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Abstract—In recent research, a cyclodissipativity character-
ization of the problem of power factor compensation (PFC) for
nonlinear loads with non-sinusoidal source voltage has been
presented. Using this characterization the classical capacitor
and inductor compensators can be interpreted in terms of
energy equalization. This brief note focuses on the extension of
this approach. In particular, one result is to show that power
factor compensation is equivalent to a new cyclodissipativity
condition. Another result is to consider general lossless linear
filters as compensators and to show that the power factor
is improved if and only if a certain equalization condition
between the weighted powers of inductors and capacitors of
the nonlinear load is ensured.

I. INTRODUCTION
In Electrical engineering, a classical problem is optimizing

energy transfer from an alternating current (ac) source to a
load. The power factor, defined as the ratio between the real
or the active power (average of the instantaneous power) and
the apparent power (the product of rms values of the voltage
and current), captures the energy transmission efficiency for a
given load, [1]. The standard approach to improve the power
factor is to place a lossless compensator between the source
and the load.
The task of designing compensators that aim at improving

the power-factor (PF) for nonlinear time-varying loads oper-
ating in non-sinusoidal regimes is far from clear. Most of the
approaches used to improve PF are based on ad-hoc defini-
tions of reactive power, [2], and a lack of consensus on these
definitions produces misunderstanding of power phenomena
in circuits with nonsinusoidal voltages and currents.
Recently, in [3] a new framework for analysis and design

of (possibly nonlinear) PF compensators for electrical sys-
tems operating in non-sinusoidal (but periodic) regimes with
nonlinear time-varying loads was presented. This framework
proceeds from the aforementioned, universally accepted,
definition of PF and does not rely on any axiomatic defi-
nition of reactive power. It is shown that PF is improved
if and only if the compensated system satisfies a certain
cyclodissipativity property, [4] [5]. The supply rate in [3]
depends explicitly on the load, but unfortunately the load
is typically unknown. Hence, the result may not be used
for compensator synthesis. One contribution of our work is
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the proof that PF improvement can also be characterized in
terms of a new cyclodissipativity property where the supply
rate is independent of the load and is solely determined by
the compensator.
In [3] the case of LTI capacitive or inductive compensation

was studied, showing that PF improvement is equivalent to
energy equalization. In [6] we have studied the concept of
weighted real power and showed that the power factor by
general lossless LTI filters is improved if and only if a
certain equalization condition between the weighted powers
of inductors and capacitors of the load is ensured. However,
in [6] we have assumed that the resistors in the load are
linear. Here we extend the result to the case where the resistor
are nonlinear.

II. A CYCLODISSIPATIVITY CHARACTERIZATION
OF POWER-FACTOR COMPENSATION

This section introduces the identification of the key role
played by cyclodissipativity in PF compensation.

A. Framework
We consider the energy transfer from an n-phase ac

generator to a load, see Figure 1. The voltage and current of
the source are denoted by the column vectors vs(t), is(t) ∈
R

n and the load is described by a (possibly nonlinear and
time varying) n-port network N. We make the following
assumptions.
Assumption 1: All signals are assumed to be periodic and

have finite power, that is, they belong to

Ln
2 =

{
x : [0, T ) → R

n : ‖x‖2 :=
1

T

∫ T

0

|x(τ)|2dτ < ∞

}

where | · | is the Euclidean norm. We also define the inner
product in Ln

2 as

〈x, y〉 :=
1

T

∫ T

0

x�(t)y(t)dt.

Assumption 2: The source is ideal in the sense that vs

remains unchanged for all loads Y�.
The universally accepted definition of PF is given as [1]:
Definition 1: The PF of the source is defined by

PF :=
P

S
, (1)

where
P := 〈vs, is〉, (2)
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Fig. 1. Illustrating power delivered to a (possibly nonlinear and time
varying) load from an n-phase ac ideal generator.
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Fig. 2. Schematic diagram of shunt PF compensation configuration.

is the active (real) power,1 and S := ‖vs‖‖is‖ is the apparent
power.
Under Assumption 2, the apparent power S is the high-
est average power delivered to the load among all loads
that have the same rms current ‖is‖. From (1) and the
Cauchy–Schwartz inequality, it follows that P ≤ S. Hence
PF ∈ [−1, 1] is a dimensionless measure of the energy-
transmission efficiency. Cauchy–Schwartz also tells us that
a necessary and sufficient condition for the apparent power
to equal the active power is that vs and is are collinear. If
this is not the case, P < S and compensation schemes are
introduced to maximize the PF.

B. The Power-Factor compensation problem
The PF compensation configuration considered in the

paper is depicted in Figure 2, where Yc, Y� : Ln
2 → Ln

2 are
the admittance operators of the compensator and the load,
respectively. That is,

ic = Yc(vs) i� = Y�(vs)

where ic, i� ∈ Ln
2 , are the compensator and load currents,

respectively. In the simplest LTI case the operators Yc, Y�

can be described by their admittance transfer matrices, which
we denote by Ŷc(s), Ŷ�(s) ∈ R

n×n(s), respectively, where
s represents the complex frequency variable s = jω.
The uncompensated PF, that is, the value of PF when

Yc = 0, is clearly given by

PFu :=
〈vs, is〉

‖vs‖‖is‖
. (3)

Following standard practice, we consider only lossless
compensators, that is,

〈Yc(vs), vs〉 = 0, ∀vs ∈ Ln
2 . (4)

We recall that, if Yc is LTI, this is equivalent to

Re{Ŷc(jω)} = 0. (5)

1Also called average power [7].

where Re{Ŷc(jω)} is the real part of the admittance transfer
matrix Ŷc(jω).

C. Power-Factor compensation and cyclodissipativity
Dissipativity provides us with a useful tool for the analysis

of nonlinear systems, which relates nicely to Lyapunov and
L2 stability, [8], [9], [10]. In accordance with physical
concepts, a system is called dissipative if it does not produce
energy, in some abstract sense. Typical examples of dissi-
pative systems are: passive electrical networks, mechanical
systems, viscoelastic materials, etc.
The concept of cyclodissipativity is inspired by the fact

that cyclodissipative systems exhibit a dissipative behavior
in cyclic motions. As explained in [4], cyclodissipativity
is understood here in terms of the available generalized
energy. The idea is borrowed from thermodynamics, where
the notion is formulated in a conceptually clearer manner
than in circuits and systems theory. Thermodynamical sys-
tems define cyclodissipative systems as do, for example,
less “physical” systems as electrical systems with positive
resistors and capacitors and inductors with either sign.
Definition 2: Given a mapping w : Ln

2 × Ln
2 → R. The

n-port system of Figure 1 is cyclo–dissipative with respect
to the supply rate w(vs, is) if and only if∫ T

0

w(vs(t), is(t))dt > 0. (6)

for all (vs, is) ∈ Ln
2 × Ln

2 .
Remark 1: In words, a system is cyclodissipative when

it can not create (abstract) energy over closed paths in the
state-space. It might, however, produce energy along some
initial portion of such a trajectory; if so, it would not be
dissipative.
To place or results in context, and make the paper self–

contained, we recall the following results from [3].
Proposition 3: Consider the system of Figure 2 with fixed

Y�. The compensator Yc improves the PF if and only if the
system is cyclo–dissipative with respect to the supply rate

w(vs, is) := (Y�(vs) + is)
�(Y�(vs) − is). (7)

Proof: From Kirchhoff’s current law is = ic + i�, the
relation ic = Yc(vs), and the lossless condition (4), it follows
that 〈vs, is〉 = 〈vs, i�〉. Consequently, (1) becomes

PF =
〈vs, i�〉

‖vs‖‖is‖
. (8)

Comparing the equation above with (3) we conclude that
PF > PFu if and only if

‖is‖
2 < ||i�||

2 = ‖Y�(vs)‖
2, (9)

where we used i� = Y�(vs) for the right hand side identity.
Finally, note that (6) with (7) is equivalent to (9), which
yields the desired result.
Corollary 4: Consider the system of Figure 2 Then Yc

improves the PF for a given Y� if and only if Yc satisfies

2〈Y�(vs), Yc(vs)〉 + ‖Yc(vs)‖
2 < 0, ∀vs ∈ Ln

2 . (10)
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Dually, given Yc, the PF is improved for all Y� that satisfy
(10).

Proof: Substituting is = (Y� + Yc)(vs) in (9) yields
(10).
Remark 2: The key advantage of cyclodissipativity is that

it restricts the set of inputs of interest to those generate peri-
odic solutions (a feature that is intrinsic in PF compensation
problems) it furthermore deals with “abstract” energies.

III. A NEW CYCLO–DISSIPATIVITY CONDITION FOR
POWER-FACTOR COMPENSATION

Unfortunately, the supply rate in [3] depends explicitly
on the load, which is typically unknown. Hence, the result
may not be used for compensator synthesis. One contribution
of our work is the proof that PF improvement can also be
characterized in terms of a new cyclodissipativity property
where the supply rate is independent of the load and is solely
determined by the compensator.
Proposition 5: Consider the system of Figure 2 with fixed

Yc. The PF is improved for all Y� such that the system is
cyclo–dissipative with respect to the supply rate

w(vs, is) := (Yc(vs))
2 − 2i�s Yc(vs). (11)

Proof: We have shown above that PF > PFu if and
only if ||is||2 < ||i�||

2. Using the fact that is = ic + i�, the
latter inequality can be written as

||ic + i�||
2 < ||i�||

2, (12)

which is equivalent to

||ic||
2 + 2〈ic, i�〉 < 0. (13)

Substituting i� = is − ic in (13) yields

||ic||
2 − 2〈ic, is〉 > 0. (14)

The proof is completed replacing ic = Ycvs.
The supply rate (7) depends on Y� that is usually unknown.

Hence, the result of Proposition 3 can only be used for
analysis of a given known load—as done in [11] for a TRIAC
controlled rectifier. On the other hand, the supply rate (11)
depends on Yc, that is to be designed. Current research is
under way to exploit this new cyclo–dissipativity property to
synthesize PF compensators.

IV. WEIGHTED POWER EQUALIZATION AND POWER
FACTOR COMPENSATION FOR RLC LOADS

In this section we extend Proposition 5 in [3], where the
PF compensators are assumed to be capacitors or inductors,
to general lossless LTI filters. Similarly to [3], we assume
that the load is a nonlinear RLC circuit consisting of lumped
dynamic elements (nL inductors, nC capacitors) and static
elements (nR resistors). Capacitors and inductors are defined
by the physical laws and constitutive relations [7]:

iC = q̇C , vC = ∇HC(qC), (15)

vL = φ̇L, iL = ∇HL(φL), (16)

respectively, where iC , vC , qC ∈ R
nC are the capacitors

currents, voltages and charges, and iL, vL, φL ∈ R
nL are the

inductors currents, voltages and flux–linkages, HL : R
nL →

R is the magnetic energy stored in the inductors, HC :
R

nC → R is the electric energy stored in the capacitors,
and ∇ is the gradient operator. We assume that the energy
functions are twice differentiable and for linear capacitors
and inductors,

HC(qC) =
1

2
q�CC−1qC , HL(φL) =

1

2
φ�

LL−1φL,

respectively, with L ∈ R
nL×nL , C ∈ R

nC×nC . To avoid
cluttering the notation we assume L,C are diagonal matrices.
Finally, we distinguish between two sets of nonlinear static
resistors: nRi

current–controlled resistors and nRv
voltage–

controlled resistors, for which the characteristics are given
by the following one-to-one real-valued functions:

vRi
= v̂Ri

(iRi
), (17)

and
iRv

= îRv
(vRv

), (18)

respectively, where iRi
, vRi

∈ R
nRi are the currents, volt-

ages of the current-controlled resistors, and iRv
, vRv

∈ R
nRv

are the currents, voltages of the voltage-controlled resistors,
with nR = nRi

+ nRv
.

Recalling the definition of real power (2) we introduce the
following.

Definition 6: Given a compensator admittance Yc the
weighted (real) power of a single–phase circuit with port
variables (v, i) ∈ L2 × L2 is given by

Pw := 〈Yc(v), i〉. (19)
If Yc is LTI

Pw =

∞∑
k=−∞

Ŷc[k]V̂ [k]Î∗[k] (20)

where V̂ [k], Î[k] are the k-th spectral lines of v and i,
respectively, and Ŷc[k] := Ŷc(kω0), with ω0 := 2π

T
. That

is, Pw is the sum of the power components of the circuit
modulated by the frequency response of Yc—hence the use
of the “weighted” qualifier.2

The aforementioned definition motivates the next lemma.
Lemma 1: Consider a nonlinear time invariant (TI)

current-controlled {voltage-controlled} one-port resistor
characterized by (17) {(18)} and a fixed LTI lossless com-
pensator Yc with n = 1. Let Ŷc(jω) denote the associated
admittance transfer function. If Ŷc(jω) has a zero at the
origin, then the weighted averaged power along periodic
trajectories satisfies

Pw
Ri

:= 〈YcvRi
, iRi

〉 = 0, (21)

{Pw
Rv

:= 〈YcvRv
, iRv

〉 = 0} for all admissible pair
(vRi

, iRi
) ∈ L2 × L2 {(vRv

, iRv
) ∈ L2 × L2}, and for all

ω ∈ R for which jω is not a pole of Ŷc(jω).

2Since the spectral lines of real signals satisfy F̂ [−k] = F̂ ∗[k], the
weighted power is a real number.
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Proof: From the Foster’s reactance theorem, see [12]
and [13], the impedance function of LTI lossless can be
written in the form

Ẑ(s) =
g(s2 + ω2

z1
)(s2 + ω2

z2
) · · ·

s(s2 + ω2
p1

)(s2 + ω2
p2

) · · ·
,

where g > 0 and 0 ≤ ωz1
< ωp1

< ωz2
< ωp2

· · · .
Furthermore, ωz1

can be zero or not depending upon whether
Ẑ(s) has a zero or a pole at the origin. We have that Ŷc(s) =

1
Ẑc(s)

. Since Yc admits a factorization Yc = Yc1
(Yc2

), then

〈iRi
, YcvRi

〉 = 〈iRi
, Yc1

(Yc2
vRi

)〉,

〈iRv
, YcvRv

〉 = 〈iRv
, Yc1

(Yc2
vRv

)〉 = 〈iRv
, Yc2

(Yc1
vRv

)〉,

where we used the fact that Yc1
and Yc2

commute3. For
a lossless n-ports we have that Yc is skew Hermitian, i.e.,
Ŷc(s)+Ŷ ∗

c (s) = 0 for all s = jω, where Y ∗
c is the adjoint (or

the conjugate transpose) of Yc, see [13] and [14]. Consider
the case of the nonlinear TI current-controlled resistor. By
the assumption that Ŷc(s) has a zero at the origin, we define
Ŷc1

(s) = s and thus we have

〈iRi
, YcvRi

〉 = 〈Y ∗
c1

iRi
, Yc2

vRi
〉,

Since Yc1
is skew-Hermitian, and Yc1

= d
dt
, then the last

expression become

〈iRi
, YcvRi

〉 = −

〈
diRi

dt
, Yc2

v̂Ri
(iRi

)

〉
, (22)

and the right-hand side of (22) can be written as〈
diRi

dt
, Yc2

v̂Ri
(iRi

)

〉
=

1

T

∫ T

0

(Yc2
v̂Ri

(iRi
))

diRi

dt
dt.

By substitution, we obtain〈
diRi

dt
, Yc2

v̂Ri
(iRi

)

〉
=

1

T

∫ iRi
(T )

iRi
(0)

Yc2
v̂Ri

(iRi
)diRi

.

Since the input is periodic with period T , i.e., iRi
(0) =

iRi
(T ), then the inner product (22) is zero. The convolution

Yc2
v̂Ri

(iRi
) is also periodic with period T in steady state,

see Theorem 4.1.2 in [15], and the existence and uniqueness
of the composition can be proved by Volterra serie, see
Theorem 3.2.1 in [15]. An analogous result holds for the
case of the nonlinear TI voltage-controlled resistor, i.e.,〈
Yc2

îRv
(vRv

),
dvRv

dt

〉
= 0.

In the previous lemma, the assumption that Ŷ (jω)c had a
zero at the origin was necessary condition for the result to
hold for the case of nonlinear resistor. In particular, where
the resistor is linear4 it can be removed.
Corollary 7: Consider a linear TI one-port resistor and a

fixed LTI lossless compensator Yc with n = 1. Let Ŷc(jω)

3Since Yc1
and Yc2

are two continuous, linear, time-invariant operators,
then there is an invertible operator S such that SYc1

S−1 = H1 and
SYc2

S−1 = H2, where H1 and H2 denote multiplication operators. Since
H1 and H2 commute, then Yc1

and Yc2
commute

4A linear resistor is both current- and voltage controlled and is represented
by uRi

= RiRi
(Ohm’s law), where R is the resistance, or, similarly,

iRv
= GvRv

, where G(= R−1) is the conductance.

denote the associated admittance transfer function. Then the
weighted averaged power along periodic trajectories satisfies

Pw
Ri

:= 〈YcvRi
, iRi

〉 = 0, (23)

{Pw
Rv

:= 〈YcvRv
, iRv

〉 = 0} for all admissible pair
(vRi

, iRi
) ∈ L2 × L2 {(vRv

, iRv
) ∈ L2 × L2}, and for all

ω ∈ R for which jω is not a pole of Ŷc(jω).
Proof: From Parseval’s theorem, we have

〈YcvRi
, iRi

〉 =
1

2π

∫ ∞

−∞

ÎRi
(−jω)Ŷc(jω)V̂Ri

(jω)dω

=
R

2π

∫ ∞

−∞

Im{Ŷc(jω)}|ÎRi
(jω)|2dω

where the second identity is equal to zero, given the fact that
Im{Ŷc(jω)} is an odd function of ω and Re{Ŷc(jω)} = 0
for almost all ω. An analogous result can be obtained for
the weighted averaged power Pw

Rv
by using the relationship

ÎRv
= GV̂Rv

.

Proposition 8: Consider the system of Figure 2 with n =
1,5 a full nonlinear RLC load and a fixed LTI lossless
compensator Yc with admittance transfer function Ŷc(jω)
which has a zero at the origin.
i) PF is improved if and only if

1

2
V w

s +

nL∑
q=1

Pw
Lq

+

nC∑
q=1

Pw
Cq

< 0 (24)

where V w
s is the rms value of the filtered voltage

source, that is,

V w
s := ||Ycvs||

2 =

∞∑
k=1

|Ŷc(k)V̂s(k)|2

and

Pw
Cq

:=

∞∑
k=−∞

Ŷc[k]V̂Cq
[k]Î∗Cq

[k]

Pw
Lq

:=

∞∑
k=−∞

Ŷc[k]V̂Lq
[k]Î∗Lq

[k],

are the weighted powers of the q–th capacitor and
inductor, respectively.

ii) Condition (24) may be equivalently expressed as〈
(
1

p
Yc)vL,∇2HLvL

〉
−

〈
iC , (

1

p
Yc)∇

2HCiC

〉
>

1

2
V w

s

(25)
where p := d

dt
.

iii) If the capacitors and inductors are linear their weighted
powers become

Pw
Cq

:= 2ω0

∞∑
k=1

{
k Im{Ŷc[k]}

nC∑
q=1

Cq|V̂Cq
[k]|2

}

Pw
Lq

:= −2ω0

∞∑
k=1

{
k Im{Ŷc[k]}

nL∑
q=1

Lq|ÎLq
[k]|2

}
.

(26)
5This condition is imposed, without loss of generality, to simplify the

presentation of the result.
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where Im{Ŷc[k]} is the imaginary part of the admit-
tance transfer function Ŷc[k].

iv) Furthermore, the results i-iii can be extended for a
general LTI lossless compensator, if the resistors of
the load are linear time-invariants.
Proof: Corollary 4 shows that the PF is improved if

and only if (10) holds, which may be equivalently expressed
as

||Ycvs||
2 + 2〈Ycvs, i�〉 < 0.

Applying the generalized form of Tellegen’s theorem to the
RLC load one gets

i�� Ycvs = i�Rv
YcvRv

+ i�Ri
YcvRi

+ i�LYcvL + i�CYcvC ,

see [16], which upon integration yields

〈i�, Ycvs〉 = 〈iL, YcvL〉 + 〈iC , YcvC〉 (27)

where we have used the fact that, because of Lemma (1),
〈iRv

, YcvRv
〉 = 0 and 〈iRi

, YcvRi
〉 = 0 for nonlinear LTI

resistors.
Then, Condition (24) is obtained directly from Definition

6.
Now,

〈iL, YcvL〉 =
〈
∇HL, Ycφ̇L

〉
= −

〈
∇2HLvL, (

1

p
Yc)vL

〉
,

where the first identity follows from the relations (16)and the
second uses the well–known property of periodic functions
< f, ġ >= − < ḟ, g >. Similar derivations with the term
〈iC , YcvC〉 yield (25).
To prove iii) we use (20), the basic relations for LTI

inductors and capacitors

ÎCq
[k] = jkω0CqV̂Cq

[k], V̂Lq
[k] = jkω0Lq ÎLq

[k],

and the fact that Yc satisfies (5).
Finally, the proof of iv) follows directly from Corollary 7.

Remark 3: Condition (24) indicates that the PF will be
improved if and only if the overall weighted power (supplied
plus stored) is negative.
Remark 4: From (25) (or replacing (26) in (24)) we

see that PF improvement is equivalent to average power
equalization between inductors and capacitor—notice the
minus signs—with the gap being determined by the weighted
supplied power.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, extensions to the analysis of power factor

compensation of nonliear loads based on cyclodissipativity
were presented. First, power factor compensation and a new
cyclodissipativity condition were shown to be equivalent.
Secondly, we have studied the concept of weighted (real)
power and showed that the power factor by general LTI
compensators is improved if and only if a certain equalization
condition between the weighted powers of compensator and
load is ensured. Furthermore, we extended the result to the
case where the resistors are nonlinear.
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