible for

the series data to cluster in a location where there is little information

about the parameters of the nonlinear model. In these cases, the neural

network we studied behaves like an AR(1).

3. It has been hypothesized that nonlinear time series may perform bet-

ter than linear models at long forecast horizons, even when the linear

model has better or equal one-step-ahead performance. For a noise

term with a normal distribution our results show the opposite: The

neural network models we studied had very poor performance at long

forecast horizons. When a heavy-tailed distribution was substituted

for the normal distribution, the long and short horizon forecasts had

similar performance.

4. For the models studied in this research, bootstrap forecasts produced

worse results than point forecasts.
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5. Even when the architecture of the neural network is known, it is im-

portant to obtain good starting values for the estimation routine. For

our experiment, grid searching, which is commonly used in the absence

of another guide for starting values, produced worse results than using

a simple point starting value. A fitting routine is not complete without

a way to select starting values.

6. The distribution of the noise term matters. Heavy-tailed distributions,

which may be more realistic for many applications, produce very dif-

ferent results than the normal distribution.

The authors recognize that the model studied in this research is a rel-

atively simple neural network model. Most studies of neural network fore-

casting for time series focus on much more complex models with multiple

lags and multiple hidden units. It is possible that the models studied in this

research tended to behave like linear models because of the presence of only

one hidden unit, and a more complex model might display more nonlinear

properties. If that were the case, we would expect the nonlinear model to

perform better than the linear model.

The relative simplicity of this model, however, does show some important

weaknesses in neural network modeling. We would not expect the estimation

problems to become easier as the model becomes more complex. Recall that

Hush (1991) showed that training a neural network is NP-hard. The number

of potential parameter combinations that must be considered for estimation
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increases quickly as lags and hidden units are added.

There is also justification in the literature for what we have shown here.

In Faraway and Chatfield (1998), it was found that the neural networks es-

timated for the airline data were frequently linear in most directions, even

though many lags and hidden units were considered. In Trapletti et al (2000),

there is a note that “In practice, the Hessian tends to be poorly behaved,”

indicating linear dependencies among the first derivatives of the neural net-

work that would be explained by mostly linear behavior among the lags. In

Zhang and Qi (2005), it was shown that neural networks produced forecasts

that were orders of magnitude better when the correct de-trending and de-

seasoning techniques were applied. Many researchers who have attempted to

use neural networks for forecasting have discovered problems similar to the

ones we have found here.

It is also important to note that, while all of the series meet the conditions

set in Trapletti et al (2000) for the parameters to be estimable, none of

our models meet the conditions set in Leoni (2009) for an attraction point

that is globally and exponentially stable in the large. Many of our series

had multiple attraction points. Some have only one unstable equilibrium.

Without a global attraction point, it is difficult to argue that the series will

be inherently predictable, even if it is possible to estimate the parameters.

The comparison made in Tong (1993) between the mean for a stationary

linear time series and a nonlinear series with a global attraction point is

well-taken. We are able to predict stationary linear time series because we
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know that when a random shock pulls the series away from the mean, it will

be more likely to return to the mean at the next time period. We know

that we can predict a nonlinear time series with a unique and globally and

exponentially stable attractor because when the random portion of the series

pushes it away from the attractor, the deterministic portion of the series will

pull it back.

If a series has multiple attraction points, we would expect to see the data

cluster at different locations. If the attractors are “far” from each other, then

the series will collect at one attraction point, which will be determined by the

starting value. If the series attraction points are “close”, then the series will

move from one cluster to another. These movements are determined by the

noise term, and are therefore unpredictable. The neural network is simply

an estimate of the series skeleton, and even if the architecture is known and

the parameter estimates are close to the true parameters, the noise term can

cause the actual series to become out of phase with its skeleton. Forecasts

for such a series would be very unreliable. This is exactly what we see in

the forecasting chapter, and it is not surprising that these series are difficult

to forecast beyond a few time periods, even when the model parameters are

estimated with perfection.

Though Gorr (1994) points out that neural network models are primarily

for forecasting, even forecasters need to understand the properties of the

series under study. Much of neural network estimation is still a black box,

and it is important to continue developing theory and general results that
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can help us build better estimation techniques and understand the results

from neural network models.
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