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ABSTRACT of Dimensionality’ [4], [5].

Gauss’ principle of least constraint and its generalizaso Recently, a novel way of thinking about tracking control of
have provided a useful insights for the development of ingck ~ mechanical systems was suggested in [1] inspired by refsoiits
controllers for mechanical systems [1]. Using this concey analytical dynamics with constrained motion. The majoight

present a novel methodology for the design of a specific dfass  in [1] is that tracking control can be reformulated in ternfs o
robot controllers. With our new framework, we demonstra t constraints, which in turn allows the application of a getfiea-
well-known and also several novel nonlinear robot contaol$ tion of Gauss’ principle of least constratij6] in order to derive
can be derived from this generic framework, and show experi- & controller. As it is outlined already in [1], this insiglgads
mental verifications on a Sarcos Master Arm robot for some of to a specialized optimal control framework for controlleé-m
these controllers. We believe that the suggested approach u  chanical systems. While it is not applicable to non-meateini
fies and simplifies the design of optimal nonlinear contralda control problems with arbitrary cost functions, it yieldsienpor-
for robots obeying rigid body dynamics equations, both with tant class of optimal controllers, i.e., the class wheregtioblem

without external constraints, holonomic or nonholonomiac requires 'FaSk achievement un_d_er minimal squqred motor com-
straints, with over-actuation or underactuation, as well@en- mands with respect to a specified metric. In this paper, we de-
chain and closed-chain kinematics. velop this line of thinking a step further and show that it ten

used as a general way of solving robotic control problemskwhi
unifies many approachesto robot control found in the liteesto
date. We can demonstrate stability of the controller in tsdce
if the system can be modeled with sufficient precision and the
chosen metric is appropriate. For assuring stability injtiiat
space further considerations may apply. To demonstratiethe
sibility of our framework, we evaluate a few derived conlec
on a robot arm with a simple end-effector tracking task.

This paper is organized as follows: firstly, a novel optimal
control framework based on [1] is presented and analyzech Se

Introduction

Despite the progress in robotics over the last decades, only
a few general building principles for designing robot cotiérs
have been obtained. To date, robot controllers are oftemeter
from insights such as the reduction of the controlled sysiato
a linear system by linearization or by inversion of the dyitm
of the robot [2, 3]. While this approach is viable for manylpro

lems, itis in a sense limiting because it ignores potentizseful ondly, we discuss different robot control problems in thinfie-
properties of the inherent nonlinearities. Only few staata work including joint and task space tracking, force and fybr

can be made about the quality of such controllers underlying ;o1 We show how both established and novel controllers
cost functions which sometimes cannot even be obtained: Gen

eral optimal control techniques on the other hand are oftgn n
appllca}ble as a_ Closed-f(_)rm S_Olu“or_] usua”y does not exist 1Gauss’ principle of least constraint [6] is a general axiamtie mechanics
numerical solutions for high-dimensional systems arenoffte- of constrained motions. It states that if a mechanical sysseconstrained by an-

hibitively expensive in terms of computations due to therseu other mechanical structure the resulting acceleratiohthe system will be such
that it minimizes(X — M —F)TM ~1(x — M ~1F) while fulfilling the constraint.
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can be derived in a unified way. Finally, we evaluate some of
these controllers on a Sarcos Master robot arm.

A Novel Methodology for the Control of Robotic Sys-
tems

A variety of robot control problems can be motivated by the
desire to achieve a task perfectly while minimizing the sgda
motor commands. In this section, we will show how the robot
dynamics and the control problem can be brought into a génera
form which will then allow us to compute the optimal control
with respect to a desired metric. We will augment this framdw
so that we can assure stability both in the joint space ofdhetr
as well as in the task space of the problem.

Formulating Robot Control Problems

In order to formulate our framework, we will introduce the
specifics of the assumed underlying robot model and show how
a task can be specified.

Robot Model: We assume the well-known rigid-body dy-
namics model of manipulator robot arms witlilegrees of free-
dom given by the equation

u=M(q)d+C(a,q) +G(q), 1)

whereu € R" is the vector of motor commands (i.e., torques
or forces),q,q,q§ € R" are the vectors of joint position, veloc-
ities and acceleration, respectiveM,(q) € R™" is the mass
or inertia matrix,C(q,q) € R" denotes centrifugal and Coriolis
forces, and5(q) € R" denotes gravity [2, 3]. At many points we
will write the dynamics equations byl (q)§ = u(q,q) + F(q,q)
whereF(q,q) = —C(q,q) — G(q) as specified in [1, 6]. We as-
sume that an accurate model of our robot system is available.
Task DescriptionA task for the robot is assumed to be de-
scribed in the form of a constraint description, i.e., itigeg by
a function

h(a,9,t) = 0. (2)

whereh € Rk where the dimensionality is arbitrary. For example,
if the robot is supposed to follow a desired trajectggggt) €

R", we could formulate it byn(q,,t) = g — ggedt) = 0; this
case is analyzed in detail in Example 1. We consider onlystask
wherein equation (2) can be reformulated as

A(qaqat)q:b(qaqat)a )

which can be achieved for most tasks by differentiation afeeq

2

tion (2) with respect to time, assuming thitis sufficiently

smooth. For example, our previous task, upon differemtigti
becomesgj = qedt) so thatA =1 andb = qedt). An advan-

tage of this task formulation is that non-holomonic coristsa
can be treated in the same general way.

In the subsequent section titles “Robot Control Laws ", we
will always give the task description first in the generahfioof
Equation (2), and then derive the resulting controller gigime
form which is the linear in accelerations, given in Equaiigh

Optimal Control Framework

Let us assume that we are given a robot model and a con-
straint description of the task as described in the pre\season.
In this case, we can describe the desired properties of aineecfr
work as follows: first, the task has to be achieved perfetcdy,
h(g,q,t) = 0, or equivalentlyAg = b, holds at all times. Sec-
ond, we intend to minimize the control force with respecicms
given metric, i.e.J(t) = u"N(t)u, ateachinstant of time. The
solution to this can be derived from a generalization of Gaus
principle as originally suggested in [1]. We formalize thisre
in the following theorem.

Theorem 1. The class of controllers which minimizes

(4)

for a mechanical systeM (q)d = u(q,q) + F(q,q) while fulfill-
ing the task constraint

(5)

is given by

u=NY2(AM —1N—1/2)+ (b—AM ), (6)

whereD™ denotes the pseudo-inverse for a general maddriand
DY/2 denotes the symmetric, positive definite matrix for which
Dl/ZDl/Z —D.

Proof. By definingz = N¥2u = N¥/2(M§ — F), we obtaing =
M~IN-Y2(z4+NY2F). Since the task constraiti = b has to
be fulfilled, we obtain

AM IN"Y2z=p—AMIF. (7)

The vectorz which minimizesJ(t) = z" z while fulfilling Equa-
tion (7), is given byz = (AM ~*N-Y/2)*(b — AM ~'F), and as
the motor command is given hy= N~1/2z, the theorem holds.
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The choice of the metrid plays a central role, because it de-
termines the type of solution. Often, we require a solutidmciv
has a kinematic interpretation; such a solution is usualgrgby
a metric likeN = M 2. In other cases, the control foroemay
be required to comply with the principle of virtual displacents
by d’Alembert for which the metrit\ = M~ is more appropri-
ate. In the section “Robot Control Laws ", we will see how the
choice ofN results in several different controllers.

Note that this framework has been suggested in general in
[1, 6], and a related framework has been suggested in [7] in a
different context. Special cases of the results of this éaork
such as the one with the metfit= M~ have been discussed
in[8,9].

Note that differential-geometric controller design meatho
often yield similar solutions while being more general; lever,
in many cases, e.g., for non-holomonic systems, the redjuire
analysis for applying our framework can be significantly sien
while yielding similar or the same results.

Stability Analysis

Up to this point, this framework has been introduced in
an idealized fashion neglecting the possibility of impetfii-
tial conditions and measurement noise. Therefore, we modif
this framework slightly and show how we can ensure stabil-
ity. This modification will be introduced in section “Staibjlin
Task Space”. Furthermore, we realize that the case of uaderc
strained tasks, i.e., tasks where some degrees of freedtime of
robot are redundant for the given task, can cause undesioed p
erties or even instability in joint-space; we will treatgiproblem
in section “Stability in Joint Space ".

Stability in Task Space. Up to this point, we have
assumed that we always have perfect initial conditions hatl t
we know the robot model perfectly. However, we have to com-
pensate for the fact that we might not be sitting perfectlyten
trajectory from the start or that we might get disturbed duhis
trajectory. [1] suggested that this can be achieved by requi
that the desired task is an attractor, e.g., it could be ptestas
a dynamical system in the form

h(g,a,t) = fn(h,t), (8)

whereh = Qis a globally asymptotically stable equilibrium point
— or a locally asymptotically stable equilibrium point wahsuf-
ficiently large region of attraction. Note thiatcan be a function
of robot variables (as in end-effector trajectory contsohae will
see in the section on “Robot Control Laws”) but often it sw&ffic
to choose it to be state vector (for example for joint-spaae t
jectory control as we will see in the section on “Robot Cohtro
Laws”). In the case of holomonic tasks (such as trackingrobnt

3

for a robot arm), i.e.hj(q,t) =0,i =1, 2,.., Kk we can make
use of a particularly simple form as suggested in [1] and tiisn
task into an attractor

Hi—|—5ihi+Kih=0, (9

where §; andk; are chosen appropriately. We will make use
of this ‘trick’ in order to derive several algorithms. Obugly,
different attractors with more desirable convergence @rtgs
(and/or larger basins of attraction) can be obtained by singo
fn appropriately.

If we have a task-space stabilization as discussed in tlee par
graph above, we can assure that the control law is stableln ta
space at least in a region near about the desired trajecidey.
show this in the following theorem.

Theorem 2. If we can assure the attractor property of the task
h(g,q,t) = 0, or equivalentlyAg = b, and if our robot model

is accurate, it is straightforward to show that the conteslis
stable in task space.

Proof. When combining the robot dynamics equation with the
controller, and after reordering the terms, we obtain

AM 1 (Mg —F) = (AM —1N—1/2)+ (b—AM~IF). (10)

If we now premultiply the equation with = AM ~IN-Y/2 and
noting thaDD*D = D, we obtainA§ = GG*b =b. The equal-
ity follows because the original trajectory defined Ay =b
yields a consistent set of equations. If this is an attracter
will have perfect task achievement asymptotically.

An analysis of the stability properties of the derived con-
trollers when an imperfect robot model is given will be pdit o
future work.

Stability in Joint Space.  While the stability in task
space is fairly well-understood, it is not immediately clea
whether the control law is stable in joint-space. It is fairl
straightforward to create a counter-example. Examplelus-il
trates a situation where a redundant robot arm is stablesia ta
space while unstable in joint-space.

Example 1. Let us assume the simplest possible robot, a pris-
matic robot with two horizontal, parallel links. The masstma

of this robot is a constant given by = diag(my, 0) + mp1 where

1 denotes a matrix having only ones as entries, and the addi-
tional forces ard= = 0. Let us assume the task is to move the end-
effector x= 1 + gy along a desired positiong¥s i.€., the task can

be specified b = [1,1], and b= Xges+ O(Xdes— X) + K (Xdes— X)
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after double differentiation and task stabilization. Véhthis
obviously is stable in task-space, the initial conditiorftg) =

Xdes(to) — g2(to) would result into both dt)’s diverging into op-
posite directions. The reason for this is obvious: the éftdr
stabilizing in joint space is not task relevant — any solntsta-
bilizing this problem in joint-space would increase thetcos

From this example, we see that the general framework does

not always suffice but that it has to be modified so that we can in
corporate a minimal control which in practice stabilizes tbbot
without affecting the task achievement. One possibilitgtabi-

lize the robot in joint-space is by having a joint-space moton-
mandu; as an additional component of the the motor command
u, i.e.,

U=ug+uz(uy), (11)

where the first component; denotes an arbitrary joint-space
motor command for stabilization, while the second comptnen

uz (u1) denotes the task-space motor command generated with

the previously explained equations. The task-space coargon

Despite that the task is still achieved, the optimal control
problem is affected by the restructuring of our control I&hile
we originally minimizedJ(t) = u"N(t)u, we now have a modi-
fied cost function

Jt) =uIN@®)uz = (U—u1)"N() (u—uy), (13)

which is equivalent to stating that the complete control law
should be as close to the joint-space control lawas possible
under task achievement.

This reformulation can have significant advantages if used
appropriately. For example, a variety of applications —hsas
using the robot as a haptic interface — a compensation of the
robot’s gravitational, coriolis and centrifugal forcegamt space
can be useful. Such a compensation can only be derived when
making use of the modified control law. In this case, we set
u; = —F = C + G, which allows us to obtain

+
Up = N~%/2 (AM —1N—1/2) b, (14)

depends on the joint-space component as it has to compensate

for it. The necessity of such a separation was also noted 10]7
from different points of view. We can show that the fulfillnien
of the taskA§ = b by the controller is not affected by the choice
of the joint-space control law;.

Theorem 3. For any chosen joint-stabilizing control law; =
f(q), the resulting task space control law (u1) ensures that
the joint-stabilizing control law acts in the null-spacetbé task.

Proof. When determininguz, we consideru; to be part of
our forces, i.e., we havé = F+u;. We obtainu, =
N-¥2(AM “IN-1/2)T (b—AM~*F) using Theorem 1. By re-
ordering the complete control law= u; + uz (u1), we obtain

u=u;+NY? (AM —1N—1/2)+ (b—AM Y(F+uy)),
= N2 (AM *1N*1/2)+ (b—AM~1F)
£ -NYZ (AMINE2) T AM R,
= N2 (AMINZ) (b AM ) (12)

LNV (AM 71,\171/2)Jr (AM ~IN-/2)NY2y,,

The task space is defined by /2 (AM *1N‘1/2)+, and that the
matrix N"Y/2[l — (AM ~IN"Y/2)" (AM “IN~%/2)] makes sure
that the joint-space control law and the task space cordawel |
areN-orthogonal.

which does not contain these forces, and we would have a com-
plete control law ot = C + G + N—1/2 (AM _1N_1/2)+ b.

Robot Control Laws

The previously described framework offers a variety of ap-
plications in robotics — we will only be able to give the most
important ones in this paper. Most of these controllers tvinie
will derive are known from the literature but often from vetif-
ferent building principles. In this section, we show how atva
variety of control laws for different situations can be sed in
a simple and straightforward way by using the unifying frame
work that has been developed hereto. We derive control laws f
joint-space trajectory control for both fully actuated anerac-
tuated “muscle-like” robot systems from our framework. Wsma
discuss task-space tracking control systems, and showntsit
well-known inverse kinematics controllers are applicasiof the
same principle. Additionally, we will discuss how the caniof
constrained manipulators through impedance and hybrittaon
can be easily handled within our framework. Please note that
many presented control laws are not novel; the novelty & thi
paper is that these can be derived that straightforwardiy four
framework.

Joint-Space Trajectory Control

The first control problem we attempt to tackle is joint-space
trajectory control. We consider two different situatiofes) We
control a fully actuated robot arm in joint-space, and (b)ooe-
trol an overactuated arm. The case (b) could, for exampies ha
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agonist-antagonist muscles as actuators similar to a hannan

Fully Actuated Robot.  The first case which we con-
sider is the one of a robot arm which is actuated at every de-
gree of freedom. We have the trajectory as constraint with
h(g,t) =q(t) —gq(t) = 0. We turn this constraint into an attrac-
tor constraint using the previously described insightsiding

(6 —&d)+Kp(q—08d) +Kp(q—0aa) =0, (15)

whereKp = (9 j) are positive-definite damping gains, afg =
(kij) are positive-definite proportional gains. We can bring this
into the formA(q,q)§ = b(q,§) with

A=,
b=084+Kp(Ga—a) —Kp(qa—0).

(16)
(17)

In this case, we can use Theorem 1 and derive the controller.
Using (M~IN~1/2)* = N¥/2M as both matrices are of full rank,
we obtain

U=ur N2 (AMINYZ) T (b - AM Y+ un)),

=M (M42) " b+ Ko (G0 —4)
+Kp(@a—q) M (-C-G)),

=M(4g +Kp(Ga —q) +Kp(qa —q)) +C+G. (18)

Note that all joint-space motor commands or virtual forogs
always disappear from the control law and that the choserianet
N is not relevant — the derived solution is unique and general.
It turns out that this a well-known control law, i.e., theverse
Dynamics Control Law [2, 3].

Overactuated Robots. Overactuated robot arms as
they can be found in biological systems are inheritentljedif
ent from previously discussed robot arms. For instancesethe
arms are actuated by several linear actuators, e.g., nsubee
often act on the system in form of opposing pairs. Theseater
tions of the opposing pairs of muscles can be modeled using th
dynamics equations of

Du=M(a)d+C(q,9) +G(a), (19)

2An open topic of interest is to handle underactuated robatamtrol. This
will be part of future work.

whereD depends on our type of muscle. In the simplest model
for a two degrees of freedom robot it could be given by

|

We can bring this equation into the standard form by multi-
plying it with D™, which results in a modified system where
M(q) = D*M(q), andF(q,q) = —D"C(q,§) - D*G(q). Ifwe
have expressed the trajectory like in previous exampleabyan
obtain the following controller

D— [—I + 0 O (20)

0 0 —I+l

u= M2 (A|\7r1/2)+ (b—ANE), 1)

=DM (8da+Kp(8d—9) —Kp(qa—0))+ D" (C+G).
(22)

While immidiately intuitive, it is somehow surprising thttis
particular controller should fall out of the presented feavork.
Due to a lack of hardware and realistic simulators, we cannot
evaluate this approach within the scope of this paper.

End-effector Trajectory Control

While joint-space control of a trajectonyt) is straightfor-
ward and the presented methodology appears to simply repeat
earlier results from the literature, the same cannot beafaddit
end-effector control where the positiat) of the end-effector
is moved along some given trajectory. This problem is generi
cally more difficult as the choice of the metfitdetermines the
type of the solution and as the joint-space of the robot dften
redundant degrees of freedom resulting in problems asdlrea
presented in Example 1. In the following context, we will sho
how to derive different approaches to end-effector corftah
the presented framework; this yields both established disawe
novel control laws.

The task description is given by the end-effector trajgctor
as constraint with(qg,t) = f(q(t)) — xq(t) = x(t) — xq(t) = 0,
wherex = f(q) denotes the forward kinematics. We turn this con-
straint into an attractor constraint using the previouslgatibed
insights, yielding

(X —Xd) +Kp (X —Xg) + Kp (X —Xq) =0, (23)

whereKp = (&;j) are positive-definite damping gains, alg =
(kij) are positive-definite proportional gains. We make use of the
differential forward kinematics, i.e.,

x=J(a)q, (24)
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% =J(q)d+J(q)a. (25)

These allow us to formulate the problem in form of constsint
i.e., we intend to fulfill

g+ Kp (Xg — %) + Kp (g —X) = Jd + 4, (26)

and we can bring this into the forf(q, q)§ = b(q,q) with
Ag,9) =9, (27)
b(g,d) = X4+ Kp (Xa — X) + Kp (Xq —x) — J. (28)

These equations determine our task constraints. Howeéwer, t
resulting controller depends on the chosen metric and-gpate
control law; it is not a unique, general solution as for jespace
control.

Separation of Kinematics and Dynamics. The
choice of the metrié\ determines the type of the task. A met-
ric of particular importance i = M~2 as this metric allows
the decoupling of kinematics and dynamics as we will seeif th
section. Using this metric in Theorem 1, we obtain a conaw |

Jr
u=up+ N2 (AMTINY2) T (b - AMHF ),
=MJI* (g4 Kp (%g — %) + Kp (Xqg — x) — Jq)
+M (1 =37 )M~ tuy —MITIM IR

If we choose the joint-space control law = up — F, we obtain
the control law

u=MJI*(%g+Kp (Xg — %) +Kp (xg — X) — Jg)
+M(1-J)Mtup+C+G.

(29)

This control law is the combination of r@solved-acceleration
kinematic controller [2, 12] with a model-based controller and
an additional null-space term. Similar controllers haverbm-
troduced in [13-16]. The null-space term can be eliminated b
settingug = 0; however, this can result in instabilities if there are
redundant degrees of freedom. This controller will be extd

in the evaluations section.

Dynamically Consistent Decoupling. As noted ear-
lier, another important metric ¥ = M ~1 as it is consistent with
the principle of d’Alembert, i.e., it is dynamically contgsat and

therefore the resulting control force can be re-intergtateme-
chanical structures (e.g., springs and dampers) attachétet
end-effector. This metric has an interesting propertyrdsults
are invariant under Gauge transformation [8]. A change ef th
coordinate system will not result in a change of the appliedds
and the system will not transfer energy into the null-spade [
however, at the same time the metric can require the geaprati
of extremely large forces in certain control situations [6]

Again, we apply Theorem 1, and by definikg= F + u;
obtain the control law

u=us+N"Y2(AM —1N—1/2)+ (b—AM1F),
— Uy +MY2 (JM*l/Z)T (ML) (b—IM 1),
—up+JT (M LT (b - IM )
=37 (ML) (% + Ko (Xa — %)
+Kp(xg—Xx) = I@)g+IMH(C+G))
+M(I =ML (ML) )My,

It turns out that this is another well-known control law sagg
in [17] with an additional null-space term. This controilds
used in [1] and is especially interesting as it has a cleasighy
interpretation [1, 6, 9]: the metric used is consistent vpitimci-
ple of virtual work of d’Alembert. Similarly as before we can
compensate for coriolis, centrifugal and gravitationatés in
joint-space, i.e., settingy = C+ G+ Up. This yields a control
law of

u=J" (IM1T) " (%4 + Kp (Xg — X)

+Kp(Xg—%x)—J(q)q) +C+G
+M (=M1 (ML) )M Ly,

(30)

The compensation of the forces in joint-space is often dbkr
for this metric in order to have full control over the resduatof
the redundancy as the gravity compensation in task spaee oft
results into strange postures.

Further Metrics. Using the identity matrix as metric,
i.e., N = I, punishes the squared motor command without
reweighting. This metric could be of interest as it disttdsithe
“load” created by the task evenly on the actuators. Thisimetr
results in a control law

U= (M) " (Xg+Kp (%4 — X)
+Kp(xa—x) = JI(@)g+IM 1 (C+G))

(31)
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+(1= (MY IM Yy,

To our knowledge, this controller has not been presentelan t
literature.

Another, fairly practical idea would be to weight the differ
ent joints depending on the maximal torqagsy; of each joint;

this would result in a metritl = diag(r;;xl, ..

- Tmaxn)-
Controlling Constrained Manipulators: Impedance &
Hybrid Control

Contact with outside objects fundamentally alters the tsbo
dynamics, i.e., a generalized contact foFeec R® acting on the
end-effector changes the dynamics of the robot to

u=M(a)§+C(a,q) +G(q) +I"Fc. (32)

In this case, the interaction between the robot and the emvir
ment has to be controlled. This kind of control can both beluse
to make the interaction with the environment safe (e.g.,nmea
nipulation task) as well as to use the robot to simulate avieha
(e.g., in a haptic display task). We will discuss impedarme ¢
trol and hybrid control as examples of the application offihe
posed framework; however, further control ideas such asllpér
control can be treated in this framework, too.

Impedance Control.  In impedance control, we want
the robot to simulate the behavior of a mechanical systerh suc
as

Mg(Xq —X) +Dg(Xg — X) +Pa(Xg —X) =Fc,  (33)

whereMgy € R®%6 denotes the mass matrix of the desired sys-

A major question in this context is the choice of the correutt}
space control lawi1(q,q), and the right metric to achieve such
tasks.

Separation of both Systems through Kinematics. Similar as
in end-effector control, a practical metric 6= M2 as this
basically separates both dynamic systems into two sepamate
as it will become apparent in this section. For simplicityg w
make use of the joint-space control layv= C + G + ugp similar
as before. This results in the control law

U=ur N2 (AMINYZ) T (b - AM Y 4un)),
=M (MgJ)" (Fc —Mg%q — Dg(Jq — Xq)
—Py(f(q) —Xa) —MgJq) + C+G
+ (1 =M (Mgd)"MgIM Huo.

(36)

As (Mgd)" = JI™Mg (Mgdd™Mq) * = J*M ! sinceMy is in-
vertible, we can simplify this control law into

u=MJI"M (Fc —MgXq — Da(Iq — Xq)
—Py(f(q) —xg)) —MI*Ig+C+G
+M (1 =J3T)Mtug.

(37)

We note thakg = M ;(Fc — Mg%kq — Dg(3g — Xq) — Pa(f(q) —

Xq)) is a desired acceleration in task-space. This clarifiesrie p
vious remark: we have a first system which describes the-inter
action with the environment — and additionally we use a ségcon
inverse-model type controller to execute the desired acatbns
with our robot arm.

tem, Fc € R® denotes the measured external forces exerted onto

the systemDy € RS denotes the desired damping, @Pyc R®
denotes the gains towards the desired position. Using Eaquat
(25), we see that this can simply be brought in the standamnd fo
for tasks by

M gJ§ = Fc — Mg%q — Dg(Xd — J§) — Pa(xd — f(q)) — MgJq,

after dropping all indices. From this we can infer the task de
scription given by

A =MgyJ, (34)
b = Fc — Mgkg — Dg(J¢ — Xq) (35)
— Py (f(q) —Xa) — MgJa.
7
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Dynamically Consistent Combination. Similar as in end-
effector control, a practical metric ¥ = M~ which combines
both dynamic systems into a big one employing Gauss’ princi-
ple. For simplicity, we make use of the joint-space contaol |

u; = C+ G+ ug similar as before. This results into the control
law

o ) o ),
—up+JT (@AM LT (b— AM H(F +-uy)),
_ M2 (MdJM —1/2) i (Fc — Dg(J§ — Xq) (38)
—Py(f(a) —x4) ~MaJt) +C+G
+(1 =M (Mgd)* MgIM L.

Copyright © 2005 by ASME

http://www.asme.org/about-asme/terms-of-use



As (MgIM~Y2)+ = M~Y/23T (3M~13T) "ML sinceMg is in-
vertible, we can simplify this control law into

u:JT (JM_leT)_lMal(FC_Dd(Jq_Xd) (39)
—Pa(f(q) —Xa)) ~MITIq+C+ G+ (1 —MITIM Huo.

We note that the main difference between the two control &aw i
the location of the matriM.

Hybrid Control. In hybrid control, we intend to control
the desired position of the end-effectqr and the desired con-
tact force exerted by the end-effectgy. Modern, common hy-
brid control approaches are essentially similar to ououhticed
framework [3]. Both are inspired by constrained motion agsd u
this insight in order to achieve the desired task. In traddi hy-
brid control, a natural or artificial, idealized holomonanstraint
@(g,t) = 0 acts on our manipulator, and subsequently the direc-
tion of the forces is determined through the virtual workpiple
of d’Alembert. We can make significant contributions herewas
framework is a generalization of the Gauss’ principle thiates
us to handle even non-holomic constraigtg,q,t) = 0 as long
as they are given in the form

Ay, by depend on the type of the constraint, e.g., for scleronomic,
holomonic constraintg(q) = 0, we would haveAy(q,q) = Jg
andbg(q,q) = —Jef With J, = d@/aq as in [3]. Additionally,

we intend to exert the contact for€g in the task; this can be
achieved if we choose the joint-space control law

u =C+G+JgFq. (41)

From the previous discussion, this constraint is achieyethé
control law

+
u=ug+N12 (Aq,M —1N—1/2) (bp— AgM ~(F +u1)),
(42)

+
=C+G+N"2(AMINT2) ", (43)

+
FNL2() - (AM *1N*1/2) AM IN-T2NY2ITFy.
Note that the exerted forces act in the null-space of theegehi;

therefore both the constraint, and therefore the force easeb
independently.

(a) Simulated Robot Arm (b) SARCOS Master Arm

Figure 1. Setups in which we evaluate the designed controllers: (a) a
physical simulation of the SARCOS Master Arm, (b), the robot arm.

Evaluations

The main contribution of this paper is the unifying method-
ology for deriving robot controllers. In order to demongdrthe
framework’s feasibility for providing implementable cooliers
for real robots, we have chosen a few of the controllers ddriv
here and evaluate them with a simple tracking task. In future
work, we plan to evaluate all controllers presented in tlaipgy
with more complex tasks.

The joint-space trajectory controller derived in this paise
already well established in the literature, and such theihéu
evaluation is not necessary. Of more interest to us are ttle en
effector controllers, since they introduce added compfegar-
ticularly the problem of redundancy resolution. Due to &lac
of force sensors on our experimental platform, we are untable
implement the impedance or hybrid controllers, but plandsa
in our future work. For this paper, we evaluate the three end-
effector controllers from Section : (i) the resolved-aecation
kinematic controller (with metri®\ = M ~2) in Equation (29),

(i) Khatib’s operational space control law & M 1) in Equa-
tion (30), and (iii) the identity metric control lawN(=1) in
Equation (31).

As an experimental platform, we use the Sarcos Dextrous
Master Arm, a hydraulic manipulator with an anthropomocphi
design shown in Figure 1 (b). Its seven degrees of freedonmianim
the major degrees of freedom of the human arm, i.e., the three
the shoulder, one in the elbow and in the wrist. The robotts en
effector tracks a planar “figure-eight (8)” pattern in taglace
at two different speeds. In order to stabilize the null-gpac
trajectories, we choose a PD control in joint space whiclispul
the robot towards a fixed rest postutgss; this control law is
given byuo =M (Kpo (grest— q) — KpoQ) . Additionally we ap-
ply gravity, centrifugal and Coriolis force compensaticugch
thatu; = ug+ C+ G. For consistency, all three controllers are
assigned the same gains both for the task and joint spade stab
lization.

Figure 2 shows the end-point trajectories of the three con-
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Figure 4. Joint space trajectories for the four major degrees of free-
dom, i.e., shoulder flexion-extension (SFE), shoulder adduction-abduction
(SAA), humeral rotation (HR) and elbow flexion-extension (EBFE), are
shown here. Joint angle units are in radians. The labels are identical to
the ones in Figure 2.

Figure 2. This figure shows the three end-effector trajectory controllers
tracking a “figure eight (8)” pattern at 8 seconds per cycle. On the left is
the x-z plane with the y-z plane on the right. All units are in meters.

of the controllers are shown in the Table 1.

As expected, the performance of the three controllers ig ver
similar in task space. However, the resolved-accelerdioe-
matic controller N = M ~2) appears to have a slight advantage
here. The reason is most likely due to errors in the dynam-
ics model, since the effect of these is amplified by the invers
of the mass matrix in the control laws given in Equations (30,
31) while the decoupling of the dynamics and kinematics pro-
vided by the controller in Equation (29) can be favorablehas t
effect of the modeling error is notincreased. Clearly, mameu-
rate model parameters of the manipulator’s rigid body dyioam
would result in a reduction of the gap between these coraves |
as we have confirmed in simulations. Figure 4 shows how the
joint space trajectories appear for the fast cycle. Althoenqd-
point trajectories were very similar, joint space trajeies® dif-
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Table 1. This table shows the root mean squared error results of the
Figure 3. The same three controllers tracking the same “figure eight (8)” tracking achieved by the different control laws.
pattern at a faster pace of 4 seconds per cycle. The labels and units
remain the same as in Figure 2.

Metric Slow RMS error [m] | Fast RMS error [m]
trollers in a slow pattern of 8 seconds per cycle “figure-e{g)i.
Figure 3 shows a faster pace of 4 seconds per cycle. All three| N=M2 0.0122 0.0130
controllers have similar end-point trajectories and rigsufairly N=M-1 0.0126 0.0136
accurate task achievement. Each one has an offset from the de
sired (thin black line), primarily due to the imperfect dymias N= 0.0130 0.0140

model of the robot. The root mean squared errors (RMS) be-
tween the actual and the desired trajectory in task-spacafth
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fer significantly due to the different optimization criteiof each
control law.

Conclusion

In this paper we have presented a novel optimal control
framework which allows the development of a unified approach
for deriving robot control laws. We have shown in detail hoe w
can make use of both the robot model and a task description in
order to create the control law which is optimal with respgect
the squared motor command under a metric wpéefectlyful-
filling the taskat each instant of timeWe have discussed how
to realize stability both in task as well as in joint-spacetfos
framework.

Building on that foundation, we demonstrated how a vari-
ety of control laws—which on first inspection appear rather u
related to one another—can be derived using this straigytrefaol
framework. The covered types of tasks include joint-spame t
jectory control for both fully actuated and overactuatebats,
end-effector trajectory control, impedance and hybricticzn

The implemention of three of the end-effector trajectory
control laws resulting from our unified framework on a real-
world Sarcos Master Arm robot has been carried out. As ex-
pected, the behavior in task space is very similar for akéhr
control laws; yet, they result in very different joint-spaoehav-
iors due to the different cost functions resulting from tifeedent
metrics of each control law.

The major contribution of this paper is the unified frame-
work that we have developed. It allows a derivation of a \grie
of previously known controllers, and promises the easy ldgve
ment of a host of novel ones. The particular controllers regab
in this paper were selected primarly for illustarting theléga-
bility of this framework and showing its strength in unifgidlif-
ferent control algorithms using a common building prineiplin
future work, we will show how this framework can yield a vari-
ety of new and interesting control laws for underactuatstisa
and robots, for non-holomonic robots and tasks, and fortobo
with flexible links and joints.
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