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1Gauss’ principle of least constraint [6] is a general axiom on the mechanics
of constrained motions. It states that if a mechanical system is constrained by an-
other mechanical structure the resulting accelerationẍ of the system will be such
that it minimizes(ẍ−M−1F)TM−1(ẍ−M−1F) while fulfilling the constraint.
ABSTRACT
Gauss’ principle of least constraint and its generalizations

have provided a useful insights for the development of tracking
controllers for mechanical systems [1]. Using this concept, we
present a novel methodology for the design of a specific classof
robot controllers. With our new framework, we demonstrate that
well-known and also several novel nonlinear robot control laws
can be derived from this generic framework, and show exper
mental verifications on a Sarcos Master Arm robot for some o
these controllers. We believe that the suggested approach uni-
fies and simplifies the design of optimal nonlinear control laws
for robots obeying rigid body dynamics equations, both withor
without external constraints, holonomic or nonholonomic con-
straints, with over-actuation or underactuation, as well as open-
chain and closed-chain kinematics.

Introduction
Despite the progress in robotics over the last decades, on

a few general building principles for designing robot controllers
have been obtained. To date, robot controllers are often derived
from insights such as the reduction of the controlled systemonto
a linear system by linearization or by inversion of the dynamics
of the robot [2, 3]. While this approach is viable for many prob-
lems, it is in a sense limiting because it ignores potentially useful
properties of the inherent nonlinearities. Only few statements
can be made about the quality of such controllers underlyin
cost functions which sometimes cannot even be obtained. Ge-
eral optimal control techniques on the other hand are often not
applicable as a closed-form solution usually does not existand
numerical solutions for high-dimensional systems are often pro-
hibitively expensive in terms of computations due to the ‘Curse
1
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of Dimensionality’ [4], [5].
Recently, a novel way of thinking about tracking control of

mechanical systems was suggested in [1] inspired by resultsfrom
analytical dynamics with constrained motion. The major insight
in [1] is that tracking control can be reformulated in terms of
constraints, which in turn allows the application of a generaliza-
tion of Gauss’ principle of least constraint1 [6] in order to derive
a controller. As it is outlined already in [1], this insight leads
to a specialized optimal control framework for controlled me-
chanical systems. While it is not applicable to non-mechanical
control problems with arbitrary cost functions, it yields an impor-
tant class of optimal controllers, i.e., the class where theproblem
requires task achievement under minimal squared motor com-
mands with respect to a specified metric. In this paper, we de-
velop this line of thinking a step further and show that it canbe
used as a general way of solving robotic control problems which
unifies many approaches to robot control found in the literature to
date. We can demonstrate stability of the controller in taskspace
if the system can be modeled with sufficient precision and the
chosen metric is appropriate. For assuring stability in thejoint
space further considerations may apply. To demonstrate thefea-
sibility of our framework, we evaluate a few derived controllers
on a robot arm with a simple end-effector tracking task.

This paper is organized as follows: firstly, a novel optimal
control framework based on [1] is presented and analyzed. Sec-
ondly, we discuss different robot control problems in this frame-
work including joint and task space tracking, force and hybrid
control. We show how both established and novel controllers
Copyright c© 2005 by ASME
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can be derived in a unified way. Finally, we evaluate some o
these controllers on a Sarcos Master robot arm.

A Novel Methodology for the Control of Robotic Sys-
tems

A variety of robot control problems can be motivated by the
desire to achieve a task perfectly while minimizing the squared
motor commands. In this section, we will show how the robo
dynamics and the control problem can be brought into a generl
form which will then allow us to compute the optimal control
with respect to a desired metric. We will augment this framework
so that we can assure stability both in the joint space of the robot
as well as in the task space of the problem.

Formulating Robot Control Problems
In order to formulate our framework, we will introduce the

specifics of the assumed underlying robot model and show ho
a task can be specified.

Robot Model: We assume the well-known rigid-body dy-
namics model of manipulator robot arms withn degrees of free-
dom given by the equation

u = M(q)q̈ +C(q, q̇)+G(q), (1)

whereu ∈ R
n is the vector of motor commands (i.e., torques

or forces),q, q̇, q̈ ∈ R
n are the vectors of joint position, veloc-

ities and acceleration, respectively,M(q) ∈ R
n×n is the mass

or inertia matrix,C(q, q̇) ∈ R
n denotes centrifugal and Coriolis

forces, andG(q) ∈ R
n denotes gravity [2,3]. At many points we

will write the dynamics equations byM(q)q̈ = u(q, q̇)+F(q, q̇)
whereF(q, q̇) = −C(q, q̇)−G(q) as specified in [1, 6]. We as-
sume that an accurate model of our robot system is available.

Task Description:A task for the robot is assumed to be de-
scribed in the form of a constraint description, i.e., it is given by
a function

h(q, q̇,t) = 0. (2)

whereh∈R
k where the dimensionality is arbitrary. For example,

if the robot is supposed to follow a desired trajectoryqdes(t) ∈
R

n, we could formulate it byh(q, q̇,t) = q− qdes(t) = 0; this
case is analyzed in detail in Example 1. We consider only tasks
wherein equation (2) can be reformulated as

A(q, q̇,t)q̈ = b(q, q̇,t), (3)

which can be achieved for most tasks by differentiation of equa-
2
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tion (2) with respect to time, assuming thath is sufficiently
smooth. For example, our previous task, upon differentiation,
becomes̈q = q̈des(t) so thatA = I andb = q̈des(t). An advan-
tage of this task formulation is that non-holomonic constraints
can be treated in the same general way.

In the subsequent section titles “Robot Control Laws ”, we
will always give the task description first in the general form of
Equation (2), and then derive the resulting controller using the
form which is the linear in accelerations, given in Equation(3).

Optimal Control Framework
Let us assume that we are given a robot model and a con-

straint description of the task as described in the previoussection.
In this case, we can describe the desired properties of the frame-
work as follows: first, the task has to be achieved perfectly,i.e.,
h(q, q̇,t) = 0, or equivalently,Aq̈ = b, holds at all times. Sec-
ond, we intend to minimize the control force with respect to some
given metric, i.e.,J(t) = uTN(t)u, at eachinstant of time. The
solution to this can be derived from a generalization of Gauss’
principle as originally suggested in [1]. We formalize thishere
in the following theorem.

Theorem 1. The class of controllers which minimizes

J(t) = uTN(t)u, (4)

for a mechanical systemM(q)q̈ = u(q, q̇)+F(q, q̇) while fulfill-
ing the task constraint

Aq̈ = b, (5)

is given by

u = N−1/2
(

AM−1N−1/2
)+

(

b−AM−1F
)

, (6)

whereD+ denotes the pseudo-inverse for a general matrixD, and
D1/2 denotes the symmetric, positive definite matrix for which
D1/2D1/2 = D.

Proof. By definingz = N1/2u = N1/2(Mq̈−F), we obtainq̈ =
M−1N−1/2(z+ N1/2F). Since the task constraintAq̈ = b has to
be fulfilled, we obtain

AM−1N−1/2z = b−AM−1F. (7)

The vectorz which minimizesJ(t) = zTz while fulfilling Equa-
tion (7), is given byz = (AM −1N−1/2)+(b−AM−1F), and as
the motor command is given byu = N−1/2z, the theorem holds.
Copyright c© 2005 by ASME
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The choice of the metricN plays a central role, because it d
termines the type of solution. Often, we require a solution which
has a kinematic interpretation; such a solution is usually given by
a metric likeN = M−2. In other cases, the control forceu may
be required to comply with the principle of virtual displacements
by d’Alembert for which the metricN = M−1 is more appropri-
ate. In the section “Robot Control Laws ”, we will see how th
choice ofN results in several different controllers.

Note that this framework has been suggested in genera
[1, 6], and a related framework has been suggested in [7]
different context. Special cases of the results of this framework
such as the one with the metricN = M−1 have been discusse
in [8,9].

Note that differential-geometric controller design methods
often yield similar solutions while being more general; however,
in many cases, e.g., for non-holomonic systems, the requd
analysis for applying our framework can be significantly simpler
while yielding similar or the same results.

Stability Analysis
Up to this point, this framework has been introduced

an idealized fashion neglecting the possibility of imperfect ini-
tial conditions and measurement noise. Therefore, we moy
this framework slightly and show how we can ensure sta
ity. This modification will be introduced in section “Stability in
Task Space”. Furthermore, we realize that the case of underon-
strained tasks, i.e., tasks where some degrees of freedom othe
robot are redundant for the given task, can cause undesired prop-
erties or even instability in joint-space; we will treat this problem
in section “Stability in Joint Space ”.

Stability in Task Space. Up to this point, we have
assumed that we always have perfect initial conditions andhat
we know the robot model perfectly. However, we have to co
pensate for the fact that we might not be sitting perfectly onthe
trajectory from the start or that we might get disturbed out of this
trajectory. [1] suggested that this can be achieved by requiring
that the desired task is an attractor, e.g., it could be prescribed as
a dynamical system in the form

ḣ(q, q̇,t) = fh(h,t), (8)

whereh = 0 is a globally asymptotically stable equilibrium poin
– or a locally asymptotically stable equilibrium point witha suf-
ficiently large region of attraction. Note thath can be a function
of robot variables (as in end-effector trajectory control as we will
see in the section on “Robot Control Laws”) but often it suffices
to choose it to be state vector (for example for joint-spacera-
jectory control as we will see in the section on “Robot Contl
Laws”). In the case of holomonic tasks (such as tracking conrol
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for a robot arm), i.e.hi(q,t) = 0, i = 1, 2,. . ., k we can make
use of a particularly simple form as suggested in [1] and turnthis
task into an attractor

ḧi + δiḣi + κih = 0, (9)

whereδi and κi are chosen appropriately. We will make use
of this ‘trick’ in order to derive several algorithms. Obviously,
different attractors with more desirable convergence properties
(and/or larger basins of attraction) can be obtained by choosing
fh appropriately.

If we have a task-space stabilization as discussed in the para-
graph above, we can assure that the control law is stable in task
space at least in a region near about the desired trajectory.We
show this in the following theorem.

Theorem 2. If we can assure the attractor property of the task
h(q, q̇,t) = 0, or equivalently,Aq̈ = b, and if our robot model
is accurate, it is straightforward to show that the controller is
stable in task space.

Proof. When combining the robot dynamics equation with the
controller, and after reordering the terms, we obtain

AM −1 (Mq̈−F) =
(

AM−1N−1/2
)+

(

b−AM−1F
)

. (10)

If we now premultiply the equation withD = AM−1N−1/2, and
noting thatDD+D = D, we obtainAq̈ = GG+b = b. The equal-
ity follows because the original trajectory defined byAq̈ = b
yields a consistent set of equations. If this is an attractor, we
will have perfect task achievement asymptotically.

An analysis of the stability properties of the derived con-
trollers when an imperfect robot model is given will be part of
future work.

Stability in Joint Space. While the stability in task
space is fairly well-understood, it is not immediately clear
whether the control law is stable in joint-space. It is fairly
straightforward to create a counter-example. Example 1, illus-
trates a situation where a redundant robot arm is stable in task-
space while unstable in joint-space.

Example 1. Let us assume the simplest possible robot, a pris-
matic robot with two horizontal, parallel links. The mass matrix
of this robot is a constant given byM = diag(m1,0)+m21 where
1 denotes a matrix having only ones as entries, and the addi-
tional forces areF = 0. Let us assume the task is to move the end-
effector x= q1+q2 along a desired position xdes, i.e., the task can
be specified byA = [1,1], and b= ẍdes+δ(ẋdes− ẋ)+κ(xdes−x)
3 Copyright c© 2005 by ASME
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after double differentiation and task stabilization. While this
obviously is stable in task-space, the initial condition q1(t0) =
xdes(t0)−q2(t0) would result into both qi(t)’s diverging into op-
posite directions. The reason for this is obvious: the effort of
stabilizing in joint space is not task relevant – any solution sta-
bilizing this problem in joint-space would increase the cost.

From this example, we see that the general framework do
not always suffice but that it has to be modified so that we can in-
corporate a minimal control which in practice stabilizes the robot
without affecting the task achievement. One possibility tostabi-
lize the robot in joint-space is by having a joint-space motor com-
mandu1 as an additional component of the the motor comman
u, i.e.,

u = u1 +u2(u1) , (11)

where the first componentu1 denotes an arbitrary joint-space
motor command for stabilization, while the second component
u2 (u1) denotes the task-space motor command generated w
the previously explained equations. The task-space component
depends on the joint-space component as it has to compens
for it. The necessity of such a separation was also noted in [7,10]
from different points of view. We can show that the fulfillment
of the taskAq̈ = b by the controller is not affected by the choice
of the joint-space control lawu1.

Theorem 3. For any chosen joint-stabilizing control lawu1 =
f (q), the resulting task space control lawu2 (u1) ensures that
the joint-stabilizing control law acts in the null-space ofthe task.

Proof. When determiningu2, we consideru1 to be part of
our forces, i.e., we havẽF = F + u1. We obtain u2 =

N−1/2
(

AM −1N−1/2
)+ (

b−AM−1F̃
)

using Theorem 1. By re-
ordering the complete control lawu = u1 +u2(u1), we obtain

u = u1 +N−1/2
(

AM −1N−1/2
)+

(

b−AM−1(F+u1)
)

,

= N−1/2
(

AM−1N−1/2
)+

(b−AM−1F)

+ (I −N−1/2
(

AM−1N−1/2
)+

AM −1)u1,

= N−1/2
(

AM−1N−1/2
)+

(b−AM−1F) (12)

+N−1/2[I −
(

AM −1N−1/2
)+

(AM −1N−1/2)]N1/2u1,

The task space is defined byN−1/2
(

AM−1N−1/2
)+

, and that the

matrix N−1/2[I −
(

AM −1N−1/2
)+

(AM −1N−1/2)] makes sure
that the joint-space control law and the task space control law
areN-orthogonal.
4
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Despite that the task is still achieved, the optimal control
problem is affected by the restructuring of our control law.While
we originally minimizedJ(t) = uTN(t)u, we now have a modi-
fied cost function

J̃(t) = uT
2 N(t)u2 = (u−u1)

T N(t)(u−u1) , (13)

which is equivalent to stating that the complete control lawu
should be as close to the joint-space control lawu1 as possible
under task achievement.

This reformulation can have significant advantages if used
appropriately. For example, a variety of applications – such as
using the robot as a haptic interface – a compensation of the
robot’s gravitational, coriolis and centrifugal forces injoint space
can be useful. Such a compensation can only be derived when
making use of the modified control law. In this case, we set
u1 = −F = C+G, which allows us to obtain

u2 = N−1/2
(

AM−1N−1/2
)+

b, (14)

which does not contain these forces, and we would have a com-
plete control law ofu = C+G+N−1/2

(

AM −1N−1/2
)+

b.

Robot Control Laws
The previously described framework offers a variety of ap-

plications in robotics – we will only be able to give the most
important ones in this paper. Most of these controllers which we
will derive are known from the literature but often from verydif-
ferent building principles. In this section, we show how a vast
variety of control laws for different situations can be derived in
a simple and straightforward way by using the unifying frame-
work that has been developed hereto. We derive control laws for
joint-space trajectory control for both fully actuated andoverac-
tuated “muscle-like” robot systems from our framework. We also
discuss task-space tracking control systems, and show thatmost
well-known inverse kinematics controllers are applications of the
same principle. Additionally, we will discuss how the control of
constrained manipulators through impedance and hybrid control
can be easily handled within our framework. Please note that
many presented control laws are not novel; the novelty of this
paper is that these can be derived that straightforwardly from our
framework.

Joint-Space Trajectory Control
The first control problem we attempt to tackle is joint-space

trajectory control. We consider two different situations:(a) We
control a fully actuated robot arm in joint-space, and (b) wecon-
trol an overactuated arm. The case (b) could, for example, have
Copyright c© 2005 by ASME
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agonist-antagonist muscles as actuators similar to a humanarm2.

Fully Actuated Robot. The first case which we con-
sider is the one of a robot arm which is actuated at every de
gree of freedom. We have the trajectory as constraint with
h(q,t) = q(t)−qd(t) = 0. We turn this constraint into an attrac-
tor constraint using the previously described insights, yielding

(q̈− q̈d)+KD (q̇− q̇d)+KP(q−qd) = 0, (15)

whereKD = (δi, j ) are positive-definite damping gains, andKP =
(κi j ) are positive-definite proportional gains. We can bring this
into the formA(q, q̇)q̈ = b(q, q̇) with

A = I , (16)

b = q̈d +KD (q̇d − q̇)−KP(qd −q) . (17)

In this case, we can use Theorem 1 and derive the controlle
Using(M−1N−1/2)+ = N1/2M as both matrices are of full rank,
we obtain

u = u1 +N−1/2
(

AM−1N−1/2
)+

(

b−AM−1(F+u1
)

),

= M1/2
(

M−1/2
)−1

(q̈d +KD (q̇d − q̇)

+KP(qd −q)−M−1(−C−G)),

= M(q̈d +KD (q̇d − q̇)+KP(qd −q))+C+G. (18)

Note that all joint-space motor commands or virtual forcesu1

always disappear from the control law and that the chosen metric
N is not relevant – the derived solution is unique and genera
It turns out that this a well-known control law, i.e., theInverse
Dynamics Control Law [2,3].

Overactuated Robots. Overactuated robot arms as
they can be found in biological systems are inheritently differ-
ent from previously discussed robot arms. For instance, these
arms are actuated by several linear actuators, e.g., muscles that
often act on the system in form of opposing pairs. These interac-
tions of the opposing pairs of muscles can be modeled using the
dynamics equations of

Du = M(q)q̈ +C(q, q̇)+G(q), (19)
2An open topic of interest is to handle underactuated robot arm control. This
will be part of future work.

5
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whereD depends on our type of muscle. In the simplest model
for a two degrees of freedom robot it could be given by

D =

[

−l +l 0 0
0 0 −l +l

]

. (20)

We can bring this equation into the standard form by multi-
plying it with D+, which results in a modified system where
M̃(q) = D+M(q), andF̃(q, q̇) = −D+C(q, q̇)−D+G(q). If we
have expressed the trajectory like in previous examples, and we
obtain the following controller

u = M̃1/2
(

AM̃
−1/2

)+ (

b−AM̃
−1

F̃
)

, (21)

= D+M(q̈d +KD (q̇d − q̇)−KP(qd −q))+D+ (C+G).
(22)

While immidiately intuitive, it is somehow surprising thatthis
particular controller should fall out of the presented framework.
Due to a lack of hardware and realistic simulators, we cannot
evaluate this approach within the scope of this paper.

End-effector Trajectory Control
While joint-space control of a trajectoryq(t) is straightfor-

ward and the presented methodology appears to simply repeat
earlier results from the literature, the same cannot be saidabout
end-effector control where the positionx(t) of the end-effector
is moved along some given trajectory. This problem is generi-
cally more difficult as the choice of the metricN determines the
type of the solution and as the joint-space of the robot oftenhas
redundant degrees of freedom resulting in problems as already
presented in Example 1. In the following context, we will show
how to derive different approaches to end-effector controlfrom
the presented framework; this yields both established as well as
novel control laws.

The task description is given by the end-effector trajectory
as constraint withh(q,t) = f(q(t))− xd(t) = x(t)− xd(t) = 0,
wherex = f(q) denotes the forward kinematics. We turn this con-
straint into an attractor constraint using the previously described
insights, yielding

(ẍ− ẍd)+KD (ẋ− ẋd)+KP(x−xd) = 0, (23)

whereKD = (δi, j) are positive-definite damping gains, andKP =
(κi j ) are positive-definite proportional gains. We make use of the
differential forward kinematics, i.e.,

ẋ = J(q)q̇, (24)
Copyright c© 2005 by ASME
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ẍ = J(q)q̈+ J̇(q)q̇. (25)

These allow us to formulate the problem in form of constraints,
i.e., we intend to fulfill

ẍd +KD (ẋd − ẋ)+KP(xd −x) = Jq̈+ J̇q̇, (26)

and we can bring this into the formA(q, q̇)q̈ = b(q, q̇) with

A(q, q̇) = J, (27)

b(q, q̇) = ẍd +KD (ẋd − ẋ)+KP(xd −x)− J̇q̇. (28)

These equations determine our task constraints. However,he
resulting controller depends on the chosen metric and joint-space
control law; it is not a unique, general solution as for joint-space
control.

Separation of Kinematics and Dynamics. The
choice of the metricN determines the type of the task. A met-
ric of particular importance isN = M−2 as this metric allows
the decoupling of kinematics and dynamics as we will see in this
section. Using this metric in Theorem 1, we obtain a control law

u = u1 +N−1/2
(

AM −1N−1/2
)+

(

b−AM−1(F+u1)
)

,

= MJ+(ẍd +KD (ẋd − ẋ)+KP(xd −x)− J̇q̇)

+M(I −J+J)M−1u1−MJ+JM−1F.

If we choose the joint-space control lawu1 = u0−F, we obtain
the control law

u = MJ+(ẍd +KD (ẋd − ẋ)+KP(xd −x)− J̇q̇) (29)

+M(I −J+J)M−1u0 +C+G.

This control law is the combination of aresolved-acceleration
kinematic controller [2, 12] with a model-based controller and
an additional null-space term. Similar controllers have been in-
troduced in [13–16]. The null-space term can be eliminated by
settingu0 = 0; however, this can result in instabilities if there are
redundant degrees of freedom. This controller will be evaluated
in the evaluations section.

Dynamically Consistent Decoupling. As noted ear-
lier, another important metric isN = M−1 as it is consistent with
the principle of d’Alembert, i.e., it is dynamically consistent and
6
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therefore the resulting control force can be re-interpreted as me-
chanical structures (e.g., springs and dampers) attached to the
end-effector. This metric has an interesting property: itsresults
are invariant under Gauge transformation [8]. A change of the
coordinate system will not result in a change of the applied forces
and the system will not transfer energy into the null-space [6];
however, at the same time the metric can require the generation
of extremely large forces in certain control situations [6].

Again, we apply Theorem 1, and by definingF̃ = F + u1

obtain the control law

u = u1 +N−1/2
(

AM −1N−1/2
)+

(

b−AM−1F̃
)

,

= u1 +M1/2
(

JM−1/2
)T

(

JM−1JT)−1(

b−JM−1F̃
)

,

= u1 +JT (

JM−1JT)−1(

b−JM−1F̃
)

,

= JT (

JM−1JT)−1
(ẍd +KD (ẋd − ẋ)

+KP(xd −x)− J̇(q)q̇+JM−1 (C+G))

+M(I −M−1JT (

JM−1JT)−1
J)M−1u1.

It turns out that this is another well-known control law suggest
in [17] with an additional null-space term. This control-law is
used in [1] and is especially interesting as it has a clear physical
interpretation [1, 6, 9]: the metric used is consistent withprinci-
ple of virtual work of d’Alembert. Similarly as before we can
compensate for coriolis, centrifugal and gravitational forces in
joint-space, i.e., settingu1 = C + G+u0. This yields a control
law of

u = JT (

JM−1JT)−1
(ẍd +KD (ẋd − ẋ) (30)

+KP(xd −x)− J̇(q)q̇)+C+G

+M(I −M−1JT (

JM−1JT)−1
J)M−1u0.

The compensation of the forces in joint-space is often desirable
for this metric in order to have full control over the resolution of
the redundancy as the gravity compensation in task space often
results into strange postures.

Further Metrics. Using the identity matrix as metric,
i.e., N = I , punishes the squared motor command without
reweighting. This metric could be of interest as it distributes the
“load” created by the task evenly on the actuators. This metric
results in a control law

u =
(

JM−1)+
(ẍd +KD (ẋd − ẋ) (31)

+KP(xd −x)− J̇(q)q̇+JM−1 (C+G))
Copyright c© 2005 by ASME
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+(I −
(

JM−1)+
JM−1)u1.

To our knowledge, this controller has not been presented in the
literature.

Another, fairly practical idea would be to weight the differ-
ent joints depending on the maximal torquesτmax,i of each joint;
this would result in a metricN = diag(τ−1

max,1, . . . ,τ
−1
max,n).

Controlling Constrained Manipulators: Impedance &
Hybrid Control

Contact with outside objects fundamentally alters the robot’s
dynamics, i.e., a generalized contact forceFC ∈ R

6 acting on the
end-effector changes the dynamics of the robot to

u = M(q)q̈ +C(q, q̇)+G(q)+JTFC. (32)

In this case, the interaction between the robot and the environ-
ment has to be controlled. This kind of control can both be used
to make the interaction with the environment safe (e.g., in ama-
nipulation task) as well as to use the robot to simulate a behavior
(e.g., in a haptic display task). We will discuss impedance con-
trol and hybrid control as examples of the application of thepro-
posed framework; however, further control ideas such as parallel
control can be treated in this framework, too.

Impedance Control. In impedance control, we want
the robot to simulate the behavior of a mechanical system such
as

Md(ẍd − ẍ)+Dd(ẋd − ẋ)+Pd(xd −x) = FC, (33)

whereMd ∈ R
6×6 denotes the mass matrix of the desired sys

tem,FC ∈ R
6 denotes the measured external forces exerted on

the system,Dd ∈ R
6 denotes the desired damping, andPd ∈ R

6

denotes the gains towards the desired position. Using Equation
(25), we see that this can simply be brought in the standard form
for tasks by

MdJq̈ = FC−Mdẍd −Dd(ẋd −Jq̇)−Pd(xd − f(q))−MdJ̇q̇,

after dropping all indices. From this we can infer the task de-
scription given by

A = MdJ, (34)

b = FC−Mdẍd −Dd(Jq̇− ẋd) (35)

−Pd(f(q)−xd)−MdJ̇q̇.
7
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A major question in this context is the choice of the correct joint-
space control lawu1(q, q̇), and the right metric to achieve such
tasks.

Separation of both Systems through Kinematics. Similar as
in end-effector control, a practical metric isN = M−2 as this
basically separates both dynamic systems into two separateones
as it will become apparent in this section. For simplicity, we
make use of the joint-space control lawu1 = C+G+u0 similar
as before. This results in the control law

u = u1 +N−1/2
(

AM −1N−1/2
)+

(

b−AM−1(F+u1
)

),

= M (MdJ)+ (FC−Mdẍd −Dd(Jq̇− ẋd) (36)

−Pd(f(q)−xd)−MdJ̇q̇)+C+G

+(I −M (MdJ)+ MdJM−1)u0.

As (MdJ)+ = JTMd
(

MdJJTMd
)−1

= J+M−1
d sinceMd is in-

vertible, we can simplify this control law into

u = MJ+M−1
d (FC−Mdẍd −Dd(Jq̇− ẋd) (37)

−Pd(f(q)−xd))−MJ+J̇q̇+C+G

+M(I −J+J)M−1u0.

We note thaẗxd = M−1
d (FC−Mdẍd −Dd(Jq̇− ẋd)−Pd(f(q)−

xd)) is a desired acceleration in task-space. This clarifies the pre-
vious remark: we have a first system which describes the inter-
action with the environment – and additionally we use a second,
inverse-model type controller to execute the desired accelerations
with our robot arm.

Dynamically Consistent Combination. Similar as in end-
effector control, a practical metric isN = M−1 which combines
both dynamic systems into a big one employing Gauss’ princi-
ple. For simplicity, we make use of the joint-space control law
u1 = C + G+u0 similar as before. This results into the control
law

u = u1 +N−1/2
(

AM −1N−1/2
)+

(

b−AM−1(F+u1
)

),

= u1 +JT (

JM−1JT)−1(

b−AM−1(F+u1
)

),

= M1/2
(

MdJM−1/2
)+

(FC−Dd(Jq̇− ẋd) (38)

−Pd(f(q)−xd)−MdJ̇q̇)+C+G

+(I −M (MdJ)+ MdJM−1)u0.
Copyright c© 2005 by ASME
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As (MdJM−1/2)+ = M−1/2JT
(

JM−1JT
)−1

M−1
d sinceMd is in-

vertible, we can simplify this control law into

u = JT (

JM−1JT)−1
M−1

d (FC−Dd(Jq̇− ẋd) (39)

−Pd(f(q)−xd))−MJ+J̇q̇+C+G+(I −MJ+JM−1
)u0.

We note that the main difference between the two control laws
the location of the matrixM .

Hybrid Control. In hybrid control, we intend to control
the desired position of the end-effectorxd and the desired con-
tact force exerted by the end-effectorFd. Modern, common hy-
brid control approaches are essentially similar to our introduced
framework [3]. Both are inspired by constrained motion and use
this insight in order to achieve the desired task. In traditional hy-
brid control, a natural or artificial, idealized holomonic constraint
φ(q,t) = 0 acts on our manipulator, and subsequently the dire
tion of the forces is determined through the virtual work principle
of d’Alembert. We can make significant contributions here asour
framework is a generalization of the Gauss’ principle that allows
us to handle even non-holomic constraintsφ(q, q̇,t) = 0 as long
as they are given in the form

Aφ(q, q̇)q̈ = bφ(q, q̇). (40)

Aφ, bφ depend on the type of the constraint, e.g., for scleronomi
holomonic constraintsφ(q) = 0, we would haveAφ(q, q̇) = Jφ
andbφ(q, q̇) = −J̇φq̇ with Jφ = ∂φ/∂q as in [3]. Additionally,
we intend to exert the contact forceFd in the task; this can be
achieved if we choose the joint-space control law

u1 = C+G+JT
φ Fd. (41)

From the previous discussion, this constraint is achieved by the
control law

u = u1 +N−1/2
(

AφM−1N−1/2
)+

(bφ −AφM−1(F+u1)),

(42)

= C+G+N−1/2
(

AφM−1N−1/2
)+

bφ (43)

+N−1/2(I −
(

AM−1N−1/2
)+

AM −1N−1/2)N1/2JT
φ Fd.

Note that the exerted forces act in the null-space of the achieved;
therefore both the constraint, and therefore the force can be set
independently.
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c,

(a) Simulated Robot Arm (b) SARCOS Master Arm

Figure 1. Setups in which we evaluate the designed controllers: (a) a

physical simulation of the SARCOS Master Arm, (b), the robot arm.

Evaluations
The main contribution of this paper is the unifying method-

ology for deriving robot controllers. In order to demonstrate the
framework’s feasibility for providing implementable controllers
for real robots, we have chosen a few of the controllers derived
here and evaluate them with a simple tracking task. In future
work, we plan to evaluate all controllers presented in this paper
with more complex tasks.

The joint-space trajectory controller derived in this paper is
already well established in the literature, and such that further
evaluation is not necessary. Of more interest to us are the end-
effector controllers, since they introduce added complexity, par-
ticularly the problem of redundancy resolution. Due to a lack
of force sensors on our experimental platform, we are unableto
implement the impedance or hybrid controllers, but plan to do so
in our future work. For this paper, we evaluate the three end-
effector controllers from Section : (i) the resolved-acceleration
kinematic controller (with metricN = M−2) in Equation (29),
(ii) Khatib’s operational space control law (N = M−1) in Equa-
tion (30), and (iii) the identity metric control law (N = I ) in
Equation (31).

As an experimental platform, we use the Sarcos Dextrous
Master Arm, a hydraulic manipulator with an anthropomorphic
design shown in Figure 1 (b). Its seven degrees of freedom mimic
the major degrees of freedom of the human arm, i.e., the threein
the shoulder, one in the elbow and in the wrist. The robot’s end-
effector tracks a planar “figure-eight (8)” pattern in task space
at two different speeds. In order to stabilize the null-space
trajectories, we choose a PD control in joint space which pulls
the robot towards a fixed rest posture,qrest; this control law is
given byu0 = M (KP0(qrest−q)−KD0q̇) . Additionally we ap-
ply gravity, centrifugal and Coriolis force compensation,such
thatu1 = u0 + C+G. For consistency, all three controllers are
assigned the same gains both for the task and joint space stabi-
lization.

Figure 2 shows the end-point trajectories of the three con-
Copyright c© 2005 by ASME
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Figure 2. This figure shows the three end-effector trajectory controllers

tracking a “figure eight (8)” pattern at 8 seconds per cycle. On the left is

the x-z plane with the y-z plane on the right. All units are in meters.
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Figure 3. The same three controllers tracking the same “figure eight (8)”

pattern at a faster pace of 4 seconds per cycle. The labels and units

remain the same as in Figure 2.

trollers in a slow pattern of 8 seconds per cycle “figure-eight (8)”.
Figure 3 shows a faster pace of 4 seconds per cycle. All thre
controllers have similar end-point trajectories and result in fairly
accurate task achievement. Each one has an offset from the d-
sired (thin black line), primarily due to the imperfect dynamics
model of the robot. The root mean squared errors (RMS) be
tween the actual and the desired trajectory in task-space for each
9
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Figure 4. Joint space trajectories for the four major degrees of free-

dom, i.e., shoulder flexion-extension (SFE), shoulder adduction-abduction

(SAA), humeral rotation (HR) and elbow flexion-extension (EBFE), are

shown here. Joint angle units are in radians. The labels are identical to

the ones in Figure 2.

of the controllers are shown in the Table 1.
As expected, the performance of the three controllers is very

similar in task space. However, the resolved-accelerationkine-
matic controller (N = M−2) appears to have a slight advantage
here. The reason is most likely due to errors in the dynam-
ics model, since the effect of these is amplified by the inversion
of the mass matrix in the control laws given in Equations (30,
31) while the decoupling of the dynamics and kinematics pro-
vided by the controller in Equation (29) can be favorable as the
effect of the modeling error is not increased. Clearly, moreaccu-
rate model parameters of the manipulator’s rigid body dynamics
would result in a reduction of the gap between these control laws
as we have confirmed in simulations. Figure 4 shows how the
joint space trajectories appear for the fast cycle. Although end-
point trajectories were very similar, joint space trajectories dif-

Table 1. This table shows the root mean squared error results of the

tracking achieved by the different control laws.

Metric Slow RMS error [m] Fast RMS error [m]

N = M−2 0.0122 0.0130

N = M−1 0.0126 0.0136

N = I 0.0130 0.0140
Copyright c© 2005 by ASME
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fer significantly due to the different optimization criteria of each
control law.

Conclusion

In this paper we have presented a novel optimal cont
framework which allows the development of a unified approa
for deriving robot control laws. We have shown in detail how we
can make use of both the robot model and a task description
order to create the control law which is optimal with respectto
the squared motor command under a metric whileperfectlyful-
filling the taskat each instant of time. We have discussed how
to realize stability both in task as well as in joint-space for this
framework.

Building on that foundation, we demonstrated how a va
ety of control laws–which on first inspection appear rather un-
related to one another–can be derived using this straightforward
framework. The covered types of tasks include joint-space tra-
jectory control for both fully actuated and overactuated robots,
end-effector trajectory control, impedance and hybrid control.

The implemention of three of the end-effector trajecto
control laws resulting from our unified framework on a rea
world Sarcos Master Arm robot has been carried out. As e
pected, the behavior in task space is very similar for all three
control laws; yet, they result in very different joint-space behav-
iors due to the different cost functions resulting from the different
metrics of each control law.

The major contribution of this paper is the unified frame
work that we have developed. It allows a derivation of a variety
of previously known controllers, and promises the easy develop-
ment of a host of novel ones. The particular controllers reported
in this paper were selected primarly for illustarting the applica-
bility of this framework and showing its strength in unifying dif-
ferent control algorithms using a common building principle. In
future work, we will show how this framework can yield a vari
ety of new and interesting control laws for underactuated tasks
and robots, for non-holomonic robots and tasks, and for robts
with flexible links and joints.
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