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Abstract—This paper addresses the problem of 3D neuron
tips detection in volumetric microscopy image stacks. We
focus particularly on neuron tracing applications, where the
detected 3D tips could be used as the seeding points. Most
of the existing neuron tracing methods require a good choice
of seeding points. In this paper, we propose an automated
neuron tips detection method for volumetric microscopy image
stacks. Our method is based on first detecting 2D tips using
curvature information and a ray-shooting intensity distribution
model, and then extending it to the 3D stack by rejecting false
positives. We tested this method based on the V3D platform,
which can reconstruct a neuron based on automated searching
of the optimal ‘paths’ connecting those detected 3D tips. The
experiments demonstrate the effectiveness of the proposed
method in building a fully automatic neuron tracing system.

Keywords-3D tips; neuron tracing; ray-shooting;

I. INTRODUCTION

The study of the neuronal cells’ structure is crucial in the
endeavor to understand how the brain circuits work [7].
In this process, the neuronal morphology extraction and
neuron reconstruction from microscopic imaging data is a
key component [11], [16]. Most existing methods are based
upon the fact that a neuron has a branching tree structure,
and then the problem of reconstructing a neuron network can
be formulated as determining where the neuron branches go
and how they further branch into finer arbors. The problem
of neuron reconstruction from image stacks is also called
neuron tracing.

In the past decades, many computational methods and
tools have been developed for digital reconstruction of neu-
rons from images [7]. An ideal set of seeds is very important
for most of those existing tracing methods [9], [11], [16].
The seeds can be any starting points to reconstruct the
neuron tree, such as local maximum points, skeleton seeds
or ridge seeds [11], [16], [17]. In fact, the most intuitive
seed points would be the starting points and the ending
points of the neuron structure, essentially, the neuron tips,
which then can be fed into the existing tracing framework,
such as the ‘shortest-path augmented deformable model’,
which has demonstrated its tracing capability in V3D, a
fast and versatile 3D/4D/5D Image Visualization Analysis
System for Bioimages and Surface Objects [10], [11]. V3D
is fast becoming a standard tool for research in this area [6],
[7]. One important feature of V3D platform is its automatic

Figure 1. V3D-Neuron tracing based on 3D tips [11]. (a) Manually
detected 3D tips of a Drosophila neuron [5]. 3D image stack: a Green
Fluorescent Protein (GFP)-tagged neuron acquired by confocal microcopy;
colored spheres: tips manually identified for this neuron. (b) Reconstructed
neuron produced by V3D-Neuron based on those manually identified tips.
Colored segments: the automatically reconstructed neurite structures.

neuron-tracing ability using V3D-Neuron, if the neuron tips
are given. The contribution of this paper is in detecting the
tips so that a fully automated system can be developed.

V3D-Neuron is one of the state-of-the-art tracing tools
to reconstruct the 3D structure of a neuron or a neurite
tract from microscopy images. It can also immediately
display the tracing results superimposed upon the raw image
data, letting people proofread and correct the tracing results
interactively. As shown in Figure 1, a Drosophila neuron
is reconstructed using V3D-Neuron based on automated



Figure 2. (a) 3D tips (numbers 1-4) denoted by green dots in the
Drosophila neuron stack shown in Figure 1, and a fake 3D tip (number
5) denoted by red dot. (b) The 3D tips in slices–2D tips (blue circles).
Usually a 3D tip will result in 2D tips in multiple slices, as shown in
Figure 6. Here for each 3D tip, the 2D tips in just one slice are shown.

searching of the optimal ‘paths’ connecting a set of manually
identified 3D tips. Those tips are locations pinpointed by
the user to indicate where the tracing should begin and end
(Figure 1a). The ‘shortest path’ algorithm finds a smooth
tree-like structure in the image voxel domain to connect
one tip (root) to all remaining tips with the least ‘cost’ [3].
Subsequently, the traced neuron is represented using the
individual segments that connect tips and branching points
(Figure 1b), which can be edited in 3D whenever needed.

As we know, neurons are usually very complicated in
structure, for instance the human brain has 1011 neurons,
so the manual tip identification is time-consuming and not
practical. Furthermore, sometimes the arborization of a neu-
ron tree is too complex and thus the tips are hard to visualize.
If the 3D tips of a neuron stack can be automatically and
accurately detected, this could be extremely useful for a
series of neuron tracing algorithms such as V3D-Neuron.

A. Proposed Approach and Relation to Existing Work

The 3D neuron tips are small and very sensitive to
noise, so it is a challenging task to robustly detect the
3D tips in neuron stacks. Although there is some work
on neuron branching point (the location where the neuron

tree bifurcates) detection and other kind of seed points
detection [1], [16], [17], there is not much work on 3D
neuron tip detection. However, there are some existing 2D
corner detection methods, the idea of which can be borrowed
to detect the 2D high curvature points, then further detect
the 2D tip points, and then detect the 3D tips [4], [14].

B. Broad Overview of Solution Strategy

In this paper, we will show how to detect the 3D neuron
tips for a given microscope image stack. Though the most
intuitive way to detect the 3D tips would be to detect them
directly in 3D space, it is not practical for two reasons.
On one hand, the 3D high-curvature points detection is not
robust, especially in the noisy case or when the neuron
signal is weak; on the other hand, the high-curvature point
detection in 3D is time-consuming, thus it is not suitable for
real-time user-interactions. So we propose our tip detection
method based on the 2D tip points detection.

The overall idea here is based on the fact that 3D tips
(Figure 2a) will result in 2D tips in image slices (Figure
2b), and usually one 3D tip results in 2D tips in more than
one slice; while 2D tips are not necessarily 3D tips. So we
first find all 2D tips in every slice (xy-plane), then in the 3D
space (z-direction) check whether those 2D tips are truly 3D
tips or not. The diagram of this proposed 3D tip detection
method is shown in Figure 3.

II. DETAILED METHODOLOGY

As mentioned in Section I, one 3D tip may result in more
than one 2D tips in a few slices (as illustrated in Figure 6).
So we first do 2D tip detection, find the 2D tips as the 3D tip
candidates, and then from which we pick the real 3D tips.
The first step is to find the 2D tips, which can be detected
by a high curvature point detection based method.

A. 2D High Curvature Point Detection

Methods of discrete curvature measures are based on the
rate of tangent direction change. Generally, the tangent angle
is measured by calculating the first difference of direction
change over a certain curve segment, and then the curvature
is measured by calculating the change of tangential direction
over the curve segment.

A lot of existing methods can be modified to detect
the 2D high curvature points, such as the corner detection
approaches [4], [12]. Instead of using the curvature mea-
sures for corner detection, in this paper we detect the high
curvature points based on the eigenvalues of the covariance
matrix of data points on a curve segment, the detailed
description of which can be found in [13], [14].

B. 2D Tip Point Detection

Each 2D high curvature point can be regarded as a 2D
tip point candidate, which needs to be further checked to
find whether it is indeed a tip point or not. Here we use the



Figure 3. The diagram of the proposed automatic 3D neuron tips detection method in 3D microscopy image stacks.

Figure 4. (a) A 2D tip with 16 ‘foreground rays’ (in red color) out of
64 shooting rays, and the maximum angle between those ‘foreground rays’
is 0.47 π. By ‘foreground rays’, we mean those rays with average pixel
intensity larger than a certain threshold, as described in Section 2.2. (b)
A 2D non-tip with 39 ‘foreground rays’, and the maximum angle between
them is π. (c) A 2D branching point (non-tip) with 28 ‘foreground rays’
and maximum angle π.

ray-shooting intensity distribution model to check whether
a 2D high curvature point is a 2D tip point or not.

1) Ray-shooting Modeling: Not all high curvature points
are 2D tips. Some of them are branching points and some
of them are noise points, so we need a verification method
to find the real 2D tips from those high curvature points. As
shown in Figure 2 and Figure 4, the 2D tips have the ‘tip’
characteristic–they are located in the ‘sharp peaks’, from
where if we shoot a number of rays outward, only a limited
number of bright rays are within the foreground area. So we
call such bright rays as ‘foreground rays’. We propose to use
the ray-shooting idea to model the intensity distribution of
the neighboring pixels around a 2D tip candidate.

As shown in Fig 4, if we shoot a number of rays outward
from the point of interest, for example, 64 rays, each with
8 pixels length, we can see that for a 2D tip (Fig 4a), the
number of ‘foreground rays’ will be small, for example, 16.
Here by ‘foreground rays’, we mean those rays with average
intensity exceeding a certain threshold, as mathematically
expressed in Equations (1)-(5). Moreover, those ‘foreground
rays’ should stay together with the maximum angle between
them also within a certain angle threshold, for example,
2π/3. While in the non-tip and branching point cases (Figs
4b-c), the number of ‘foreground rays’ and the maximum
angle between them are much larger.

Mathematically, for a point of interest P to be checked,
the number of shooting rays are M , and each ray has
N points. Let I(i, j) denote the intensity matrix of those
shooting rays r(i), i = 1 : M, j = 1 : N , where
each row represents the ‘pixel’ intensities along a ray. For
those rays in the oblique direction, the ‘pixels’ are not in

integer coordinates, so their intensities are computed through
bilinear interpolation.

We first compute the average intensity A(i) for every
shooting ray,

A(i) =

N∑
j=1

I(i, j)

N
, i = 1 :M, (1)

and find the maximum average intensity MI ,

MI = max
i

(A(i)). (2)

If it is lower than threshold T0, it is considered to be a
‘background area’ point,

P ∈ BP2, if MI < T0, (3)

where BP2 stands for the ‘background area’ points set. So
by ‘background area’ point, we do not mean a point is a
background point (it can be a bright point due to noise),
but it is in the background area and far from the foreground
area. It has no shooting ray with average intensity exceeding
the threshold T0.

If MI > T0, a certain ratio R(0 < R < 1) of the
maximum average intensity, MI ×R, is set as the threshold
T to check whether a shooting ray is a ‘foreground ray’:

T =MI ×R. (4)

Those rays with average intensity values greater than T
are regarded as the ‘foreground rays’, as those red rays
shown in Figure 4, which are stored in the ‘foreground ray’
set Q, the size of which is n, as{

Q = {i|A(i) > T, i = 1 :M},
n = #Q.

(5)

Furthermore, we find the maximum angle between those
‘foreground rays’,

MA = max
p∈Q,q∈Q

(ang(rp, rq)) , (6)

where ang(rp, rq) is the angle between two rays rp and rq .
For a 2D tip, n and MA should be within certain ranges,

i.e,

P ∈ TP2, if

{
T1 <

n

M
< T2,

MA < T3,
(7)

where TP2 stands for the 2D tip set. A point P satisfying
Equation (7) is considered to have the ‘tip’ characteristic.



Figure 5. The detected 2D tips denoted by red dots in the maximum
intensity projection [15] of the neuron stack shown in Figure 1, by the
proposed 2D tip detection method.

In most cases, MA is proportional to n. But it is not
always true, such as in the branching point shown in Fig 4c.
By this intensity distribution modeling, we can classify any
point of interest (not just the 2D tip candidates in the object
boundary) into one of three basic sets: 2D tip point TP2,
‘background area’ point BP2 and non-tip point NP2.

The 2D tip detection result (red dots) on the maximum
intensity projection [15] of the neuron in Figure 1 is shown
in Figure 5. For a given neuron stack, we first detect the 2D
tips in every slice, then using the adjacent slice verification
method to find out which 2D tips are also 3D tips.

C. 3D Tip Detection

In fact, most of the 2D tips are formed by sectioning a 3D
neuron into 2D slices in the xy-plane in the imaging process;
such 2D tips are not the real starting point or ending point
of a neuron branch. So we need to eliminate such fake 3D
tips, and find the real 3D tips which are truly the starting
point or ending point of a neuron signal.

After we get the 2D tips in every slice, we have some
possible ways to find the real 3D tips. One possible approach
is directly extending the 2D high curvature point detection
method to detect the 3D high curvature point. However,
usually the z resolution of the image stack is limited, so
the computation of the z curvature value will be not easy.
Another possible way is to do the 3D ray-shooting modeling
after we get the 2D tips, but it would be computational
expensive. So we propose a different approach that does not
suffer from those shortcomings. It is a verification procedure
on the adjacent slices to infer whether a 2D tip point satisfies
the conditions of a 3D tip.

The basic idea here is that a real 3D tip should keep
its ‘tip’ characteristic along the z direction for a couple

Figure 6. Real 3D tip and fake 3D tip. (c) A real 3D tip (denoted by
number 2 in Fig 2a), with the points in the same xy-location denoted by
green color in its adjacent slices –two upper slices (a)-(b) and two lower
slices (d)-(e). (h) A fake 3D tip (number 5 in Fig 2a), with the same location
points denoted by red color in the adjacent slices (f)-(g) and (i)-(j).

slices, until it goes into the ‘background area’. Specif-
ically, for a 2D tip point Pk with coordinates (x0, y0)
in the kth slice Sk, if it is a real 3D tip, then in
the adjacent slices Sk−m, ..., Sk−1, Sk+1, ..., Sk+m, those
points Pk−m, ..., Pk−1, Pk+1, ..., Pk+m in the same location
(x0, y0) should be 2D tips, or ‘background area’ points,

Pk ∈ TP3, if Pk−m, ..., Pk+m ∈ TP2

⋃
BP2, (8)

where TP3 stands for 3D tip point set. The logic behind this
equation is that in the same location in the adjacent slices,
the points should keep the 2D ‘tip’ characteristic until they
gradually fall into the ‘background area’. Those points can
be either 2D tip point or ‘background area’ point, but cannot
be non-tip point, as illustrated in Figure 6 (a)-(e). While a
fake 3D tip can only keep its ‘tip’ characteristic just for very
few slices and then becomes non-tip in the adjacent slices,
as shown in Figure 6 (f)-(j).

III. EXPERIMENT

The testing data are all from Digital Reconstruction of
Axonal and Dendritic Morphology (DIADEM) Competition
2010 [2]. We test the proposed 3D tip detection method in
this dataset and demonstrate the results mostly on Olfactory
Projection Fibers (OP) images and Neocortical Layer (NL)
images. The Drosophila OP stacks are acquired by confocal
microscopy, with pixel size along the Z direction 3.03 times
of that of the X and Y directions [5], while the NL image
stacks are taken by two-photon lasers scanning microscopy
in vivo, with pixel size along the Z direction is 3.40 times
of that of the X and Y directions [8]. For a given stack,
the preprocessing consists of median filtering and Gaussian
filtering in every slice, and then each stack is patched with
3 all-black slices before the 1st slice and another 3 all-black
slices below the last slice.

A. Choice of Parameters
In our proposed approach, the optimal values for the

thresholds and other parameters in the equations are below,{
M = 64;N = 8;T0 = 50;R = 1/2;
T1 = 1/8;T2 = 1/3;T3 = 2π/3;m = 3.

(9)



When it comes to the number of shooting rays, M , the larger
M is, the more accurate our detection result is, and the
default value in our experiment is 64. The choice of the ray
length N depends on the thickness of the neuron branches.
In the testing dataset, the average neuron branch thickness
is round 8 pixels, so we choose 8 as the default ray length.
About the threshold R, as a rule of thumb, we choose R
to be 0.5. That is to say, we use the half-peak value of
the maximum average intensity of all rays to separate the
‘foreground rays’ from the ‘background rays’.

In the seed-based neuron tracing methods, false positive
detection is preferable to false negative detection. The best
values for T0, T1, T2 and T3 are learned in the experiment
on real data, based on the criteria of minimum false negative
detection and acceptable false positive detection.

For the verification in the adjacent slices, theoretically, the
more adjacent slices taken into account, the more accurate of
the 3D tip detection. But we cannot take too many adjacent
slices, because we may run into a new neuron branch. In
fact, the usual thickness of a neuron branch is 8-12 pixels
in our dataset. Given the fact that the z-distance in image
stack is about 3 pixels, a tip region may across 3-4 Z-slices,
so 3 or 4 is a good choice for m in Equation (8), which has
also proved to be effective in the experiments.

B. 2D Tip Detection Results

The 2D tip detection result on the maximum intensity
projection of the OP1 stack (Figure 1a) is denoted by red
color in Figure 5, from which we can see that most of the
2D tips are correctly detected. If some of the 2D tips are
not successfully detected in one certain slice, that will not
affect the 3D tip detection results, because the algorithm will
find the 2D tips in the nearby xy-locations in the adjacent
slices. So the proposed method is robust to false negative
detection, and we will reject the positive detections by the
adjacent slice verification procedure.

C. 3D Tip Detection Results

Then the experiment on entire stacks is done, with some
typical results shown in Figures 7-8, where the detected 3D
tips are superimposed on the original neuron stacks. Also,
in order to demonstrate the usefulness of the detected 3D
tips, the neuron tracing results by V3D-Neuron based on
the detected 3D tips are also shown. V3D-Neuron uses the
‘shortest path’ method to connect those tip points and then
trace the neurons. It treats individual image voxels as graph
vertexes [11] and uses Dijkstra’s algorithm [3] to find the
shortest paths from every non-root tip to the root. It further
refines the path using a deformable curve model [10].

Figure 7(a) is the detection result in the OP1 stack shown
in Figures 1 and 2. With those detected 3D tips (by color
dots), the V3D-Neuron can trace the whole neuron structure
successfully, as shown in (b), where the colored segments
are the automatically reconstructed neurite structures. Figure

Figure 7. (a) The 3D tip detection results (color dots) for the OP1 stack
shown in Figure 1. Some of the color dots seem to be not in the correct tip
location due to the limitation of 2D representation. (b) The neuron tracing
results by v3D-Neuron, based on the 3D tips detected in (a). The colored
segments are the automatically reconstructed neurite structures.

8 shows the detection result of a very crowded case in OP4
stack, where some of the tips are very close to each other,
and our method can effectively detect most of the tips.

D. Quantitative Results

In order to demonstrate how accurate the detection results
are, we show the statistical results from 6 neuron stacks in
Table 1. There is no similar work to compare, so we evaluate
our result by comparing it to the ‘ground truth’ from the
manual detection.

In Table 1, names in the 1st column denote different
neuron stacks from DIADEM Competition 2010. The 2nd



Figure 8. The 3D tips detected in the OP4 stack.

Table I
DETECTION ACCURACY.

Dataset Tip # False Positive # False Negative #
OP1 48 2/48 1/48
OP3 18 1/18 0/18
OP4 46 4/46 2/46
OP5 17 1/17 0/17
OP6 23 2/23 1/23
NL1 165 10/165 7/165

column is the manfully produced ‘ground truth’ of how
many 3D tips in each stack. The 3rd column is the number
of ‘tip’ points false positively detected, while the 4th column
is the number of ‘tip’ points false negatively detected. From
this table we can see that the detection accuracy is from
91.3% to 95.8%. We can also see that the false negative
detection ratio is lower than the false positive detection ratio,
which is preferable in the seeding based tracing methods.

IV. CONCLUSION

Tracing of 3D neurite structures, which is one of the
essential yet bottleneck steps in understanding brain circuit
structure and function. Most of the existing tracing methods
require a good choice of the seeding points, such as the
starting points and ending points of the neuron branches. We
propose an automated detection method to find the 3D tips in
volumetric microscopy image stacks. We tested this method
in the V3D-Neuron platform, which can reconstruct a neu-
ron based on automated searching of the optimal ‘paths’
connecting the detected 3D tips. Experiments demonstrate
the effectiveness of the proposed method in finding the 3D
tips in neuron image stacks.
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