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Estimation of Maximum Finger
Tapping Frequency Using
Musculoskeletal Dynamic
Simulations
A model for forward dynamic simulation of the rapid tapping motion of an index finger is
presented. The finger model was actuated by two muscle groups: one flexor and one
extensor. The goal of this analysis was to estimate the maximum tapping frequency that
the index finger can achieve using forward dynamics simulations. To achieve this goal,
each muscle excitation signal was parameterized by a seventh-order Fourier series as a
function of time. Simulations found that the maximum tapping frequency was 6 Hz, which
is reasonably close to the experimental data. Amplitude attenuation (37% at 6 Hz) due to
excitation/activation filtering, as well as the inability of muscles to produce enough force
at high contractile velocities, are factors that prevent the finger from moving at higher
frequencies. Musculoskeletal models have the potential to shed light on these restricting
mechanisms and help to better understand human capabilities in motion production.
[DOI: 10.1115/1.4036288]

1 Introduction

Finger tapping is a common motion in a variety of daily activ-
ities, such as playing musical instruments, typing on a keyboard,
and tapping on smart phones. However, very few studies have
addressed this movement [1,2]. Specifically, no dynamical analysis
of fast and repetitive finger tapping, and the associated musculoten-
don demands, has been reported before. The dynamical analysis of
finger tapping motion can help researchers to study conditions such
as repetitive strain injury and the underlying mechanisms.

Human voluntary motions are produced by muscle contractions
that are created by muscle activations. In modeling of the human
movements, one should solve a problem where the number of
unknowns (muscle activation levels) is greater than the number of
degrees-of-freedom (DOF). This problem is usually referred to as
the muscle redundancy problem in musculoskeletal system model-
ing, for which there is no unique solution. To pick one solution
out of the many possible solutions, extra criteria should be consid-
ered. A common practice is to search for a solution that minimizes
a physiological index through an optimization process.

When the goal is to find the optimal time-history of a signal
(e.g., muscle forces or activations through the course of an action)
one must solve an optimal control problem (OCP). In Refs. [3–5],
several classical approaches for solving a general optimal control
problem are presented, including linear quadratic regulator (LQR)
control, linear quadratic Gaussian (LQG) control, variational
approaches such as direct collocation (DC), model predictive con-
trol (MPC), and parameterization. For all techniques, pros and
cons are involved. It should be noted that not all of those
approaches are applicable to musculoskeletal modeling; for
instance, the analytical solution in Ref. [6] belongs to the cases
with submaximal contractions only, and LQR and LQG are for
linear systems. The MPC normally works in linear or linearized
systems with quadratic optimization form only, and DC requires a
complicated implementation and has been scarcely applied
recently [7–9]. Hierarchical optimal control methods [10–13]
have also been used for optimal control of musculoskeletal sys-
tems; the drawback of these methods is the complexity associated

with the dynamical consistency between multiple levels of
control.

Dynamic optimization (DO, also known as the “shooting meth-
od” in the optimal control literature [14]), in spite of high compu-
tation cost, might result in more realistic outcomes as it considers
all the time-course in the optimization procedure and solves for
the time-history of the decision signals [15–17]. Therefore, in con-
trast to static optimization (SO) [18–23], DO takes into account
the effect of previous time instants on the current instant of
simulation.

Local parameterization has been used by a few researchers,
e.g., Ackermann [15] and Garcia-Vallejo and Schiehlen [24].
Locally parameterizing the control signals or state variables
sounds like a promising approach, as it captures the local dynam-
ics of the system as long as the time-windows are small enough.
However, by increasing the number of parameterization windows,
the scale of the optimization problem, and therefore, the computa-
tion time, increase significantly.

Using a control signal parameterization method, by means of
parametric pattern functions as the control inputs, the OCP can be
converted to a nonlinear optimization problem. Different parame-
terization functions might be used, based on the information of
the system, degree of nonlinearity, and a priori data. Global and
local parameterizations might be utilized. For instance, different
types of functions can be used for the global control parameteriza-
tion, such as Fourier series [17,25–27] or local functions within
finite windows of the simulation using splines [24]. Although
global parametrization, compared to local parameterization, may
miss some local dynamics of the system, this approach will pro-
vide good suboptimal results in general. Also, for applications
with no drastic changes in the control signals (a priori knowledge
of the system behavior is required), global parameterization will
output reasonable results. In addition, global parameterization will
reduce the number of decision variables considerably and also
does not require continuity constraints at the control nodes, which
results in significant reduction of the computation time.

In this paper, we present a forward dynamics analysis of finger
tapping motion. The relevant works in this area are reported in
Refs. [1] and [2], where the musculotendon demand is studied
using an inverse dynamic simulation. The advantage of forward
dynamics simulation over inverse dynamics is that it can be used
when no measured kinematic data are available. Forward
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dynamics simulations enable us to study motions that are beyond
the biological limits of the system, or conduct what-if scenarios to
support design optimization and ergonomics.

The goal of this study is to develop and present a musculoskel-
etal model for the index finger to investigate the dynamics of a fast
tapping movement and to estimate the maximum tapping fre-
quency. For this purpose, we have used dynamic optimization using
a global parameterization to solve the optimal control problem.

2 Finger Tapping Musculoskeletal Model

In this section, the musculoskeletal model for forward dynamic
simulation of the rapid finger tapping motion is presented. The
model consists of a rigid index finger rotating around the metacar-
pophalangeal joint (e.g., a 1DOF pendulum, see Fig. 1) with two
muscle groups: one as flexor and the other as extensor.

The muscle model is a three-element Hill model based on Ref.
[28]. The activation and contraction dynamics expressions
employed for this model are presented in the Appendix.

The following assumptions are made for the finger modeling
and simulation:

(1) The maximum isometric force parameter Fmax is calculated
by multiplying the physiological cross-sectional area
(PCSA) with the muscle specific tension. The effective
extensor PCSA is assumed to be the sum of the extensor dig-
itorum communis (EDC) and the extensor indicis proprius
(EIP) PCSAs. The effective flexor PCSA is assumed to be
the sum of the flexor digitorum superficialis (FDS) and the
flexor digitorum profundus (FDP) PCSAs. The PCSA values
used in this paper are taken from Ref. [29] and summarized
in Table 1. Different specific tension values have been
reported in the literature (15 N/cm2 [30], 22.5 N/cm2 [31],
19–30 N/cm2 [32], 35 N/cm2 [29], 70 N/cm2 [33], and
100 N/cm2 [34]). For this study, an average specific tension
value of 50 N/cm2 has been used. Therefore, the maximum
isometric muscle forces for the extensor and the flexor are
calculated to be 102.5 N and 310.5 N, respectively.

(2) Anthropometric properties of the index finger, including
length, mass, and moment of inertia are taken from Ref.
[35]. The composite moment of inertia is calculated given
the masses and moments of inertia of the three phalanges of
the index finger.

(3) Muscle moment arms are assumed to be constant during
the motion because of small finger rotation amplitude, and
both radii are assumed to be 10 mm, which agrees with the
dimensions of the metacarpophalangeal joint [36].

The dynamics of the index finger model can be summarized as
follows:

€h ¼ 1

I
mgd cos hð Þ þ rf Ff � reFe

� �
(1)

where h is the index finger angle (positive in flexion direction),
and m and d are the finger mass and the center of mass location,
respectively. rf and re are the flexor and extensor moment arms,
which are multiplied by flexor and extensor muscle forces, Ff and
Fe, to produce the joint moments. The list of all the simulation
parameters and their numerical values are listed in Table 2.

For the tapping motion, the desired joint angle is defined as
follows:

hdðtÞ ¼ 0:31 sinðxdtÞ (2)

where 0.31 rad (ffi 18 deg) is the amplitude of the measured meta-
carpophalangeal joint motion during finger tapping [37], and
xd¼ 2pfd, in which fd is the frequency of the sinusoidal motion.

The inputs to the simulations are the two muscle excitation sig-
nals. Provided the excitations are given, the equations of motion
(Eqs. (1) and (A1)) are integrated forward in time to find the
changes in finger kinematics.

3 Optimization Problem Description

To define the control signals through the course of the tapping
motion, they are globally parametrized by seventh-order Fourier
series

u ¼ 1

2
A0 þ

X7

n¼1

An cos
2pnt

sd
þ Bn

� �
(3)

where An and Bn are the Fourier coefficients, and sd is the motion
period. The major reason for assuming such a pattern is that fil-
tered, rectified, and normalized electromyogram signals are quite
smooth and can be curve-fitted by a suitable continuous mathe-
matical function. Furthermore, a Fourier series function is peri-
odic, making it an ideal choice for the simulation of the periodic
finger tapping motion. Assuming a continuous and continuously
differentiable function like a Fourier series will also help the opti-
mizer to meet the nonlinear constraints on the excitation signal
within the optimization problem definition. Finally, assuming a
parametric continuous function may possibly lead to symbolic
simplifications and analytical solutions.

Therefore, the optimizer job is to find the optimal coefficients
of the two control signals, for a total of 30 variables (15 for each
signal). A set of nonlinear constraints will be imposed to the prob-
lem to meet the bounds on the neural excitations, i.e., 0� u� 1.

The objective function for simulating this model is defined as a
linear combination of two cost functions

J ¼ lJ1 þ ð1� lÞJ2 (4)

where

J1 ¼
1

Nsd

X2

j¼1

ðNsd

0

a2
j dt (5)

J2 ¼
1

Nsd

ðNsd

0

hs � hd

max hdð Þ

� �2

dt (6)

Here, the first term, J1, describes the physiological effort index
based on Ref. [38], whereas the second term, J2, accounts for the
tracking error. In these equations, sd¼ 1/fd is the desired motion
period, and N is the number of cycles simulated, which was set to
be 3 to ensure periodicity of the motion in consecutive cycles; j is
the muscle index; hs and hd are the simulated and desired joint
angles, respectively; and max(hd) refers to amplitude of theFig. 1 The schematic of the musculoskeletal finger model

Table 1 The physiological cross-sectional areas (PCSAs) of
the index finger muscles from Ref. [29]

Muscle PCSA (cm2) Effective PCSA (cm2)

Extensors EDC-Ia 0.90 2.05
EIP 1.15

Flexors FDS-Ia 2.81 6.21
FDP-Ia 3.40

a“I” represents the index finger portions of the muscle.
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desired motion (¼0.31 rad). The weight factor l indicates the rela-
tive importance of the physiological term against the tracking
error. Since in this simulation, tracking of the motion is much
more important, the weight factor is assumed to be l¼ 0.1. It
must be noted that the objective functional is written so that each
term is dimensionless.

The optimization procedure was similar to that used in Refs.
[17], [20], [25], [26], and [39]. In brief, sequential quadratic pro-
gramming (SQP) as implemented in the fmincon function in the
Optimization Toolbox of MATLAB

VR

is used as the optimizer. For
the initial guess needed in SQP, the results of the same case using
a genetic algorithm as the optimizer were used. For more details
on the optimization set up and the convergence criteria, refer to
Refs. [17] and [25].

4 Results

Different sets of simulations were run. In the first set of simula-
tions, the major focus was on the motion frequency variation. A
separate set of simulations was also done on the effect of model
parameters (e.g., finger mass) on the results.

Figure 2 shows how increasing the motion frequency affects
the tracking capability of the model. As the purpose was to find
the maximum frequency that this biomechanical system could fol-
low, motion frequency started from 2 Hz (top row in Fig. 2) and
was increased to 7.5 Hz in 0.5 Hz increments. The plots show hd

and hs (desired and simulated motions), muscle excitations/
activations and muscle forces (respectively, from left to right).

A separate study was also done to investigate the sensitivity of
the simulation results to the finger mass. To this goal, finger mass
and moment of inertia were reduced to 50%, and the optimal con-
trol problem was resolved for this case at fd¼ 2 Hz. Optimal muscle
excitations, activations, and forces of this case are shown in Fig. 3.

5 Discussion

The quantitative measures of tracking performance is shown in
Fig. 4. It can be observed in Fig. 4(b) that the system was not able
to fully track the desired motion after 6 Hz. Beyond this fre-
quency, tracking performance worsened significantly (notice the
nonlinear increase in the logarithmic scale in Fig. 4(a)), despite
the monotonically increasing physiological effort.

At low frequencies (e.g., fd¼ 2 Hz), the simulated and the
desired motions are identical, resulting in a small value for J2 (see
Fig. 4(a)). Furthermore at this low frequency, the extensor activity
is much higher than the flexor. This is due to the fact that the
muscles are uni-articular (they span only one joint), and theoreti-
cally no co-activation should occur in the optimal results [40].
The results imply that at a low frequency, the gravity can produce
enough flexion acceleration; thus, the flexor muscle has negligible
activity.

As the motion frequency increases, the tracking performance
decreases, which can be observed from the increased J2 values in
Fig. 4(a). This is due to the trade-off between the tracking error

and the physiological effort (the physiological effort to produce
faster motion increases).

An interesting phenomenon happens at about 6.5 Hz: the exten-
sor muscle saturates (muscle excitation reaches the limit uext¼ 1).
Higher than 6.5 Hz, due to muscle excitation saturation, it is
impossible to fully track the desired motion; therefore, the track-
ing error increases significantly (note the change in the slope of
the tracking error curve in Fig. 4(a)). Furthermore, the ratio of the
tracking error to the total cost function value shows significant
changes after 6 Hz (Fig. 4(b)), which also demonstrates the inabil-
ity to follow the desired motion.

There are a number of studies in the literature on finding the
maximal frequency or speed at which a finger can move.
Kuboyama et al. mentioned 6.46 6 0.72 Hz in Ref. [41] and
6.6 6 0.9 Hz in Ref. [42], while Aoki and Fukuoka [43] reported
160 ms intertap interval (¼6.25 Hz). The results of this study
imply that this maximal frequency is approximately 6 Hz, which
is close to the available values in the literature. These mentioned
references have measured the desired value experimentally, so the
maximal motion frequency extracted from the results of this study
predicts the experiments reasonably well.

Multiple phenomena may contribute to the inability of the fin-
ger to follow the desired trajectory. The excitation/activation cou-
pling model causes a time delay between neural excitation and
activation signals, as well as a nonlinearity and scaling imposition
between these two signals [44]. These dynamics can be an impor-
tant cause of the inability to follow fast oscillations. Figure 5
shows the signal attenuation due to the excitation/activation
dynamics. To obtain this response, sinusoidal excitation inputs
were applied, and the ratio of the amplitudes of the muscle activa-
tion and excitation signals (i.e., ampðaðtÞÞ=ampðuðtÞÞ) was calcu-
lated after the transient response vanished. As can be seen, the
excitation/activation dynamics essentially performs as a low-pass
filter with a bandwidth of �4.5 Hz (defined as 3 dB amplitude
attenuation). At 6 Hz, the amplitude attenuation is 4 dB; i.e., the
amplitude of the activation signal is 63% of that of the excitation.

The attenuation of the activation signal amplitude is exacer-
bated by the muscle properties. A muscle’s force production
capacity drops as the muscle contraction velocity increases (see
Fig. 6). At high motion frequencies, the required contraction
velocity is more than the velocity at which the muscle can produce
the force to satisfy the equations of motion. Figure 6, which shows
the force–length–velocity relationship, implies that when the con-
centric contraction velocity increases, the force production ability
decreases. Therefore, the muscle can move faster only if it can
produce enough force to satisfy the equations of motion. At
around 6 Hz, the muscle must contract with the maximum shorten-
ing velocity of �117 mm/s (¼�0.66 s�1 when normalized to
muscle fiber length), which along with the filtering effect, will
lead to small force generation ability. Since the muscle cannot
create enough force at such a velocity in order to satisfy the equa-
tions of motion, it is not able to sufficiently contract at this
velocity.

As discussed earlier, the inability to follow the requested fre-
quency of the sinusoidal motion is due to the saturation of the
extensor, which can be related to the reduced muscle force
capacity at the given velocity. However, this proportionally
depends on the chosen values of the Fmax for the extensor muscle
group in the Hill muscle model. As there was a broad range
reported for the muscle specific strength and we picked 50 N/cm2,
the findings of this study would depend on the chosen specific ten-
sion. Therefore, from the musculoskeletal modeling perspective,
the maximum tapping frequency depends on the muscle specific
tension, which might be a limitation for our simulation framework.

The amplitude of the adopted motion can also affect the maxi-
mum tapping frequency. By lowering the amplitude of the motion,
the motion becomes less demanding, and the musculotendon
velocities are decreased, which may increase the model’s predic-
tion for the maximum achievable frequency. We observed that a
higher frequency can be reached using a smaller motion amplitude

Table 2 List of simulation parameters

Parameter Value

I 5.9� 10�4 kg m2

m 6.5� 10�2 kg

d 4.4� 10�2 m

Fmax,e 102.5 N

Fmax,f 310.5 N

Lopt
ce 0.178 m

rf, re 0.01 m
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Fig. 2 The simulation results for different frequencies. The columns from left to right show: the desired and simulated joint
angle trajectories, flexor/extensor muscle excitation and activation, and flexor/extensor muscle force. To provide more clarity,
muscle results are shown for one period only.
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(up to about 7.5 Hz with 0.25% amplitude, i.e., about 4 deg). How-
ever, at such higher frequencies, the limiting factor is no longer
the saturation of the excitation signal (u¼ 1). Instead, the excita-
tion/activation dynamics is the bottleneck, which essentially filters
the high-frequency excitation signal and restricts the required rate
of force production. Furthermore, at those high frequencies, simu-
lations show high antagonistic co-contraction that is the result of
the insufficient time for the muscles to relax. Because of this
issue, we observed that further reduction in oscillation amplitude

does not increase the maximum achievable frequency. Therefore,
one can argue that even if the muscles are strong enough to pro-
duce as much force as necessary, there is still a definite upper
limit for how fast the finger can move, which is due to the dynam-
ics of the excitation/activation coupling.

Comparing the results of the model with 50% mass and moment
of inertia (Fig. 3) with the same case in Fig. 2 (top row, fd¼ 2 Hz)
shows that the quality of the motion tracking is the same, but the

Fig. 4 Optimal results for fd 5 2 Hz and 50% of index finger mass; from left to right: joint angle trajectories, muscle excitation/
activations, and muscle force. To provide more clarity, muscle results are shown for one period only.

Fig. 3 (a) Variation of motion frequency and cost function values and (b) the ratio of the tracking error term to the total cost
function value

Fig. 5 The frequency response of the excitation/activation
dynamics. The dynamics perform similar to a low-pass filer with
a bandwidth of about 4 Hz. Thus, the activation signal amplitude
drops at high frequencies. Fig. 6 The force–length–velocity relation in the muscle model
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excitation values in the case with 50% mass is roughly half the
original values. This is reasonable since the dominant term in the
dynamics of the finger is the inertia. Moreover, the motion veloc-
ity is not high enough to significantly affect the force–velocity
relation. The simulation with altered finger mass showed that the
modeling framework is able to simulate the system response even
with a large change in model mass. This is a necessary feature for
subject-specific simulations. With a more detailed sensitivity anal-
ysis, we can investigate the effects of parameters on the system
dynamics, as well as the intended outcomes. For example, includ-
ing contact dynamics (e.g., volumetric technique as in Refs. [45]
and [46]) in the musculoskeletal models can allow for design opti-
mization of musical instruments, such as the piano keys, or
enhance the ergonomics of computer keyboards.

The goal of this study was to target oscillatory tapping motions.
Since the human motions are smooth unless they are imposed to
impulses from external sources, sinusoidal patterns seem to be a
reasonable choice for the designed task. However, to study the
maximum frequency of index finger movement in general, other
trajectories such as smooth step functions may also be investigated.

6 Conclusions

In this study, we presented a musculoskeletal modeling frame-
work to study the fast finger tapping motion. The forward dynam-
ics simulations showed that the maximum achievable motion
frequency was roughly 6 Hz, matching experimental observations.
We have made arguments that the limiting factor in this case was
the excitation/activation filtering effect, as well as the inability of
muscles to produce enough force at high contractile velocities.
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Appendix: Thelen’s Muscle Model Formulation

Excitation/Activation Dynamics

The excitation/activation dynamics is described as [28]

_a tð Þ ¼ u� a

s u; að Þ
(A1)

where

sðu; aÞ ¼ t1â u � a
t2=â u < a

�
(A2)

and

â ¼ 0:5þ 1:5a (A3)

The parameter values of t1¼ 15 ms and t2¼ 50 ms are taken
from Ref. [28].

Tendon Force

The tendon force is normalized to muscle maximum isometric
force Fmax and is represented as an exponential function of the
tendon strain

~f
t ¼

~f
t

toe

ektoe � 1
e

ktoeet

et
toe � 1

 !
et � et

toe

klin et � et
toe

� �
þ ~f

t

toe et > et
toe

8>>>><
>>>>:

(A4)

where et is the engineering strain of tendon (calculated based on
the slack length lslack), et

toe is a limit after which the tendon relation
switches to the linear expression, ktoe is a shape factor, klin is the

linear slope of the second condition, and ~f
t

toe is the function value
at et ¼ et

toe. Values of the parameters are adopted from Ref. [28]:

ktoe¼ 3, ~f
t

toe¼ 0:33; et
0¼ 0:04; et

toe¼ 0:609et
0, and klin¼ 1:712=et

0.

Parallel Elastic Element

The relation for muscle passive force normalized to muscle
maximum isometric force Fmax is expressed as

~f
pe ¼ e

kpe ~l ce � 1
� �

em
0 � 1

ekpe � 1
(A5)

where ~l
ce

is the muscle fiber length normalized to lce
opt, kpe is a

shape parameter set to 5, and em
0 is called the passive muscle strain

and adopted to be 0.6 (for young adults).

Force–Length–Velocity Relation

The force–length relation is written as

f ce
isom ¼ e�

~l
ce�1ð Þ2

c (A6)

where c is a shape factor and is set to be 0.45.
Afterward, the total force–length–velocity in this muscle model

can be formulated as the following:

vce ¼ 0:25þ 0:75að Þ vce
max

~f
ce � af ce

isom

b
(A7)

where

b ¼

af ce
isom þ ~f

ce
=Af

~f
ce � af ce

isom

2þ 2=Af

� �
af ce

isom f̂ � ~f
ce

	 

f̂ � 1

~f
ce
> af ce

isom

8>>><
>>>:

(A8)

Here, vce is the fiber velocity (velocity of the contractile element,

CE), ~f
ce

is the force of CE element normalized to maximum iso-

metric force, f̂ is the normalized asymptotic eccentric force (equal
to 1.4 for young adults), Af is a shape parameter (adopted to be
0.25), and vce

max ¼ 10 lce
opt m=s is the maximum contraction velocity

of the muscle fiber.
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