
Why Does Bagging Work ? A Bayesian Account and its Implications 

Pedro Domingos1T2 
Department of Information and Computer Science 

University of California, Irvine 
Irvine, California 92697, U.S.A. 

pedrod@ics.uci.edu 
http://www.ics.uci.edu/“pedrod 

Abstract 

The error rate of decision-tree and other cIassi- 
fication learners can often be much reduced by 
bagging: learning multiple models from bootstrap 
samples of the database, and combining them by 
uniform voting. In this paper we empirically test 
two alternative explanations for this, both based 
on Bayesian learning theory: (1) bagging works 
because it is an approximation to the optimal 
procedure of Bayesian model averaging, with an 
appropriate implicit prior; (2) bagging works be- 
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propriate region of model space. All the experi- 
mental evidence contradicts the first hypothesis, 
and confirms the second. 

Bagging 
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to reduce the error rate of many classification learn- 
ing algorithms. For example, in the empirical study 
described below, it reduces the error of a decision-tree 
learner in 19 of 26 databases, by 4% on average. In 
the bagging procedure, given a training set of size s, a 
“bootstrap” replicate of it is constructed by taking s 
samples with replacement from the training set. Thus 
a new training set of the same size is produced, where 
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than once, or not. On average, 63% of the original 
examples will appear in the bootstrap sample. The 
learning algorithm is then applied to this training set. 
This procedure is repeated m times, and the result- 
ing m models are aggregated by uniform voting. Bag- 
ging is one of several “multiple model” approaches that 
have recently received much attention (see, for exam- 
ple, (Chan, Stolfo, & Wolpert 1996)). Other proce- 
dures of this type include boosting (Freund & Schapire 
1996) and stacking (Wolpert 1992). 

Two related explanations have been proposed for 
bagging’s success, both in a classical statistical frame- 
work. 
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Breiman (1996a) relates bagging to the notion of an 
order-correct learner. A learner is order-correct for 
an exampie z if, given many different training sets, 

it predicts the correct class for z more often than any 
other. Breiman shows that, given sufficient replicates, 
bagging turns an order-correct learner into a nearly- 
optimal one. Although this line of reasoning has intu- 
itive value, its usefulness is limited, because it is seldom 
(or never) known a priori whether a learner is order- 
correct for a given example or not, or what regions 
of the instance space it will be order-correct in and 
not. Thus it is not possible to judge from an appiica- 
tion domain’s characteristics whether bagging will be 
successful in it or not. On the other hand, Breiman 
provides a qualitative description of the learners with 
which bagging can be expected to work: they have to 
be unstable, in the sense that small variations in the 
training set can lead them to produce very different 
models. Decision trees and neural networks are ex- 
amples of such learners, In contrast, nearest-neighbor 
methods are stable, and bagging is of little value when 
applied to them. 

In a related study, Friedman (1996) relates the 
success of bagging to the notions of bias and vari- 
ance of a learning algorithm. Several alternative def- 
initions of bias and variance for classification learn- 
ers have been proposed (Kong & Dietterich i995; 
Kohavi & Wolpert 1996; Breiman 1996b; Friedman 
1996). Loosely, bias measures the systematic compo- 
nent of a learner’s error (i.e., its average error over 
many different training sets), and variance measures 
the additional error that is due to the variation in 
the model produced from one training set to another. 
Friedman suggests that bagging works by reducing 
variance without changing the bias. Again, this ex- 
planation has intuitive value, but leaves unanswered 
the question of how the success of bagging relates to 
domain characteristics. 

In this paper, an alternate line of reasoning is pur- 
sued, one that draws on Bayesian learning theory 
(Buntine 1990; Bernard0 & Smith 1994). In this the- 
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it are) contained in the prior probability assigned to the 
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different models in the model space under considera- 
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ing the likelihood of each model given the data, and 
optimal classification is performed by voting among 
the models, with each model’s weight being its poste- 
rior probability (the product of the prior probability 
and the likelihood). Simply choosing the single best 
model, as most learners do, is only an approximation 
to the optimai procedure. Since bagging eiFectiveiy 
samples the model space, and then performs classifica- 
tion by voting among the models found, the question 
naturally arises: can bagging’s success be due to its 
being a closer approximation to the optimal Bayesian 
procedure than simply choosing the best model? And 
if so, what prior assumptions does its uniform voting 
procedure imply ? Alternatively, bagging can be re- 
garded as forming a single new model composed of the 
m bagged models, and choosing it. In this case, bag- 
ging in effect changes the model space, or at least re- 
distributes probability from the component models to 
the composite ones. These two interpretations (bag- 
ging approximates Bayesian model averaging vs. bag- 
ging changes the priors) have very different implica- 
tions, In the first, the underlying. learner is assumed 
to fit the domain well, and error is reduced by refin- 
ing the inference procedure (averaging models, instead 
of selecting one). In the second, inference according 
to a single model is an acceptable approximation, but 
the underlying learner is making incorrect assumptions 
about the domain, and error is reduced by changing it. 

This paper tests these two hypotheses empirically, 
and discusses the implications of the results. After a 
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tested, followed by the second one. 

Bayesian Learning Theory 
Modern Bayesian approaches to learning differ from 
classical statistical ones in two main respects (Bun- 
tine 1990): the computation of posterior probabilities -I- ---- 
from prior probabilities and likelihoods, and their use 
in model averaging. In Bayesian theory, each candi- 
date model in the model space is explicitly assigned 
a prior probability, reflecting our subjective degree of 
belief that it is the %orrect” model, prior to seeing the 
data. Let n be the training set size, 2 the examples 
in the training set, c’ the corresponding class labels, 
and h a model (or hypothesis) in the model space H. 
Then hv Rnvw’n thnnrem. anrl a.ccqllminp the. examples -~-“--) ~J IIJ-I I -! ---------, ____ -CL- ____ -o >--- 

are drawn independently, the posterior probability of 
h given (2, $) is given by: 

(1) 

where f+(h) is the prior probability of h, and the prod- 
uct of Pr(si, cilh) terms is the likelihood. The data 
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be ignored. If a uniform class noise modelis assumed 

(i.e., each example’s class is corrupted with probability 
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for pi, and Pr(~i, ci Ih) = E if h predicts an incorrect 
class. Equation 1 then becomes: 

Pr(hlZ, ~3) CC l+(h) (1 - E)%‘+~ (2) 
where s is the number of examples correctly classified 
by h. An alternative approach (Buntine 1990) relies 
on the fact that, implicitly or explicitly, a classification 
model divides the instance space into regions, and la- 
bels each region with a class. For example, if the model 
is a decision tree (Quinlan 1993), each leaf corresponds 
to a region. A noise level can then be estimated sepa- 
rately for each region, by making: 

Pr(xi, cJh) = 7 

where r is the region xi is in, n, is the total number 
of training examples in r, and nT,ci is the number of 
examples of class ci in r. 

Finally, a test example 2 is assigned to the class that 
maximizes: 

Pr(clx, I, Z, N) = x Pr(clx, h) Pr(hli!, E) 
hEH 

(4) 

If a “pure” classification model is used, Pr(clx, h) is 
1 for the class predicted by h for x, and 0 for all oth- 
ers. Alternatively, a model supplying class probabil- 
ities such as those in Equation 3 can be used. Since 
there is typically no closed form for Equation 4, and 
the model space used typically contains far too many 
modeis to aiiow the fuii summation to be carried out, 
some procedure for approximating Equation 4 is neces- 
sary. Since Pr(hl +, 3 2 c is often very peaked, using only 
the model with highest posterior can be an acceptable 
approximation. Alternatively, a sampling scheme (e.g., 
Markov chain Monte Carlo (Madigan et al. 1996)) can 
be used. 

Empirical Tests of the First Hypothesis 
This section empirically tests the following hypothesis: 

1. Bagging reduces a classification learner’s error rate 
because it more closely approximates Equation 4 than 
the single model output by the learner. 

Obviously, this hypothesis assumes the learner in- 
deed ontni1t.s 8 single meodeij and_ is Only releva.nt for ---I----- _ -_- -__. 

those (learner, domain) pairs where bagging does in 
fact reduce error. If this hypothesis is correct, given m 
bootstrap replicates of the training set, bagging sam- 
ples m high-posterior terms from Equation 4. This is 
plausible, since a sensible learner will produce a high- 
posterior model given its training set. More problem- 
atic is the fact that bagging assigns uniform weight to 
all models sampled, i.e., it assumes they all have the 
ss~*e post,&~r nrohnhi1it.v. irresnwtive of t,h& i&e& =--“----- ~J) -----=----. - 
hood. One possible interpretation (Hypothesis la) is 
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that this is simply an imperfection in bagging’s ap- 
proximation, and better results would be obtained by 
correctly weighing the models by their posteriors, as- 
suming (conservatively) an uninformed prior (e.g., uni- 
form). Alternatively, bagging may be regarded as as- 
suming a prior probability distribution that approx- 
imately cancels the likelihood for these models (Hy- 
pothesis lb). Both these variants of Hypothesis 1 were 
tested. 

A decision-tree learner, C4.5 release 8 (Quinlan 
1993), was used in all experiments.3 Twenty-six 
databases from the UC1 repository were used4 (Merz, 
Murphy, & Aha 1997). Hypothesis la was tested 
by comparing bagging’s error with that obtained by 
weighing the models according to Equation 1, using 
both a uniform class noise model (Equation 2) and 
Equation 3. Equation 4 was used in both the “pure 
classification” and “class probability” forms described. 
Initially, m = 25 bootstrap replicates were used. Error 
was measured by ten-fold cross-validation. In all cases, 
non-uniform weighting performed worse than bagging 
on a large majority of the datasets (e.g., 19 out of ZS), 
and worse on average. The best-performing combina- 
tion was that of uniform class noise and “pure classi- 
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peated with m = 10, 50, and 100, with similar results. 
Since Bayesian model averaging with a uniform prior 
consistently performs worse than bagging, it is unlikely 
that bagging works because it is an approximation to 
that procedure, and the empirical evidence thus con- 
tradicts Hypothesis la. 

If Hypothesis lb is correct, exactly what prior is be- 
ing assumed by bagging? Since the likelihood decreases 
exponentially with training-set error (see Equation 2, 
and consider that E 5 4 by definition, and the training- 
set error is (n - s)/n), a p rior that cancels the likeli- 
hood must increase exponentially with training-set er- 
ror, at least in the region(s) of model space occupied 
by the models sampled by bootstrapping. This use of 
training-set information in the prior is not strictly al- 
lowed by Bayesian theory, but is nevertheless common 
(Cheeseman 1990). Although counter-intuitive, penal- 
izing models that have lower error on the training data 
simply corresponds to an assumption that the models 
over@! the data, or more precisely, that the models that 
have lower error on the training data will in fact haver 
higher error on test data. Since learners that overfit are 
also necessarily unstable learners, or learners with high 
variance, and these are the learners for which Breiman 
(1996a) and Friedman (1996) found bagging will work, 
it is plausible that bagging incorporates a prior that is 

3The C4.5RULES post-processor was used, since it 
tended to reduce error. 

4Audiology, annealing, breast cancer, credit, diabetes, 
echocardiogram, glass, heart disease, hepatitis, horse colic, 
iris, labor, lenses, LED, lung cancer, liver disease, lym- 
phography, post-operative, promoters, primary tumor, so- 
lar flare, sonar, soybean, voting, wine, and zoology. 

appropriate to those learners. Whether this assump- 
tion that bagging incorporates an error-favoring prior 
is correct for the databases and learner used can be 
tested by checking the sign and magnitude of the cor- 
relation between each model’s in-bag error (i.e., on the 
data it was learned on) and out-of-bag error (i.e., on 
the remaining data). Doing this results in the observa- 
tion that, although the models are almost always over- 
fitted in the sense that their error is lower in-bag than 
out-of-bag, the correlation between in-bag and out-of- 
bag error is positive in all but four of the 26 databases, 
and is greater than 0.5 in half the databases where it 
is positive. Thus lower in-bag error is almost always 
accompanied by lower out-of-bag error, and using an 
error-favoring prior should increase error, not reduce it, 
as bagging does. This evidence contradicts Hypothesis 
lb. 

Empirical Tests of the Second 
Hypothesis 

This section empirically tests the following hypothesis: 

2. Bagging reduces a classification learner’s error rate 
because it changes the learner’s model space and/or 
prior distribution to one that better fits the domain. 

As before, a learner outputting a single model is as- 
sumed, and this hypothesis is only relevant in cases 
where bagging indeed reduces error. Most learners 
do not employ an explicit prior distribution on mod- 
els. However, since they invariably have learning biases 
that lead them to induce some models more often than 
others, and these biases are known before the learner 
is applied to any given training set, these biases can be 
considered to imply a corresponding prior probability 
distribution. Specifically, most decision tree and rule 
learners (including C4.5) incorporate a simplicity bias: 
they give preference to simpler models, on the assump- 
tion that these models will have lower error on a test 
set than more complex ones, even if they have higher 
error on the training set. Simplicity can be measured 
in different ways, but is typically related to the size of 
the decision tree or rule set produced (e.g., the num- 
ber of nodes in the tree, or number of conditions in all 
the rules). Because, given m replicates, bagging pro- 
duces m models, its output is (in naive terms) on the 
order of m times more complex that that of the base 
learner. A plausible hypothesis is then that, when it 
works, bagging is in effect counteracting an inappro- 
priate simplicity bias, by shifting probability to more 
complex models. 

If this instantiation of Hypothesis 2 is to be effec- 
tively tested, bagging’s output complexity must be 
more carefully evaluated. Syntactically, sets of deci- 
sion trees constitute a different model space from in- 
dividual decision trees, even if the set of classifications 
they can represent is the same, and thus it is ques- 
tionable to directly compare the complexity of models 
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in the two representations. A bagged set of m deci- 
sion trees { DTr , DTz, . . . , DTm} can be trivially trans- 
formed into a single decision tree by placing a replica 
of DT2 at each of DTl ‘s leaves, then a replica of DT3 at 
each leaf of each replica of DT2, and so on up to DT,, 
and then labeling each leaf node of the composite tree 
with the class assigned to it by the bagged ensemble. 
However, this produces a decision tree whose complex- 
ity is exponential in m, and is likely to be far more 
complex than necessary to replicate the bagged ensem- 
ble’s classification decisions. Rather, we would like to 
find the simplest decision tree extensionally represent- 
ing the same model as a bagged ensemble, and com- 
pare its complexity with that of the single tree induced 
from the whole training set. Although this is likely to 
be an NP-complete problem (Hyafil & Rivest 1976), 
an approximation to this approach can be obtained 
by simply applying the base learner to a training set 
composed of a large number of examples generated at 
random, and classified according to the bagged ensem- 
ble. The decision tree produced in this way models the 
bagged ensemble’s division of the instance space into 
class regions. Exactly the same simplicity bias is ap- 
plied to learning this tree as to learning a tree directly 
from the original training set, making the complexities 
of the two directly comparable. 

This “meta-learning” procedure was carried out for 
the 26 databases previously mentioned, using C4.5 as 
before. Details and full results are given elsewhere 
(Domingos 1997). In all but four of the 22 databases 
where bagging improves on the single rule set, meta- 
learning also produces a rule set with lower error, with 
over 99% confidence according to sign and Wilcoxon 
tests. Its error reductions are on average 60% of bag- 
ging’s, indicating that the rule set produced is only 
an approximation of the bagged ensemble’s behav- 
ior. Measuring complexity as the total number of an- 
tecedents and consequents in all rules, the new rule 
set is more complex than the directly-learned one in 
every case, typically by a factor of 2 to 6. Moreover, 
varying the pruning level during meta-learning and the 
size of the meta-learning training set lead to the obser- 
vation that error and complexity are inversely corre- 
lated (i.e., complexity tends to increase when error de- 
creases). Thus the empirical evidence agrees with the 
hypothesis that bagging works by effectively changing 
a single-model learner to another single-model learner, 
with a different implicit prior distribution over models, 
one that is less biased in favor of simple models. 

Conclusion 

This paper tested two alternative explanations for bag- 
ging’s success. Given the empirical evidence, it is un- 
likely that bagging works because it is an approxima- 
tion to Bayesian model averaging, and it is plausible 
that it works at least in part because it corrects for an 
overly-strong simplicity bias in the underlying learner. 
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