
 

 
 
 
 

 

 
 

 

            
1

 ra

Downloaded From: h

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Proceedings of IMECE�02
2002 ASME International Mechanical Engineering Congress & Exposition

                                                                             New Orleans, Louisiana, November 17-22, 2002

IMECE2002-32157

GPS-BASED REAL-TIME IDENTIFICATION OF TIRE-ROAD FRICTION COEFFICIENT 

J. O. Hahn, R. Rajamani1 and L. Alexander 
Department of Mechanical Engineering 

University of Minnesota 
Minneapolis, MN 55455 

 

Proceedings of IMECE2002 
ASME International Mechanical Engineering Congress & Exposition 

November 17�22, 2002, New Orleans, Louisiana 
 

IMECE2002-32157
 

 
ABSTRACT 

Vehicle control systems such as collision avoidance, 
adaptive cruise control and automated lane-keeping systems as 
well as ABS and stability control systems can benefit 
significantly from being made �road-adaptive�. The estimation 
of tire-road friction coefficient at the wheels allows the control 
algorithm in such systems to adapt to external driving 
conditions. This paper develops a new tire-road friction 
coefficient estimation algorithm based on measurements related 
to the lateral dynamics of the vehicle. A lateral tire force model 
parameterized as a function of slip angle, friction coefficient, 
normal force and cornering stiffness is used. A real-time 
parameter identification algorithm that utilizes measurements 
from a differential GPS system and a gyroscope is used to 
identify the tire-road friction coefficient and cornering stiffness 
parameters of the tire. The advantage of the developed 
algorithm is that it does not require large longitudinal slip in 
order to provide reliable friction estimates. Simulation studies 
indicate that a parameter convergence rate of one second can be 
obtained. Experiments conducted on both dry and slippery road 
indicate that the algorithm can work very effectively in 
identifying a slippery road.  Two other new approaches to real-
time tire road friction identification system are also discussed in 
the paper. 

 
INTRODUCTION 

Over the last ten years, there has been significant interest 
in research on intelligent vehicles and intelligent vehicle-
highway systems ([1]-[3]). Considerable work has been carried 
out on collision avoidance, collision warning, adaptive cruise 
control and automated lane-keeping systems as well as on ABS, 
stability control and other control algorithms for emergency 
maneuvers. All of these vehicle control systems can benefit 
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significantly from being made �road-adaptive,� i.e. the control 
algorithms can be modified to account for the external driving 
condition of the vehicles if the tire-road friction coefficients at 
the wheels are available.  

This paper concentrates on developing and demonstrating a 
reliable algorithm for tire-road friction coefficient estimation. 
Several tire-road friction coefficient estimation algorithms have 
been previously suggested in literature ([4]-[8]). However, a 
significant number of these algorithms depend on using wheel 
speeds and measurements related to vehicle longitudinal 
dynamics in order to estimate the friction coefficient ([4]-[6]). 
Longitudinal slip-based algorithms require adequate 
longitudinal slip in order to be able to identify friction [8]. This 
constitutes a limitation, since longitudinal slip is typically very 
small for normal driving conditions. This project develops a 
new estimation algorithm for cornering stiffness and tire-road 
friction coefficient based on utilizing only the lateral dynamics 
of the vehicle measured using differential GPS (DGPS).   

The use of GPS and DGPS for vehicle navigation and for 
vehicle location services has been investigated by many 
researchers (see, for example, [9]) and even commercialized by 
practitioners. The use of DGPS for vehicle control and for 
vehicle state estimation, however, is still a relatively new 
research area and some results can be found in conference 
presentations ([10]-[12]).  
 
LATERAL VEHICLE DYNAMICS AND LATERAL TIRE 
FORCE 

A dynamic model for the vehicle with two degrees of 
freedom is considered in this paper. The two degrees of 
freedom are the lateral position of the c.g. of the vehicle and the 
yaw angle of the vehicle. The lateral position y  is measured 
along the body-fixed lateral axis of the vehicle while the yaw 
1 Copyright © 2002 by ASME 
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angle ψ  is determined with respect to global coordinates 
( )00 , yx  (Fig. 1).  

Describing the lateral position in terms of lateral position 
error ye  with respect to a road reference, the dynamic model 
can be described by the following equations [13]: 

rfdy FFVmem +=+ ψ&&&     (1a) 

rrffz FlFlI −=ψ&&     (1b) 

where ye  is the lateral distance of the vehicle c.g. from the 

road (or lane) reference, m  is the mass of the vehicle, 
R
V

d =ψ&  

is the yaw rate of the road defined by the road curvature R  and 
the longitudinal velocity V , zI  is the yaw moment of inertia, 

fl  is the distance from c.g. to the front tires, rl  is the distance 

from c.g. to the rear tires and fF  and rF  are front and rear tire 
forces, respectively. 

The lateral force at each tire is known to depend on the slip 
angle, the tire-road friction coefficient and the normal force at 
the tire. The slip angle α  is the angle between the orientation 
of the tire and the orientation of the velocity vector of the 
wheel, and is shown in Fig. 2 below. Here δ  is the steering 
angle of the wheel and vθ  is the angle of the velocity vector at 
the wheel. 

Typical characteristics of tire force as a function of slip 
angle and tire-road friction coefficient are shown below in Fig. 
3. The normal force is assumed to be constant. As can be seen 
from the figure, for a given tire-road friction coefficient, tire 
force initially increases with slip angle and then saturates. For 
very small slip angles, the force is proportional to slip angle 
and the proportionality constant is called the cornering 
stiffness. In general, the tire force increases with the tire-road 
friction coefficient for a given cornering stiffness, except at 
very small slip angles. 

Assuming longitudinal slip is small, the following 
mathematical equation can be used to represent the tire force on 
the front tires [7]: 
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where µ  is the tire-road friction coefficient, zF  is the normal 
force acting on each tire, fC  is the cornering stiffness of each 

front tire and fα  is the front tire slip angle defined by 
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Note that the lateral velocity at the front wheels is given by 
ψψψ &l& fdy Ve +−− )(  [13]. 

The tire force on the rear tires is similarly defined as 
follows: 
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where rC  is the cornering stiffness of each rear tire and rα  is 
the rear tire slip angle defined by 
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CORNERING STIFFNESS/TIRE-ROAD FRICTION 
COEFFICIENT ESTIMATOR SYNTHESIS 

A. Plant Parametric Model Derivation 
The tire force equations (2) and (4) contain three unknown 

parameters of interest, i.e. the cornering stiffness fC  and rC , 
and the tire-road friction coefficient µ . Generally it is not 
desirable to try to identify many parameters simultaneously, 
since the excitation signal into the system needs to be richer as 
the number of parameters to be identified increases. For the 
specific identification problem at hand, the number of 
parameters to be identified can be reduced to two by 
manipulating (1) to eliminate the rear tire force term: 

( ) ( ) frfzdyr FllIVeml +=++ ψψ &&&&&    (6) 
Substituting (2) into (6), the following equation can be 

obtained. 
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Although (7) seems to be highly nonlinear, the unknown 
parameters can be linearly separated from the known regressor 
terms as follows. Define  
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where s  denotes the Laplace transform operator and a  is a 

filter constant to be chosen appropriately. The filter 2)(
1
as +

 is 

used to ensure that the signal z  is causal and can be obtained 
once ye , dψ& , V  and ψ  are measured. The slip angle fα  can 
2 Copyright © 2002 by ASME 
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be obtained from (3) once fδ , ye , ψ , dψ  and ψ& are 
measured. Notes on measurement of the above signals in the 
experimental set-up can be found in section V. 

Using (8), (9) and (10), the following linear parametric 
model can be obtained for the system  

 ΦΘ= Tz     (11) 
It is to be noted that there are two unknowns of interest, i.e. 

the front tire cornering stiffness fC  and the tire-road friction 
coefficient µ , whereas there are three parameters in the 
parameter vector. In other words, the parameters in the 
parameter vector in (9) are redundant.  

In all of the discussion, we have assumed that the normal 
force zF  is known and have included it in the regressor.  
 

B. Estimator Synthesis 
As pointed out above, the parameters 1θ , 2θ  and 3θ  in 

(9) are redundant, i.e. they are interrelated to one another as 
follows: 

 
1

2
2

3 θ
θθ =     (14) 

For the parametric model in (11), define the following 
estimated signal: 

 [ ]Φ=ΦΘ= 321
����� θθθTz   (15) 

 
where z�  is the estimate for the output signal of the parametric 
model and 1

�θ , 2
�θ  and 3

�θ  are the estimates for the unknown 
parameters 1θ , 2θ  and 3θ , respectively. 

The standard methodology to obtain a parametric 
identification adaptive law for the plant model in (11) is as 
follows. Based on (11) and (15), the steepest descent algorithm 
([15]-[17]) can be used to derive the adaptive law: 

111
� εφγθ =& , 222

� εφγθ =& , 333
� εφγθ =& , 

ΦΦ+

−=
T

zz

1

�ε      (16) 

where 1γ , 2γ  and 3γ  are adaptive gains, and ε  is the 
normalized output estimation error. 

Here, it should be noted that the parameters 1θ , 2θ  and 3θ  
are estimated as if they were independent of one another. 
Unless we have persistence of excitation that can ensure 
convergence of all three parameters, it would be impossible to 
uniquely determine the cornering stiffness and the tire-road 
friction coefficient. This drawback will be demonstrated later 
with simulation results.  

To overcome the aforementioned difficulty and uniquely 
determine the cornering stiffness and the tire-road friction 
coefficient, an approximated estimator utilizing the parameter 
redundancy is synthesized in this paper. Expanding the 
estimated output signal, the estimated signal can be 
manipulated into the following two dimensional regressor form: 
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where ϑ�  is defined as follows 
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Then the following adaptive law can be obtained using the 
conventional ordinary gradient algorithm: 

1
� εφγϑ ϑ=& , 222
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where ϑγ  and 2γ  are adaptive gains, and ε  is the normalized 
output estimation error. Now it is straightforward to show that 
the output estimation error will converge to zero, and the 
parameters ϑ�  and 2

�θ  will converge to the true values if the 
regressor vector ϕ  satisfies the persistent excitation 
requirement.  

Unfortunately, the parameters can not be uniquely 
determined if the above adaptive law is used without 
modification since the following second order equation, which 
is directly derived from the definition of ϑ� , has to be solved at 
each time step to determine the value of 1

�θ , which generally 
has two distinct roots. 
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To solve this drawback, the approximate adaptive law for 
ϑ�  is derived as follows. From the definition of ϑ� , 
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where the term 2

2
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z
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 is considered as a given quantity at 

every time step since it can be explicitly calculated using the 
measured signals. It is also noted that this simplification 
dramatically facilitates the derivation of the approximated 
adaptive law (without this assumption, we can not derive an 
adaptive law of the form γεφ ). From the redundancy relation 

for 3
�θ , i.e. 1

2
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��� θθθ = , the time derivative of 3
�θ  is given by: 
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from which the following adaptive law is derived for 1
�θ : 
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Thus, the adaptive law for 1
�θ  has been derived as the same 

form as the ordinary gradient algorithm with time varying 
adaptive gain. Regarding the sign of the adaptive gain, it can be 
argued that the sign of the gain 12γ  can be kept positive by 
appropriate choice of the gains ϑγ  and 2γ  such that the 

parameter estimates ϑ�  and 2
�θ  assume positive values and the 

determinant in (25) holds, which is obvious from (20). It in turn 
implies that the sign of the adaptive gain for 1

�θ  is dominated 
by 11γ .  
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Further simplification can be made to the adaptive law for 1
�θ  if 

the adaptive gain is selected as constant with switching sign, 
that is, 

( ) 11111 sgn� εφγγθ =&     (26) 
Summarizing the above discussion, the following approximated 
adaptive law for the unknown parameters 1θ , 2θ  and 3θ  has 
been derived, where 1γ  is some positive constant: 

( ) 11111 sgn� εφγγθ =& , 222
� εφγθ =& , 

1

2
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It is also noted from (24) that the gain 11γ  is positive for slip 
angles that are not extremely large, which is usually the case in 
real situations. The adaptive law in (27) is an approximation to 
the actual adaptive law in (19) and the adaptive gain for 1

�θ  
may not be optimal since the gain has been simplified to a 
constant version. In spite of that, unknown parameters can be 
uniquely determined using the adaptive law in (27), in contrast 
to the actual adaptive law in (19). 

Comparing (27) to the ordinary gradient algorithm in (16), 
which does not take the parameter redundancy into account, it 
can be argued that the proposed adaptive law is more efficient 
than the ordinary gradient algorithm from the persistence of 
excitation point of view. This is because the proposed adaptive 
law is based upon a two dimensional regressor vector, whereas 
the ordinary gradient algorithm in (16) is based upon a three 
dimensional one, for which it is harder to satisfy the persistence 
of excitation requirement. 
 
 
SIMULATION STUDIES 

The properties, performance and limitations of the 
proposed parameter identification algorithm are investigated 
through intensive simulation studies. The simulation model 
used is the fourth order model described in (1)-(5). 
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A. Comparison of standard and proposed adaptive laws 
The parameter convergence trajectories for the standard 
adaptive law and the proposed new adaptive law are compared 
in Fig. 4 and Fig. 5. The true cornering stiffness and tire-road 
friction coefficient are assumed to be 90000 N/rad and 0.9, 
respectively, and random noise with zero mean and 0.02 
variance has been used as the steering input signal. In this 
simulation it is illustrated that tire-road friction coefficient 
cannot be uniquely determined with the standard adaptive law. 

From Fig. 4, we see that the friction coefficient estimate 
converges to either 1.05 or 0.95 depending on whether 1

�θ  and 

2
�θ  or 1

�θ  and 3
�θ  is used for the estimation in the standard 

adaptation law.  
From Fig. 5, we see that the modified identification 

algorithm correctly yields a friction estimate of 0.9. 
 

B. Influence of slip angle and underlying friction coefficient 
on parameter convergence 

The effect of the magnitude of the slip angle on the 
accuracy of tire-road friction coefficient identification is 
illustrated in Fig. 6. In the simulation of Fig. 6, sinusoids of 

( ) tMt πδ 5.0sin=  rad with 2.0=M , 1.0 , 03.0  and ( ) 15=tV  
m/s are used for the steering input signal and the longitudinal 
velocity signal, respectively. The true tire-road friction 
coefficient is assumed to be 0.9, and the cornering stiffness has 
been set to exact value in the simulation to clearly show the 
effect of the slip angle magnitude on the tire-road friction 
coefficient estimate. The corresponding maximum slip angles 
for the front tires turn out to be 0.14 rad, 0.07 rad and 0.02 rad, 
respectively, from simulation. It is noticed that the accuracy of 
the tire-road friction coefficient estimate becomes worse as the 
slip angle magnitude becomes smaller. This phenomenon can 
be explained by the tire force curve shown in Fig. 3. It can be 
seen in Fig. 3 that tire-road friction coefficient does not play a 
significant role in the region where the slip angle is very small 
because tire force curves are almost the same regardless of the 
values of the tire-road friction coefficient in that region. This in 
turn implies that in real situations it is hard to identify the tire-
road friction coefficient if the tire slip angle generated by the 
steering and longitudinal velocity signals is too small.  

However, an important point to be noted is that as the 
friction coefficient becomes smaller, the lateral tire force is 
influenced by the fiction coefficient at smaller and smaller slip 
angles. Consider the lateral tire force in (2). At small slip angles 

and large friction coefficients, the terms 
2tan

3
1

z

ff

F
C

µ
α

 and 

3tan
27
1

z

ff

F
C

µ
α

can be neglected so that the tire force is 

approximately fff CF α2=  and is independent of the friction 
coefficient. However, at small friction coefficients, these terms 
are no longer negligible, even if the slip angle is small. Thus 
smaller friction coefficients can be more easily identified even 
with smaller slip angles. 

The above conclusion can also be obtained by analyzing 
the results of previous researchers. Consider the Gough plot 
shown in Fig. 7. The utilized friction potential [7] is defined by: 
4 Copyright © 2002 by ASME 
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Physically it implies the actually used lateral tire force of a tire 
divided by the maximum possible tire force that can be 
generated by the tire under the given tire-road friction 
coefficient. It has been reported in Pasterkamp and Pacejka [7], 
while evaluating a neural network algorithm for friction 
identification, that it is hard to exactly identify the tire-road 
friction coefficient for small values of uµ . In accordance with 
this fact, it can be easily seen using the Gough plot shown in 
Fig. 7 that the estimator will require large slip angle to get large 

uµ  and reasonably exact parameter estimates for the case with 
large tire-road friction coefficient. In contrast to the large tire-
road friction coefficient case, smaller slip angle will be enough 
to obtain sufficiently large uµ  for the case with small tire-road 
friction coefficient, which is also evident from the Gough plot 
in Fig. 7. Because the magnitude of the required slip angle is 
directly related to how severe the lateral vehicle maneuver 
should be, it can be stated that a mild lateral vehicle maneuver 
will be enough to identify a small tire-road friction coefficient. 
On the other hand, a more severe lateral vehicle maneuver will 
be required to identify a large tire-road friction coefficient. 

The above argument is justified by the simulation result 
shown in Fig. 8, where the same steering input and longitudinal 
velocity signals are applied to a vehicle on the road with 

9.0=µ  and 3.0=µ , respectively. As can be seen from the 
simulation result, the steady-state estimation error for the tire-
road friction coefficient is smaller by about 10 times for the 
case with 3.0=µ  than the case with 9.0=µ .  

Summarizing the above discussion, it can be concluded 
that the estimator will not work well for extremely small slip 
angles. But this is the inherent characteristic of the system 
under consideration, and similar results will be obtained even if 
other algorithms are applied to the problem at hand, assuming 
that the algorithm is based only upon the lateral vehicle 
maneuver. In addition, it is also shown that it is easier to 
identify parameters in case the underlying tire-road friction 
coefficient is small, since it becomes easier to generate 
sufficiently large uµ  as the tire-road friction coefficient 
becomes smaller. 
 
C. Ideal simulation with experimental steering and 
longitudinal velocity input signals 

To evaluate the performance of the cornering stiffness and 
tire-road friction coefficient identification algorithm in an ideal 
noise-free situation, experimental steering and longitudinal 
velocity input signals are used in a simulation study. The 
experimental signals serve as inputs to a simulation model 
which generates the trajectories for the states of the model. 

A dry road with friction coefficient of 0.9 is assumed first. 
The underlying cornering stiffness is assumed to be 100000 
N/rad. The steering input used is shown in Fig. 9. The identified 
cornering stiffness and tire-road friction coefficient parameters 
are shown in the same figure. The longitudinal velocity is about 
10 m/s. It can be seen that the estimator returns the parameter 
estimates with good accuracy and also that the rate of 
parameter convergence is about 1.5 s.  

The identified cornering stiffness and tire-road friction 
coefficient for slippery road surface in a similar noise-free 
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situation are demonstrated in Fig. 10. The longitudinal velocity 
is less than 10  m/s. The underlying cornering stiffness and tire-
road friction coefficient are assumed to be 70000 N/rad and 0.3, 
respectively. The rate of convergence of approximately a 
second has been achieved for the ideal parameter identification 
on slippery road with excellent accuracy for the parameter 
estimates. This result is in line with our claim that the proposed 
tire-road friction identification algorithm is useful for the 
detection of slippery road surfaces. 

EXPERIMENTAL RESULTS 
The parameter identification algorithm was implemented 

on a 9400 Navistar truck equipped with a differential GPS 
system, a gyroscope and a steering angle sensor. The 
experimental set-up is described below in section A. 
Experiments were carried out both on dry and slippery roads to 
evaluate the real-time efficacy of the identification algorithm. 
 
A. Experimental Set-up 

The Navistar 9400 tractor cab used for the experiments is 
shown in Fig. 11. Though the figure shows a tractor-trailer, only 
the tractor was used for this experimental work. The truck is 
front wheel drive and is equipped with a Novatel RT-20 GPS 
system aided by differential correction. The Novatel RT-20 is 
known to provide an accuracy of 20 cm with on-the-fly 
initialization. However, for our application, the GPS system 
was found to provide the position of the truck to an accuracy of 
2.5 cm at an update rate of 200 ms. The better accuracy was 
due to static initialization of the system and due to the close 
distance of the reference station from the experimental tests. In 
addition, an Andrews fiber-optic gyroscope was used to 
measure the yaw rate of the truck and a potentiometer on the 
steering wheel column was used to measure the steering angle. 
The tire-road friction coefficient and cornering stiffness 
identification algorithm was implemented using the RT Kernel 
operating system on a PC laptop. 
 
B. Calculation of lateral position error ye  

The differential GPS signals can be used to calculate the 
absolute position ( )yx,  of the vehicle with respect to a global 
coordinate axes. However, the parameter identification 
algorithm has been obtained assuming measurement of the 
lateral position error ye  with respect to a road reference. This 

lateral position error ye  is calculated from the GPS 

measurement ( )yx,  as follows. Consider the vehicle and the 
road as shown in Fig. 13. It is easy to show that the following 
equations are satisfied in Fig. 12: 

( )
r

r
yy
xx

−
−=−ψtan     (37) 

12

12

1

1

rr

rr

rr

rr
yy
xx

yy
xx

−
−=

−
−     (38) 

where ( )yx,  is the vehicle GPS position, ( )11, rr yx  and 
( )22 , rr yx  are any two known points on the road and ( )rr yx ,  
is the desired vehicle position.  

The equations in (37) and (38) can be solved for ( )rr yx , . 
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Once ( )rr yx ,  is obtained, the lateral position error ye  is 

defined by the distance between ( )rr yx ,  and ( )yx, : 

( ) ( ) ( ) ( )22cossgnsgn rrry yyxxyye −+−−= ψ  (39) 

Derivation of the sign for ye  shown in (39) is tedious but 
straightforward [19]. 

The points ( )11, rr yx  and ( )22 , rr yx  on the road are 
obtained as follows. The GPS locations of regularly spaced 
points on the road are stored in a database as a geographic map. 
The database is then accessed in real time and the reference 
points closest to the vehicle are obtained. Such geographic 
databases containing road reference points are expected to be 
widely available very soon for the entire country. The 
preparation of a statewide geographic database for highways is 
underway in Minnesota. 

The variables necessary for the calculation of slip angles in 
(3) and (5) include the yaw rate ψ& , the yaw angle ψ , the 
desired angle dψ , the vehicle speed V  and the steering angle 

fδ . The desired yaw angle is the angle of the line between the 

points ( )11, rr yx  and ( )22 , rr yx  and can also be obtained from 
the road database.  The yaw angle of the vehicle can be 
obtained from GPS signals using 







= −

x
y

GPS &

&1tanψ     (40) 

However, y&  and x&  in (40) have to both be obtained by 
numerical differentiation making this a very noisy signal. The 
yaw angle can also be obtained by integrating the yaw rate 
signal measured by a gyroscope gyroψ& . However, the signal 
obtained by integration of the yaw rate usually drifts due to bias 
errors present in the yaw rate signal. 

The following observer that utilizes both the gyroscope and 
GPS is therefore used to obtain ψ : 

)�(� ψψψψ −+= GPSgyro k&&     (41) 

Here the term ψψ �−GPS  corrects for the drift that occurs when 
the gyroscope signal gyroψ&  is integrated. If the gyroscope 
signal were perfect with no bias errors, then there would be no 
drift and the use of GPS would be unnecessary. A very small 
value of k  leads to a slow correction in drift but a smoother 
signal. A high value of k  leads to a quicker correction of drift 
but a noisier estimate. 

All other variables required for calculation of slip angle 
from (3) are measured and available. 

Based on the measurement requirements, note that the 
friction estimation algorithm presented in this paper can be 
used not only for automated highway applications but also for 
other evolutionary applications on today�s highways. The 
necessary elements for the use of the algorithm are a lateral 
position measurement system and a road database. Differential 
GPS and GPS-based databases are both likely to be available 
on a widespread basis in the next few years. 
 
C. Experimental results 

The efficacy of the algorithm to identify friction on a dry 
road has been tested using numerous steering excitation 
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profiles. A steering excitation consisting of a weaving motion 
while driving on a straight road is shown in Fig. 13. The 
identified cornering stiffness and tire-road friction coefficient 
are also illustrated in the same figure. The longitudinal velocity 
is about 10 m/s. It can be seen that the proposed tire-road 
friction identification algorithm works well in the presence of 
the above lane-change-type maneuvers. Although the 
underlying cornering stiffness and the tire-road friction 
coefficient are not exactly known, the estimates in this 
experiment are very reasonable. 

Experiments were also conducted on a skid pad at a police 
training ground, which provided a slippery surface. The 
steering excitation used is shown in Fig. 14. It consists of a 
quick lane change followed by another lane change back into 
the same lane. This steering maneuver results in lateral slip and 
some loss of steering control by the driver. There was no 
braking during the maneuver. The identified cornering stiffness 
and tire-road friction coefficient are illustrated in Fig. 14. The 
longitudinal velocity is less than10 m/s. It can be seen that both 
cornering stiffness and the tire-road friction coefficient 
converge to reasonable values, although there exist oscillations 
in both estimates. The oscillations are expected to be due to 
normal force variations in the tires and due to inaccuracies in 
the tire force model. The friction coefficient estimate of 0.4 
provided by the algorithm seems appropriate. The vehicle used 
for the skid pad experiments was a snow-plow and differs from 
the Navistar tractor-trailer described earlier. It had smaller tires 
than the Navistar tractor-cab. This can be used to describe the 
difference in the estimated value of the cornering stiffness. 
 
OTHER APPROACHES TO FRICTION IDENTIFICATION 

Two other new approaches to tire road friction 
identification are being investigated in the Vehicle Dynamics 
and Controls Laboratory at the University of Minnesota.   In 
one approach a redundant wheel mounted at a small angle with 
the longitudinal axis of the vehicle is used.  Due to the special 
mounting of this redundant wheel, it generates measurable tire 
forces even when the steering angle is zero and even in the 
absence of significant traction or braking.  The friction 
coefficient can hence be identified even during nominal vehicle 
operation at very small longitudinal slip and lateral slip angles.  
A photograph of a scooter instrumented with this redundant 
wheel and used for laboratory experiments is shown in Fig. 15.  
Once fully developed, the redundant wheel will be mounted on 
a snowplow for further evaluation. 

Another approach utilizes piezo patches mounted on the 
regular tires of a snowplow.  These piezo patches are used to 
calculate the lateral force, vertical force and slip angle of the 
tire.  They provide all the variables needed for tire force 
measurement and friction identification with no other external 
sensors required on the vehicle. 
 

CONCLUSIONS 
This paper developed and investigated a new tire-road 

friction coefficient estimation algorithm based on 
measurements related to the lateral dynamics of the vehicle. A 
lateral tire force model applicable over a wide range of slip-
angles was used. An innovative parameter identification 
algorithm utilized measurements from a differential GPS 
system and a gyroscope to identify the friction coefficient and 
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cornering stiffness parameters of the tire. Experiments 
conducted on both dry and slippery road indicated that the 
algorithm worked very effectively in identifying the friction 
coefficient. The algorithm was able to provide a time constant 
of 1 second for real-time convergence of the friction coefficient 
estimate. 

An inherent limitation of using the lateral dynamics to 
identify friction coefficient is that the identification algorithm 
cannot work well if the slip angles generated by the excitation 
are very small. Results in the paper, however, showed that the 
algorithm would still be effective at distinguishing a slippery 
road from a dry road. This happens because the performance of 
the identification algorithm keeps improving as the friction 
coefficient decreases, even if the slip angle remains small. 

The advantage of the developed algorithm is that it does 
not require large longitudinal slip in order to provide reliable 
friction estimates. The algorithm would be useful in providing 
road-adaptability to vehicle control systems such as collision 
avoidance, adaptive cruise control and automated lane-keeping 
systems as well as ABS and stability control systems. 
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Fig. 1. Schematic diagram for lateral vehicle dynamics 

 
Fig. 2. Tire slip angle 
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Fig. 3. Lateral tire force versus lateral slip angle 

 
 
 

Fig. 4 Parameter convergence with ordinary adaptive law 

 
Fig. 5 Parameter convergence with proposed adaptive law 
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Fig. 6 Accuracy of tire-road friction coefficient estimate with 
respect to slip angle magnitudes 

 

Fig. 7 Gough plot for the tire 
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ig. 8  Accuracy of tire-road friction coefficient estimate for 
different tire-road friction coefficients 

 

Fig. 9  Parameter identification simulation: dry road 
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Fig. 10 Parameter identification simulation: slippery road 

 

 
Fig. 11 Navistar 9400 tractor-trailer 
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Fig. 12 Calculation of lateral position error based on GPS 
signals 

 
 
 
 
 
 

Fig. 13  Parameter identification result: dry road 
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Fig. 14  Parameter identification result: slippery road 

 
 
 
 
 
 
 

 
Fig. 15  Scooter equipped with instrumented redundant wheel  
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