Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids

Lian-Quan Zhang • Deng-Cai Liu • You-Liang Zheng •
Ze-Hong Yan - Shou-Fen Dai • Yun-Fang Li -
Qi Jiang \cdot Ya-Qing Ye \cdot Yang Yen

Received: 29 July 2009/Accepted: 13 November 2009/Published online: 29 November 2009
© Springer Science+Business Media B.V. 2009

Abstract

Spontaneous chromosome doubling via union of unreduced (2 n) gametes has been thought to be the way that common wheat (Triticum aestivum L.) was originated from the hybridization of T. turgidum L. with Ae. tauschii Cosson. Previous works have observed unreduced gametes in F_{1} hybrids of $A e$. tauschii with six of the eight T. turgidum subspecies. It is not clear, however, whether the formation of these unreduced gametes is a norm in the F_{1} hybrids. In the present study, we tried to answer this question by assessing the occurrence frequency of unreduced gametes in 115 T. turgidum-Ae. tauschii hybrid combinations, involving 76 genotypes of seven

[^0]T. turgdium subspecies and 24 Ae. tauschii accessions. Our data show that these hybrid combinations differed significantly ($P \leq 0.01, F=11.40$) in selfed seedset, an indicator for production of unreduced gametes. This study clearly showed that meiotic restitution genes are widely distributed within T. turgidum. However, significant differences were found between as well as within T. turgidum subspecies and in the interaction of the T. turgidum genotypes with those of Ae. taushii. The possible application of the meiotic restitution genes from T. turgidum in production of double haploids is also discussed.

Keywords Aegilops tauschii • Amphidiploid • Fertility • Triticum turgidum • Unreduced gametes

Abbreviations

DHs	Double haploids
PMC	Pollen mother cell
T. t. dicoccon	T. turgidum ssp. dicoccon
A. t.	Ae. tauschii

Introduction

Polyploidy is very common in higher plants. It usually results from genome duplication within a species (autopolyploidy) or combination of genomes between species (allopolyploidy). The mechanism of polyploidization in nature is either by somatic chromosome doubling or through a union of two unreduced gametes
(see reviews by Harlan and De Wet 1975 and Ramsey and Schemske 1998, 2002). It is believed that the latter is far more common than the former. Most important crops are polyploids. Understanding the mechanisms of their origin will lead to their utilities in crop improvement (Ramana and Jacobsen 2003).

Common wheat (Triticum aestivum L.) is an allohexaploid ($2 \mathrm{n}=6 \mathrm{x}=42$) with the A, B and D genomes. It was formed via a two-step hybridization process: hybridization of T. топососсит L . ($2 \mathrm{n}=14$, AA) with Aegilops speltoides Tausch ($2 \mathrm{n}=14$, SSgenetically the most similar to BB) resulting in T. turgidum L. $(2 \mathrm{n}=28, \mathrm{AABB})$ and then the hybridization of T. turgidum with Ae. tauschii Cosson ($2 \mathrm{n}=14$, DD). Unreduced gametes are believed to play an important role in this process (Kihara and Lilienfeld 1949; Cai and Xu 2007; Jauhar 2007). In fact, unreduced gametes have been observed in the F_{1} hybrids of Ae. tauschii with six of the eight T. turgidum subspecies (see review in Zhang et al. 2007) and in haploid plants of T. turgidum. ssp. durum (Jauhar 2003). Cytological observations of male gametogenesis in the T. turgidum-Ae. tauschii hybrids have demonstrated that meiotic restitution is a major mechanism responsible for the formation of functional unreduced male gametes by the hybrids. Gene for high frequency of first-division restitution (FDR) or normal second-division of FDR cells have been mapped onto chromosome 4A or chromosomes 3A and 6A of durum wheat cultivar Langdon, respectively (Xu and Joppa 2000). However, it is not clear whether or not formation of unreduced gametes is a norm for T. tur-gidum-Ae. tauschii hybrids. Answer to this question is of significance both to our understanding of the origin of the common wheat and to the application of unreduced gametes in wheat improvement. In this study we tried to answer this question by assessing the frequency of occurrence of unreduced gametes in 115 T. turgidum-Ae. tauschii hybrid combinations, involving 76 genotypes of seven T. turgdium subspecies and 24 Ae. tauschii accessions.

Materials and methods

Plant materials
Seventy-six T. turgidum lines and 24 Ae. tauschii accessions used in this study came from diverse
geographic origins (Table 1). According to Van Slageren (1994), they belong to the following seven subspecies: durum (2 lines), turgidum (25 lines), dicoccoides (2 lines), dicoccon (34 lines), turanicum (11 lines), carthlicum (1 line), and polonicum (1 line), respectively. The 46 lines with a PI code were kindly provided by USDA-ARS, USA. The remaining 30 lines came from our own collection. The 25 T. turgidum ssp. turgidum lines are Chinese landraces. Of the 24 Ae. tauschii accessions, 14 (AS60, AS65, AS67, AS72, AS76, AS77, AS79, AS81, AS82, AS84, AS91, AS93, AS95, AS2395) belong to Ae. tauschii ssp. tauschii, and 10 (AS66, AS2386, AS2388, AS2393, AS2397, AS2399, AS2403, AS2404, AS2405, AS2407) belong to Ae. tauschii ssp. strangulata. AS72, AS76, AS77, AS79, AS81, and AS82 were Chinese accessions.

Production of wide hybrids
All wide hybridizations were made with T. turgidum as the female parent. Emasculation and pollination were done as previously described by Zhang et al. (2008a). No embryo rescue or hormone treatment was applied to the production of F_{1} seeds. The F_{1} seeds were germinated in Petri dishes before transplanted to the field at Triticeae Research Institute of Sichuan Agricultural University, located at Dujiangyan city of Sichuan province, P.R. China. The F_{1} plants were selfed and the selfed seedset (percentage of selfed seeds over total selfed florets) of each plant was calculated. The selfed seedset rate of a hybrid combination was represented by the average percentage of seedset of all the plants for that combination. The Data Processing System 6.50 (http://www. statforum.com/) (Tang and Feng 2007) was used to do Student t-test and analysis of variance. Selfed seedset of each plant was first converted to an angle and the transformed data was then analyzed for difference between the hybrid combinations. To detect the difference between subspecies, the average selfed seedset of each combination was used.

Cytological observation

The procedures for cytological observation on chromosome number in root-tip cells of the F_{1} and the F_{2} plants and chromosome pairing in pollen-mothercells (PMC) in the F_{2} plants were previously described by Zhang et al. (2007). For meiotic

Table 1 Selfed seedset of F_{1} hybrids of Triticum turgidum with Aegilops tauschii

Cross combinations ${ }^{\text {a }}$	Germination rate of F_{1} seeds ${ }^{b}$	No. F_{1} plants obtained	No. selfed florets	No. F_{2} seeds	Seed set rate (\%)
ssp. turgidum AS2255 (China) \times ssp. tauschii AS60	75.68 (74)	10	4520	407	9
ssp. turgidum AS313 (Sichuan, China) \times ssp. tauschii AS60	73.86 (88)	10	5736	523	9.12
ssp. dicoccoides AS285 (Germany) \times ssp. tauschii AS60	15.04 (113)	1	380	93	24.47
ssp. dicoccoides AS286 (France) \times ssp. tauschii AS60	17.5 (126)	5	824	40	4.85
ssp. durum Langdon \times ssp. tauschii AS60	68.54 (89)	4	1238	456	36.83
ssp. durum Langdon \times ssp. tauschii AS65 (Former Soviet Union)	43.48 (23)	6	838	217	25.89
ssp. durum Langdon \times ssp. tauschii AS77 (Henan, China)	50 (4)	2	170	24	14.12
ssp. durum Langdon \times ssp. strangulata AS2386 (Iran)	52.63 (19)	9	4850	920	18.97
ssp. durum Langdon \times ssp. strangulata AS2399	10.26 (39)	4	1008	136	13.49
ssp. durum Langdon \times ssp. strangulata AS2404	3.7 (27)	1	308	63	20.45
ssp. durum Langdon \times ssp. strangulata AS2407	95.83 (24)	16	9806	1758	17.93
ssp. durum AS2262 (Syria) \times ssp. tauschii AS77 (Henan, China)	100 (1)	1	554	5	0.9
ssp. carthlicum AS2268 (Germany) \times ssp. tauschii AS65	100 (1)	1	536	5	0.93
ssp. turgidum AS2255 (China) \times ssp. tauschii AS93	100 (1)	1	2322	6	0.26
ssp. turgidum AS2255 (China) \times ssp. tauschii AS2395	50 (6)	3	1905	96	5.04
ssp. turgidum AS2255 (China) \times ssp. strangulata AS2393	12.5 (8)	1	786	76	9.67
ssp. turgidum AS313 (Sichuan, China) \times ssp. tauschii AS77 (Henan, China)	50 (16)	7	4754	31	0.65
ssp. turgidum AS2231-2 (Xinjiang,China) \times ssp. tauschii AS77 (Henan, China)	68.57 (35)	23	14694	133	0.91
ssp. turgidum AS2236-1 (Sichuan, China) \times ssp. tauschii AS77 (Henan, China)	92.31 (13)	12	8710	120	1.38
ssp. turgidum AS2236-1 (Sichuan, China) \times ssp. tauschii AS91	100 (1)	1	2062	19	0.92
ssp. turgidum AS2236-2 (Sichuan, China) \times ssp. tauschii AS82 (Henan, China)	100 (2)	2	2160	12	0.56
ssp. turgidum AS2238 (Sichuan, China) \times ssp. tauschii AS77 (Henan, China)	100 (1)	1	1034	15	1.45
ssp. turgidum AS2239 (Sichuan, China) \times ssp. tauschii AS2395	100 (1)	1	914	314	34.35
ssp. turgidum AS2240 (Sichuan,China) \times ssp. tauschii AS77 (Henan, China)	81.82 (11)	6	4614	192	4.16
ssp. turgidum AS2240 (Sichuan, China) \times ssp. tauschii AS84	80 (5)	4	2936	872	29.7
ssp. turgidum AS2285 (Sichuan, China) \times ssp. tauschii AS77 (Henan, China)	100 (3)	3	3606	27	0.75
$\begin{aligned} & \text { ssp. turgidum AS2291 (Shannxi, China) } \times \text { ssp. strangulata } \\ & \text { AS2404 } \end{aligned}$	60 (10)	1	506	65	12.85
ssp. turgidum AS2295 (Sichuan, China) \times ssp. tauschii AS76 (Shannxi, China)	50 (4)	2	3146	75	2.38
ssp. turgidum AS2296 (Sichuan, China) \times ssp. strangulata AS2388 (Iran)	100 (1)	1	2654	261	9.83
ssp. turgidum AS2298 (Sichuan, China) \times ssp. tauschii AS79 (Henan, China)	40 (5)	2	2718	87	3.2
ssp. turgidum AS2299 (Sichuan, China) \times ssp. tauschii AS79 (Henan, China)	20 (10)	2	2054	33	1.61
ssp. turgidum AS2308 (Sichuan, China) \times ssp. tauschii AS72 (Xinjiang, China)	50 (8)	4	3896	162	4.16
ssp. turgidum AS2308 (Sichuan, China) \times ssp. tauschii AS81 (Henan, China)	50 (12)	6	3820	56	1.47

Table 1 continued

Cross combinations ${ }^{\text {a }}$	Germination rate of F_{1} seeds ${ }^{\text {b }}$	No. F_{1} plants obtained	No. selfed florets	No. F_{2} seeds	Seed set rate (\%)
ssp. turgidum AS2310 (Sichuan, China) \times ssp. tauschii AS60	100 (3)	3	3228	799	24.75
```ssp. turgidum AS2312 (Sichuan, China) }\times\mathrm{ ssp. strangulata AS2388 (Iran)```	33.33 (3)	1	1710	1	0.06
```ssp. turgidum AS2313 (Sichuan, China) }\times\mathrm{ ssp. strangulata AS2388 (Iran)```	27.27 (11)	3	3296	70	2.12
ssp. turgidum AS2326 (Gansu, China) \times ssp. strangulata AS2388 (Iran)	81.82 (11)	9	7110	40	0.56
```ssp. turgidum AS2334 (Gansu, China) }\times\mathrm{ ssp. strangulata AS2388 (Iran)```	14.29 (14)	2	1480	4	0.27
ssp. turgidum AS2351 (Henan, China) $\times$ ssp. tauschii AS67 (Iran)	100 (1)	1	560	83	14.82
ssp. turgidum AS2378 (Shannxi, China) $\times$ ssp. tauschii AS82   (Henan, China)	33.33 (3)	1	688	13	1.89
ssp. turgidum AS2380 (Shannxi, China) $\times$ ssp. tauschii AS77   (Henan, China)	50 (4)	2	2614	57	2.18
ssp. turgidum AS2381(Shannxi, China) $\times$ ssp. tauschii AS65 (Former Soviet Union)	25 (4)	1	492	29	5.89
ssp. turgidum AS2382 (Shannxi, China) $\times$ ssp. strangulata AS2388 (Iran)	11.11 (9)	1	1490	38	2.55
ssp. dicoccoides AS285 (Germany) $\times$ ssp. strangulata AS66 (Former Soviet Union)	61.11 (18)	4	3246	100	3.08
$\begin{aligned} & \text { ssp. dicoccoides AS285 (Germany) } \times \text { ssp. strangulata } \\ & \text { AS2386 (Iran) } \end{aligned}$	50 (10)	2	2572	48	1.87
ssp. dicoccoides AS285 (Germany) $\times$ ssp. strangulata AS2404	14.29 (21)	3	2292	122	5.32
ssp. dicoccoides AS285 (Germany) $\times$ ssp. strangulata AS2405	33.33 (27)	6	7068	211	2.99
ssp. dicoccoides AS286 (France) $\times$ ssp. strangulata AS66 (Former Soviet Union)	33.33 (15)	3	5484	17	0.31
ssp. dicoccoides AS286 (France) $\times$ ssp. strangulata AS2386 (Iran)	80 (5)	4	2620	239	9.12
ssp. dicoccoides AS286 (France) $\times$ ssp. strangulata AS2399	17.65 (17)	1	1778	73	4.11
ssp. dicoccoides AS286 (France) $\times$ ssp. strangulata AS2404	95.45 (22)	18	16382	440	2.69
ssp. dicoccoides AS286 (France) $\times$ ssp. strangulata AS2407	55.17 (29)	9	6866	195	2.84
ssp. dicoccon P194614 (Ukraine) $\times$ ssp. strangulata AS2405	14.29 (7)	1	2136	95	4.45
ssp. dicoccon PI94627 (Asia Minor) $\times$ ssp. strangulata AS2386 (Iran)	85 (20)	12	14870	70	0.47
ssp. dicoccon PI94650 (Czechoslovakia) $\times$ ssp. strangulata AS2404	44.44 (9)	4	3858	364	9.43
ssp. dicoccon P194655 (Bulgaria) $\times$ ssp. strangulata AS2404	25 (8)	1	1682	101	6
ssp. dicoccon P194655 (Bulgaria) $\times$ ssp. strangulata AS2407	81.25 (16)	10	12828	1156	9.01
ssp. dicoccon P194666 (Dagestan) $\times$ ssp. strangulata AS2407	100 (1)	1	1348	7	0.52
ssp. dicoccon P194670 (Iran) $\times$ ssp. strangulata AS2386 (Iran)	62.5 (40)	9	15024	794	5.28
ssp. dicoccon PI94670 (Iran) $\times$ ssp. strangulata AS2404	9.62 (13)	2	674	23	3.41
ssp. dicoccon P194675 (Georgia) $\times$ ssp. strangulata AS2405	10.87 (46)	4	7104	207	2.91
ssp. dicoccon PI113961 (Georgia) $\times$ ssp. strangulata AS2404	86.96 (23)	14	9888	294	2.97
$\begin{aligned} & \text { ssp. dicoccon PI113963 (Georgia) } \times \text { ssp. strangulata } \\ & \text { AS2386 (Iran) } \end{aligned}$	80 (10)	2	1660	293	17.65
ssp. dicoccon PI154582 (Taiwan) $\times$ ssp. tauschii AS95	50 (2)	1	354	50	14.12
ssp. dicoccon PI154582 (Taiwan) $\times$ ssp. tauschii AS2395	100 (2)	2	1080	32	2.96

Table 1 continued

Cross combinations ${ }^{\text {a }}$	Germination rate of $\mathrm{F}_{1}$ seeds ${ }^{\text {b }}$	No. $\mathrm{F}_{1}$ plants obtained	No. selfed florets	$\text { No. } \mathrm{F}_{2}$ seeds	Seed set rate (\%)
ssp. dicoccon PI191781 (Portugal) $\times$ ssp. strangulata AS2399	100 (5)	5	2030	13	0.64
ssp. dicoccon PI221401 (Yugoslavia) $\times$ ssp. strangulata AS2399	24.53 (53)	3	3332	15	0.45
ssp. dicoccon PI221403 (Yugoslavia) $\times$ ssp. strangulata AS2397	14.29 (14)	2	396	26	6.57
ssp. dicoccon PI221403 (Yugoslavia) $\times$ ssp. strangulata AS2399	44.44 (36)	3	1084	106	9.78
ssp. dicoccon PI221403 (Yugoslavia) $\times$ ssp. strangulata AS2404	52.78 (36)	14	5226	586	11.21
ssp. dicoccon PI306533 (Romania) $\times$ ssp. strangulata AS2405	22.73 (22)	1	100	11	11
ssp. dicoccon PI350001 (Yugoslavia) $\times$ ssp. strangulata AS2405	25 (4)	1	298	1	0.34
ssp. dicoccon PI350001 (Yugoslavia) $\times$ ssp. strangulata AS2386 (Iran)	24.24 (33)	7	4422	78	1.76
ssp. dicoccon PI352331 (Germany) $\times$ ssp. strangulata AS2386 (Iran)	8.7 (46)	2	322	9	2.8
ssp. dicoccon PI352335 (USA) $\times$ ssp. strangulata AS2386 (Iran)	2.13 (47)	1	862	6	0.7
ssp. dicoccon PI352358 (France) $\times$ ssp. tauschii AS65 (Former Soviet Union)	100 (5)	5	3590	5	0.14
ssp. dicoccon PI352359 (Germany) $\times$ ssp. strangulata AS2386 (Iran)	13.89 (36)	3	783	6	0.77
```ssp. dicoccon PI352367 (Ancient Palestine) }\times\mathrm{ ssp. strangulata AS2386 (Iran)```	39.13 (23)	2	1338	131	9.79
ssp. dicoccon PI352369 (Czech Republic) \times ssp. tauschii AS60	78.57 (14)	5	1886	12	0.64
ssp. dicoccon PI352369 (Czech Republic) \times ssp. strangulata AS2393	33.33 (9)	3	1190	4	0.34
ssp. dicoccon PI355465 (Namur, Belgium) \times ssp. strangulata AS2405	25 (4)	1	1522	19	1.25
ssp. dicoccon PI355476 (Namur, Belgium) \times ssp. strangulata AS2404	38.10 (21)	5	6662	13	0.2
ssp. dicoccon PI355477 (Canada) \times ssp. strangulata AS2405	70 (10)	6	1284	7	0.55
ssp. dicoccon PI355477 (Canada) \times ssp. strangulata AS2399	50 (24)	10	3596	9	0.25
ssp. dicoccon PI355490 (Czech Republic) \times ssp. strangulata AS2399	50 (4)	1	20	2	10
ssp. dicoccon PI355497 (Former Soviet Union) \times ssp. strangulata AS2399	14.71 (34)	5	4540	6301	13.9
ssp. dicoccon PI355497 (Former Soviet Union) \times ssp. strangulata AS2403	33.33 (9)	3	1548	33	2.13
ssp. dicoccon PI355507 (Turkey) \times ssp. strangulata AS2386 (Iran)	100 (2)	2	1458	46	3.16
ssp. dicoccon P1355527 (Balkans) \times ssp. strangulata AS2399	100 (5)	5	6040	329	5.45
ssp. dicoccon PI377655 (Former Yugoslavia) \times ssp. strangulata AS2399	91.3 (23)	16	16002	3418	21.36
ssp. dicoccon PI377655 (Former Yugoslavia) \times ssp. strangulata AS2386 (Iran)	81.25 (48)	38	30240	2419	8
ssp. dicoccon PI377655 (Former Yugoslavia) \times ssp. strangulata AS2407	21.28 (47)	10	7548	1953	25.87
ssp. dicoccon PI415152 (Israel) \times ssp. tauschii AS60	8.33 (24)	2	1128	63	5.59
ssp. dicoccon PI434998 (Bosnia and Herzegovina) \times ssp. strangulata AS2386 (Iran)	6.48 (108)	5	5600	105	1.88
ssp. turanicum PI124494 (India) \times ssp. tauschii AS77 (Henan, China)	100 (3)	2	488	4	0.82

Table 1 continued

Cross combinations ${ }^{\text {a }}$	Germination rate of F_{1} seeds ${ }^{\text {b }}$	No. F_{1} plants obtained	No. selfed florets	No. F_{2} seeds	Seed set rate (\%)
```ssp. turanicum PI184526 (Portugal) }\times\mathrm{ ssp. strangulata AS2386 (Iran)```	33.33 (6)	2	676	6	0.89
$\begin{aligned} & \text { ssp. turanicum PI184543 (Portugal) } \times \text { ssp. strangulata } \\ & \text { AS2386 (Iran) } \end{aligned}$	63.64 (11)	6	7872	18	0.23
$\begin{aligned} & \text { ssp. turanicum PI211691 (Turkey) } \times \text { ssp. strangulata } \\ & \text { AS2386 (Iran) } \end{aligned}$	20 (15)	2	534	1	0.19
$\begin{aligned} & \text { ssp. turanicum PI256034 (Spain) } \times \text { ssp. strangulata } \\ & \text { AS2386 (Iran) } \end{aligned}$	8.33 (12)	1	74	1	1.35
$\begin{aligned} & \text { ssp. turanicum PI306665 }(\text { France }) \times \text { ssp. strangulata } \\ & \text { AS2386 (Iran) } \end{aligned}$	33.33 (3)	1	450	2	0.44
$\begin{aligned} & \text { ssp. turanicum PI352514 (Azerbaijan) } \times \text { ssp. strangulata } \\ & \text { AS2399 } \end{aligned}$	18.18 (11)	2	214	39	18.22
ssp. turanicum PI532136 (Egypt) $\times$ ssp. tauschii AS65 (Former Soviet Union)	66.67 (3)	1	160	4	2.5
ssp. dicoccon PI113961 $\times$ ssp. strangulata AS2388	5 (20)	1	1198	0	0
ssp. dicoccon PI306534 $\times$ ssp. tauschii AS66	11.11 (9)	1	86	0	0
ssp. dicoccon PI355465 $\times$ ssp. strangulata AS2404	100 (1)	1	280	0	0
ssp. dicoccon PI355477 $\times$ ssp. strangulata AS2386	75 (32)	23	10944	0	0
ssp. dicoccon PI377653 $\times$ ssp. strangulata AS2386	20.99 (88)	9	1900	0	0
ssp. polonicum PI14892 $\times$ ssp. tauschii AS82	100 (1)	1	1086	0	0
ssp. turanicum P1166450 $\times$ ssp. strangulata AS2386	30 (10)	3	728	0	0
ssp. turanicum PI184526 $\times$ ssp. strangulata AS2403	8.33 (12)	1	76	0	0
ssp. turanicum PI256034 $\times$ ssp. strangulata AS2404	44.44 (9)	1	170	0	0
ssp. turanicum PI306665 $\times$ ssp. strangulata AS2399	100 (1)	1	1042	0	0
ssp. turanicum PI337643 $\times$ ssp. strangulata AS2404	100 (1)	1	156	0	0
ssp. turanicum PI337643 $\times$ ssp. strangulata AS2386	100 (1)	1	136	0	0
ssp. turanicum PI347132 $\times$ ssp. strangulata AS2404	100 (1)	1	70	0	0

These hybrids were produced by crossing T. turgidum lines (female) with Ae. tauschii accessions without embryo rescue and hormone treatment
${ }^{\text {a }}$ The known origins of T. turgidum or Ae. tauschii are indicated in brackets
${ }^{\mathrm{b}}$ The number of $\mathrm{F}_{1}$ hybrid seeds of T. turgidum with Ae. tauschii used for germination are indicated in brackets
analysis, at least 22 PMCs were observed for each of synthetic hexaploid wheats (SHWs). The univalents (I), bivalents (II), trivalents (III), and quadrivalents (IV) were counted and their average numbers were calculated.

## Results

Selfed seedset by $\mathrm{F}_{1}$ hybrids
As Table 1 shows, $F_{1}$ hybrid seeds were obtained from 115 crosses involving 76 T. turgidum lines and 24 Ae. tauschii accessions without embryo rescue and
hormone treatment. Randomly selected hybrid seeds were germinated for the production of $F_{1}$ hybrid plants. Some $\mathrm{F}_{1}$ plants were dead during seedling stage. However, $\mathrm{F}_{1}$ plants grew vigorously and sprouted were obtained from the 115 cross combinations. All of the $F_{1}$ plants had tough tenacious glumes, a trait obviously inherited from their male parent Ae. tauschii. As expected, cytological observation of the root-tip cells confirmed that all of the $\mathrm{F}_{1}$ plants were triploids with 21 chromosomes, indicating that they all were true hybrids. Our previous study has shown that selfed seedset (percentage of selfed seeds over total selfed florets) is a good indication for the formation of unreduced gametes (Zhang et al.
2007). Therefore, selfed seedset of each hybrid combination was investigated (Table 1). Clearly, the 115 hybrid combinations differed significantly ( $P \leq 0.01, F=11.40$ ) in the selfed seedset. The distribution frequency of selfed seedset rates was summarized in Table 2. About $11 \%$ of the combinations failed to set any seed by selfing. For example, we checked 10944 selfed florets in $23 \mathrm{~F}_{1}$ plants between T. turgidum ssp. dicoccon (abbreviated as T. t. dicoccon, hereafter) line PI355477 and Ae. tauschii (abbreviated as A. t) accession AS2386 and found no seed at all. On the other hand, nine combinations (i.e. T. $t$. durum Langdon with A. $t$ AS60, AS65 and AS2404; T. t. dicoccon PI377655 with A. $t$ AS2399 and AS2407; T. t. dicoccoides AS285 with A. t. AS60; T. t. turgidum AS2239 with A. t. AS2395, T. t. turgidum AS2240 with A. t. AS84 and T. t. turgidum AS2310 with A. t. AS60) had selfed seedset higher than $20 \%$.

The results of analysis of variance to detect the difference between subspecies were shown in Table 3. Analysis of variance was not done for the hybrids involving $T$. turgidum ssp. dicoccoides, durum, polonicum, and carthlicum because only a few lines of each were used. Our analysis suggested that, as a whole, T. t. dicoccon and T. t. turgidum were able to promote setting of significantly more
selfed seeds on $\mathrm{F}_{1} \mathrm{~s}$ than T. t. turanicum could do (Table 3). The 76 T. turgidum-ssp. strangulata and 39 T. turgidum-ssp. tauschii combinations showed selfed seedset of 4.93 and $7.97 \%$, respectively (Table 3). There were no significant differences on selfed seedset between Ae. tauschii subspecies tauschii and strangulata at the level of $5 \%(t=1.47$, $\mathrm{df}=52.67, P=0.15$ )

To investigate the impact of parental genotype on $\mathrm{F}_{1}$ selfed seedset, we crossed different $T$. turgidum genotypes with the same Ae. tauschii accession and vice versa (Table 4). Analyzing our data revealed that T. turgidum lines differ significantly in their influence on the $\mathrm{F}_{1}$ selfed seedset (Table 4). Parental genotype effect by Ae. tauschii accessions was very significant when T. t. dicoccoides AS285 or AS286 was used as the female parent but was not significant when T. $t$. durum Langdon or T. t. turgidum AS2255 was the female parent (Table 4). It seams that T. turgidum genotypes complemented or suppressed the $A e$. tauschii genotypes in these cases.

## Cytological observation of chromosomes

in $F_{2}$ plants

Cytological observation was carried out to check the somatic chromosome number in the root-tip cells of

Table 2 Seedset rate distribution for $115 \mathrm{~F}_{1}$ hybridization combinations

Seedset rate distribution	0	$0-1 \%$	$1-5 \%$	$5-10 \%$	$10-20 \%$	$>20 \%$
No. of cross combinations (\%)	$13(11.3 \%)$	$30(26.09 \%)$	$32(27.83 \%)$	$19(16.52 \%)$	$12(10.43 \%)$	$9(7.83)$

Table 3 The summarized seedset rates based on seven T. turgidum and two Ae. tauschii subspecies
The means of selfed seedset
rates are based on all
combinations of a
subspecies
a, b are significantly
different at $P \leq 0.01$

Taxon	No. total   combinations	No. fertile   combinations	Mean of selfed   seedset rates
T. turgidum ssp. dicoccon	47	42	$5.01^{\mathrm{a}}$
turgidum	32	32	$6.20^{\mathrm{a}}$
turanicum	15	8	$1.64^{\mathrm{b}}$
dicoccoides	11	11	5.60
durum	8	8	18.57
carthlicum	1	1	0.93
polonicum	1	0	0
Total	115	102	5.83
Ae. tauschii ssp. strangulata	76	12	4.93
tauschii	39	1	7.97
Total	115	102	5.83

Table 4 Summarized results of variance analysis on seedset rates for the combinations with same T. turgidum or Ae. tauschii

Items	F-value	P-value
The combinations with different $T$. turgidum line and same Ae. tauschii accessions		
Eight $T$. turgidum with ssp. tauschii AS60	12.08	0.0001
Five $T$. turgidum with ssp. tauschii AS65	3.97	0.04
Twenty-two T. turgidum with ssp. tauschii AS2386	9.97	0.0001
Seven T. turgidum with ssp. tauschii AS2388	53.54	0.0001
Eleven $T$. turgidum with ssp. tauschii AS2399	11.11	0.0001
Fourteen $T$. turgidum with ssp. tauschii AS2404	7.83	0.0001
Six T. turgidum with ssp. tauschii AS2405	9.49	0.003
Five T. turgidum with ssp. tauschii AS2407	17.78	0.0001
The combinations with same T. turgidum line and different Ae. tauschii accessions		
ssp. durum Langdon with seven Ae. tauschii	1.07	0.40
ssp. turgidum AS2255 with four Ae. tauschii	2.23	0.14
ssp. dicoccoides AS285 with five Ae. tauschii	50.68	0.0001
ssp. dicoccoides AS286 with six Ae. tauschii	5.01	0.002

the $\mathrm{F}_{2}$ plants (Fig. 1a) and the chromosome pairing in their pollen-mother-cells (Fig. 1b). About $80 \% \mathrm{~F}_{2}$ plants observed were found to have $2 \mathrm{n}=42$ chromosomes. As Table 5 shows, the examined $\mathrm{F}_{2}$ plants with 42 chromosomes also had their chromosomes paired almost normally during meiosis, proving that they were amphidiploids.

## Discussion

In this study, $\mathrm{F}_{1}$ haploid hybrid plants with 21 chromosomes were obtained from 115 cross combinations without embryo rescue and hormone treatment. About $89 \%$ of the combinations produced $\mathrm{F}_{2}$ seeds by selfing. Cytological analysis found that most of the $\mathrm{F}_{2}$ plants were amphidiploids with 42 chromosomes (euploids), indicating that the genomes in the $F_{2}$ plants had been spontaneously duplicated by the union of two unreduced gametes. Both meiotic restitution and doubled somatic sectors can result in unreduced gametes. However, no fully fertile plant was observed in this study, thus excluding the idea of doubled somatic sectors for the production of unreduced gametes. Our previous cytological observations have clearly shown that the pairing of 21 chromosomes in the $\mathrm{F}_{1} T$. turgidum-Ae. tauschii hybrids was rare in the meiotic metaphase I and meiotic restitution is responsible for the production of functionally unreduced gametes in these hybrids (see review in Zhang et al. 2007).


Fig. 1 Chromosomes of root-tip (a) and pollen-mother-cell (b) in new synthetic hexaploid wheats. a 42 chromosomes in the $\mathrm{F}_{2}$ plants of AS2255 $\times$ AS60. b Chromosome pairing with 21 bivalents, including 4 rod and 17 ring bivalents, at meiotic metaphase I in a cell of $\mathrm{F}_{2}$ plants of Langdon $\times$ AS60

This study suggested that T. turgidum genotypes play more important role than Ae. tauschii genotypes in producing $F_{1}$ selfed seeds and that some T. turgidum genotypes are more capable in inducing unreduced gamete production in the $\mathrm{F}_{1} \mathrm{~s}$ than others. T. turgidum was originated from the cross of $A e$. speltoides with T. monococcum (Kihara and Lilienfeld 1949). It seems that unreduced gametes most likely played a key role in this process. Obviously, every original T. turgidum plant should inherit the meiotic restitution genes. As David et al. (2004) suggested, maintaining a genetic basis for unreduced gamete production in progenitor species remains a paradox because genes inducing the production of such gametes are expected to diminish the individual fitness at the ploidy level of progenitors. T. turgidum genotypes that carry genes for unreduced gametes are favorable to producing interspecific hybrids with alien species. The significant difference in selfed seedset we observed among the hybrids involving different $T$. turgidum genotypes suggested that evolution is working towards reduction of the ability to form unreduced gametes in T. turgidum by accumulation of mutations decreasing activity of the meiotic
restitution genes and thus increasing the fitness of T. turgidum as a species.

This study clearly showed that meiotic restitution genes are widely distributed within T. turgidum. Of the eight subspecies proposed by Van Slageren (1994), all but T. $t$. paleocolchicum and T. $t$. polonicum showed ability to produce spontaneous amphidiploids in their hybrids with other species. Our data suggested that this ability is not limited to a few genotypes within each subspecies. The genotypes we tested in this study were collected from a large geographic area (Table 1). T. turgidum is known to grow together with Ae. tauschii on the farmland in some areas and thus has chance to make hybrids in multiple places. The wide spread of spontaneous amphidiploidization in the T. turgidum-Ae. tauschii $\mathrm{F}_{1}$ hybrids found in our study, therefore, supports the multi-origin hypothesis for the hexaploid wheat proposed by many wheat scientists (Dvorak et al. 1998; Talbert et al. 1998; Lelley et al. 2000; Caldwell et al. 2004; Giles and Brown 2006; Zhang et al. 2008b).

Previous studies have shown that the meiotic restitution genes of T. turgidum were functional in

Table 5 Chromosome pairing of $\mathrm{F}_{2}$ plants from synthetic hexaploid wheats
${ }^{\text {a }}$ I, univalent; II, bivalent; III, trivalent; IV, quadrivalent; chromosome pairing configuration for the first 14 synthetic hexaploid wheats were extracted from Li et al. (2008)

Combinations	Means of chromosome pairing configuration
AS2255 $\times$ AS60	$3.88 \mathrm{I}+5.00 \mathrm{rod} \mathrm{II}+14.00$ ring $\mathrm{II}^{\text {a }}$
AS313 $\times$ AS60	$1.27 \mathrm{I}+5.33 \mathrm{rod}$ II +15.07 ring II
AS285 $\times$ AS60	$6.27 \mathrm{I}+6.80$ rod II +11.03 ring II
AS286 $\times$ AS60	$1.08 \mathrm{I}+6.59$ rod II +13.86 ring II
Langdon $\times$ AS60	$1.69 \mathrm{I}+6.94$ rod II +13.22 ring II
Langdon $\times$ AS77	$1.54 \mathrm{I}+6.49$ rod II +13.74 ring II
Langdon $\times$ AS2386	$1.15 \mathrm{I}+4.98$ rod II +15.44 ring II
Langdon $\times$ AS2399	$1.61 \mathrm{I}+6.68$ rod II +13.52 ring II
AS2255 $\times$ AS2395	$2.13 \mathrm{I}+5.80 \mathrm{rod} \mathrm{II}+14.03$ ring II +0.07 III
AS2255 $\times$ AS2393	$0.86 \mathrm{I}+5.60 \mathrm{rod}$ II +15.49 ring II
AS285 $\times$ AS2386	$5.77 \mathrm{I}+9.07 \mathrm{rod} \mathrm{II}+8.93$ ring II $+0.03 \mathrm{III}+0.03 \mathrm{IV}$
AS285 $\times$ AS2404	$5.10 \mathrm{I}+8.31 \mathrm{rod}$ II +10.14 ring II
AS286 $\times$ AS2386	0.59 I +3.90 rod II +16.80 ring II
AS286 $\times$ AS2407	0.58 I +3.64 rod II +17.06 ring II
AS2239 $\times$ AS2395	$3.14 \mathrm{I}+6.34$ rod II +13.09 ring II
AS2240 $\times$ AS77	$3.62 \mathrm{I}+5.37 \mathrm{rod}$ II +13.60 ring II
AS2285 $\times$ AS77	$0.34 \mathrm{I}+4.06$ rod II +16.78 ring II
AS2291 $\times$ AS2404	$2.60 \mathrm{I}+8.98$ rod II +10.68 ring II
PI94655 $\times$ AS2407	$3.95 \mathrm{I}+4.05 \mathrm{rod}$ II +14.97 ring II
PI94675 $\times$ AS2405	$1.00 \mathrm{I}+4.00$ rod II +16.50 ring II

hybrid derivatives of $T$. turgidum with many relative species (see review in Zhang et al. 2007 and Tiwari et al. 2008). Here we prospect wide use of these T. turgidum meiotic restitution genes in wheat improvement. They can greatly help not only alien gene introgression into wheat, but also aid our efforts in doubled haploids ( DH ) production. The DHs of a true-breeding crop like wheat can quickly fix genetic recombination, and thus enhance breeding efficiency or facilitate genetic analysis.

Acknowledgements This project was partially funded by the National Natural Science Foundation (30700495), National Basic Research Program (973 Program, 2009CB118304), Key Technologies R \& D program of China (2006BAD13B02), The "100-Talent People" program of Chinese Academy of Sciences, the Youth Foundation of Sichuan Province (No. 08ZQ026-060), and Education Department of Sichuan province (07ZZ025), and by the South Dakota State University Agricultural Experimental Station. We thank Professor Genlou Sun of Saint Mary's University for important suggestions for manuscript improvement.

## References

Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Curr Genomics 8:151-161
Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploidy wheat and their D-genome ancestor. Genetics 167:941-947
David JL, Benavente E, Bres-Partry C, Dusautoir JC, Echaide M (2004) Are neoplolyploids a likely route for a transgene walk to the wild? The Aegilops ovata $\times$ Triticum turgidum durum case. Biol J Linn Soc 82:503-510
Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657-670
Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563-1572
Harlan JR, De Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361-390
Jauhar PP (2003) Formation of 2 n gametes in durum wheat haploids: sexual polyploidization. Euphytica 133:81-94
Jauhar PP (2007) Meiotic restitution in wheat polyhaploid (amphihaploids): a potent evolutionary force. J Hered 98:188-193

Kihara H, Lilienfeld F (1949) A new synthesized 6x-wheat. In: Bonnier G, Larsson R (eds) Proceedings of the eighth international congress of genetics, July 7-17, 1948, Stockholm, Sweden, Hereditas (suppl), pp 307-319
Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Ae. tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661-668
Li YF, Zhang LQ, Liu DC, Zheng YL (2008) Cytological and agronomic traits of newly synthetic hexaploid wheat. J Sichuan Agric Univ 26:399-404 (in Chinese with an English abstract)
Ramana MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement-a review. Euphytica 133:3-18
Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Ann Rev Ecol Syst 29:467-501
Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589-639
Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low copy DNA. Genome 41:402-407
Tang QY, Feng MG (2007) DPS data processing systemexperimental design, statistical analysis, and data mining. Science Press, Beijing (in Chinese)
Tiwari VK, Rawat N, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2008) Development of Triticum turgidum subsp. durum-Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in $\mathrm{F}_{1}$ hybrids. Genome 51:757-766
Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen Agriculture University Papers 7:513
Xu SJ, Joppa LR (2000) First division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed 119:233-241
Zhang LQ, Yen Y, Zheng YL, Liu DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20:159-166
Zhang LQ, Yan ZH, Dai SF, Chen QJ, Yuan ZW, Zheng YL, Liu DC (2008a) The crossability of Triticum turgidum with Aegilops tauschii. Cereal Res Comm 37:417427
Zhang YZ, Li XH, Wang AL, An XL, Zhang Q, Pei YH, Gao LY, Ma WJ, Appels R, Yan YM (2008b) Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178:23-33


[^0]:    L.-Q. Zhang • D.-C. Liu (凶) • Y.-L. Zheng • Z.-H. Yan • S.-F. Dai • Y.-F. Li • Q. Jiang • Y.-Q. Ye

    Triticeae Research Institute, Sichuan Agricultural University, 611130 Wenjiang of Chengdu city, Sichuan, China
    e-mail: dcliu7@yahoo.com
    L.-Q. Zhang • D.-C. Liu • Y.-L. Zheng • Z.-H. Yan
    S.-F. Dai • Y.-F. Li • Q. Jiang • Y.-Q. Ye

    Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, 625014 Yaan, Sichuan, China
    D.-C. Liu

    Northwest Plateau Institute of Biology, Chinese Academy of Science, 810008 Xining, Qinghai, China
    Y. Yen

    Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA

