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Incomplete data with missing feature values are prevalent in clustering problems. Traditional clustering methods first estimate
the missing values by imputation and then apply the classical clustering algorithms for complete data, such as K-median and K-
means. However, in practice, it is often hard to obtain accurate estimation of themissing values, which deteriorates the performance
of clustering. To enhance the robustness of clustering algorithms, this paper represents the missing values by interval data and
introduces the concept of robust cluster objective function. A minimax robust optimization (RO) formulation is presented to
provide clustering results, which are insensitive to estimation errors. To solve the proposed RO problem, we propose robust
K-median and K-means clustering algorithms with low time and space complexity. Comparisons and analysis of experimental
results on both artificially generated and real-world incomplete data sets validate the robustness and effectiveness of the proposed
algorithms.

1. Introduction

In the field of data mining and machine learning, it is a com-
mon occurrence that the considered data sets contain several
observations with missing feature values. Such incomplete
data occur in a wide array of application domains due to
various reasons, including improper collection process of
data sets, high cost to obtain some feature values, andmissing
response in the questionnaire. For example, online shopping
users may only rate a small fraction of the available books,
movies, or songs, which leads to massive amounts of missing
feature values, Marlin [1]. Theoretical study of pattern recog-
nition for incomplete data is first conducted by Sebestyen [2]
under certain probabilistic assumptions. Expectation max-
imization algorithms have also been proposed to compute
maximum likelihood estimates for missing data in Dempster
et al. [3]. Early empirical studies on incomplete data are
reported by Dixon [4] and Jain and Dubes [5].

Clustering analysis has been regarded as an effective
method to extract useful features and explore potential data

patterns. Due to the presence of missing feature values, there
is an urgent need to cluster incomplete data in many fields,
such as image analysis [6], information retrieval [7], and
clinical medicine [8]. To cluster incomplete data, the basic
approach is the two-step method, which first estimates the
missing feature values using imputation and then applies the
classical clustering methods. Troyanskaya et al. [9] inves-
tigate three imputation based clustering methods for gene
microarray data, including the singular value decomposition,
weightedK-nearest neighbors (KNN), and rowaveragemeth-
ods. Troyanskaya et al. [9] conclude that the KNN method
appears to provide a more robust and sensitive result for
missing value estimation than others. Miyamoto et al. [10]
also use a similar imputation based fuzzy c-means (FCM)
method to handle incomplete data. Acuna and Rodriguez [11]
and Farhangfar et al. [12] compare the performance of differ-
ent imputation methods for missing values, including single
imputationmethods, such as themean,median, hot deck, and
Naive-Bayes methods and the polytomous regression based
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multiple imputation method for classification problems. Sar-
avanan and Sailakshmi [13] propose fuzzy probabilistic c-
means algorithms to impute the missing values using the
genetic algorithm.

Besides the imputation based methods, Hathaway and
Bezdek [14] propose four strategies tomake the classical FCM
clustering algorithm applicable to incomplete data. The sim-
plest whole data strategy (WDS) deletes all incomplete sam-
ples and applies the FCM algorithm to the remaining com-
plete data.This strategy is only useful when only a few incom-
plete samples include missing values. To calculate distances
of missing data in the process of implementing FCM, the
partial distance strategy (PDS) can be used. PDShas also been
used in pattern recognition in Dixon [4] and fuzzy clustering
with missing values in Miyamoto et al. [10] and Timm and
Kruse [15]. The third and fourth strategies can be viewed as
iterative imputation based methods. The optimal completion
strategy (OCS) imputes the missing values by the maximum
likelihood estimate in an iterative optimization procedure,
and the nearest prototype strategy (NPS) is a simple mod-
ification of OCS, in which missing elements are imputed
considering only the nearest prototype. Clustering methods
without elimination or imputation for incomplete data have
also been proposed. Shibayama [16] uses the principal com-
ponent analysis (PCA) method to capture the structure of
incomplete data andHonda and Ichihashi [17] propose linear
fuzzy clustering methods based on the local PCA. Zhang
and Chen [18] propose a kernel-based FCM clustering
algorithm for incomplete data, which estimates the missing
feature values based on the fuzzy membership and cluster
prototype. Sadaaki et al. [19] further combine the linear fuzzy
clustering with PDS, OCS, and NPS proposed by Hathaway
and Bezdek [14].

Both direct imputation and iterative imputation (such as
OCS, NPS) methods assume that the miss feature value can
be well estimated by a single value. However, it is usually hard
to obtain accurate estimates of the missing values, and thus
clustering methods based on imputation are sensitive to the
estimation accuracy. To address this issue, Li et al. [20] use
nearest-neighbor intervals to represent the missing values
and extend FCM by defining new interval distance function
for interval data. Interval data have been verified as an effec-
tive way to handle themissing values and further used to pro-
pose effective clustering methods. Li et al. [21] also represent
the missing values by interval data but search for appropriate
imputations of missing values in the intervals using the
genetic algorithm. Wang et al. [22] use an improved back-
propagation (BP) neural network to estimate the interval data
for missing values. Zhang et al. [23] propose an improved
interval construction method based on preclassification
results and use the particle swarm optimization to search for
the optimal clustering. Zhang et al. [8] represent the missing
values by probabilistic information granules and design an
efficient trilevel alternating optimizationmethod to find both
the optimal clustering results and the optimal missing values
simultaneously.

Recently, robust optimization has beenwidely accepted as
an effective method to handle uncertain or missing data and
used in the field of data mining and machine learning, such

as the minimax probability machine [24–27], robust support
vector machines [28, 29], and robust quadratic regression
[30]. This paper aims at designing robust clustering algo-
rithms for incomplete data. The improved interval construc-
tion method based on preclassification is used to obtain the
interval data for missing values. Based on the interval data
representation, we present robust K-median and K-means
clustering algorithms. Different from the existing algorithms,
which use either the interval distance function or optimal
imputation [20, 21, 23], we reformulate the clustering problem
as a minimax robust optimization problem based on interval
data.

Specifically, for given cluster prototype and membership
matrices, we introduce a concept of robust clustering objec-
tive function, which is the maximum of clustering objective
function when the missing values vary in the constructed
intervals. Then the proposed algorithms aim at finding opti-
mal cluster prototype andmembershipmatrices, whichmini-
mize the robust clustering objective function. For both rob-
ust K-median andK-mean clustering problems, we give equi-
valent reformulations for the robust objective function and
present effective solution methods. Compared with existing
methods, the proposed algorithms are insensitive to estima-
tion errors of the constructed intervals, especially when the
missing rate is high. Comparisons and analysis of numerical
experimental results on UCI data sets also validate the effec-
tiveness of the proposed robust algorithms.

Comparedwith existing algorithms, the advantages of the
proposed robust clustering algorithms are twofold. First, our
algorithms can cluster incomplete data without imputation
for the missing feature values and provide robust clustering
results, which are insensitive to estimation errors. Our expe-
riments also validate the effectiveness of the proposed algo-
rithm in terms of robustness and accuracy by comparison
with existing algorithms. Second, the proposed algorithms
are easy to understand and implement. Specifically, the time
complexity of the robust K-median and K-means clustering
algorithms is𝑂(𝑛𝑚𝐾𝑇) and𝑂(𝑛𝑚(𝐾+ log 𝑛)𝑇), respectively,
where 𝑛 is the number of objects, 𝑚 is the dimension of fea-
tures,𝐾 is the number of clusters, and𝑇 is the number of iter-
ations. Our algorithms have similar computation complexity
to the classical K-median and K-means clustering algorithms
and are more efficient than the clustering algorithms for
incomplete data proposed by Zhang et al. [8] with the time
complexity of 𝑂(𝑛𝑚𝐾2𝑇) (when log 𝑛 ≤ 𝐾2 for the robust
K-means clustering algorithm).

The paper is organized as follows. Section 2 reviews the
classical K-median and K-mean algorithms and presents the
robustK-median andK-means clustering problems. Section 3
gives effective algorithms for the proposed robust optimiza-
tion problems. Section 4 reports experimental results. Finally,
we conclude this paper with further research direction in
Section 5.

2. Robust Clustering Algorithms

2.1. K-Median and K-Means Clustering for Complete Data.
Consider the problem of clustering a set of 𝑛 objects 𝐼 ={1, . . . , 𝑛} into 𝐾 clusters. For each object 𝑖 ∈ 𝐼, we have a
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set of 𝑚 features {𝑥𝑖𝑗 : 𝑗 ∈ 𝐽}, where 𝑥𝑖𝑗 describes the 𝑗th
features of the object 𝑖 quantitatively. Let 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑚)T
be the feature vector of the object 𝑖 and 𝑋 = (𝑥1, . . . , 𝑥𝑛) be
the feature matrix or data set.

The task of clustering can be reformulated as an opti-
mization problem, which minimizes the following clustering
objective function:

min 𝐽 (𝑈, 𝑉) = 𝐾∑
𝑘=1

∑
𝑖∈𝐼

𝑢𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑖 − V𝑘
󵄩󵄩󵄩󵄩𝑝𝑝 , (1)

under the following constraints:

𝐾∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ∈ {0, 1} , ∀𝑖 ∈ 𝐼, 𝑘 = 1, . . . , 𝐾, (2)

where 𝑝 = 1, 2. For 𝑘 = 1, . . . , 𝐾, V𝑘 ∈ 𝑅𝑚 is the 𝑘th
cluster prototypes and, for any 𝑖 ∈ 𝐼, 𝑢𝑖𝑘 indicates whether
the object 𝑖 belongs to the 𝑘th cluster. K-median andK-means
are effective algorithms to solve the clustering problem for𝑝 = 1 and 𝑝 = 2, respectively. In the following, let the
cluster prototype matrix 𝑉 = [V1, . . . , V𝐾] ∈ 𝑅𝑚×𝐾 and the
membership matrix 𝑈 = [𝑢1, . . . , 𝑢𝑛] ∈ 𝑅𝐾×𝑛, where V𝑖 =(V𝑖1, . . . , V𝑖𝑚)T and 𝑢𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝐾)T.

Both algorithms solve the clustering problem in iterative
ways as follows.

Step 1. Set iteration index 𝑡 = 0 and randomly select 𝐾
different objects as the initial cluster prototypes {V𝑡𝑘 : 𝑘 =1, . . . , 𝐾}.
Step 2. Let 𝑡 = 𝑡 + 1, and update the membership matrix 𝑈𝑡
by fixing the cluster prototype matrix 𝑉𝑡−1. For any 𝑖 ∈ 𝐼,
randomly select 𝑘∗ ∈ argmin{‖𝑥𝑖 − V𝑡−1𝑘 ‖𝑝 : 𝑘 = 1, . . . , 𝐾},
and set 𝑢𝑡𝑖𝑘∗ = 1 and, for any 𝑘 ̸= 𝑘∗, set 𝑢𝑡𝑖𝑘 = 0.
Step 3. Update the cluster prototype matrix 𝑉𝑡 by fixing the
membership matrix 𝑈𝑡. When 𝑝 = 1, for any 𝑘 = 1, . . . , 𝐾
and 𝑗 ∈ 𝐽, set V𝑡𝑘𝑗 as the median of the 𝑗th feature values of
these objects in cluster 𝑘. When 𝑝 = 2, for any 𝑘 = 1, . . . , 𝐾,
set V𝑡𝑘 as the centroid of these objects in cluster 𝑘; that is, V𝑡𝑘 =(1/∑𝑖∈𝐼 𝑢𝑖𝑘) ∑𝑖∈𝐼 𝑢𝑖𝑘𝑥𝑖.
Step 4. If, for any 𝑖 ∈ 𝐼 and 𝑘 = 1, . . . , 𝐾, we have 𝑢𝑡𝑖𝑘 = 𝑢𝑡−1𝑖𝑘 ,
then stop and return to 𝑈 and 𝑉; otherwise, go to Step 2.
2.2. Robust K-Median and K-Means Clustering for Incomplete
Data. Due to various reasons, the feature matrix 𝑋 may
contain missing components. For example, when |𝐽| = 3, for
a certain object 𝑖 ∈ 𝐼, we may have 𝑥𝑖 = (1, 0.5, ?)T, which
indicates that the third-feature value of object 𝑖 is missing.We
refer to a data set𝑋 as an incomplete data set if it contains at
least one missing feature value for some objects; that is, there
exists at least one 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, such that𝑥𝑖𝑗 = ?. To describe
the missing data set, for any 𝑖 ∈ 𝐼, we further partition the
feature set of 𝑖 into two subsets:

𝐽0𝑖 = {𝑗 : 𝑥𝑖𝑗 = ?, ∀𝑗 ∈ 𝐽} , 𝐽1𝑖 = 𝐽 \ 𝐽0𝑖 . (3)

In practice, it is difficult to obtain accurate estimations of
missing feature values.Thus, in this paper, we represent miss-
ing values by intervals. Specifically, for any 𝑖 ∈ 𝐼, we use an
interval [𝑥−𝑖𝑗, 𝑥+𝑖𝑗] to represent unknown missing feature value
where 𝑗 ∈ 𝐽0𝑖 and use 𝑥𝑖𝑗 to represent known feature value
where 𝑗 ∈ 𝐽1𝑖 . To simplify notations, in the following, let𝑥𝑖𝑗 = (𝑥−𝑖𝑗 + 𝑥+𝑖𝑗)/2 and 𝛿𝑖𝑗 = (𝑥+𝑖𝑗 − 𝑥−𝑖𝑗)/2 for any 𝑗 ∈ 𝐽0𝑖 and𝛿𝑖𝑗 = 0 for any 𝑗 ∈ 𝐽1𝑖 . For details on how to construct these
intervals for missing values, see Li et al. [20] and Zhang et al.
[23].

This paper aims at designing robust clustering methods,
such that the worst-case performance of the cluster output
can be guaranteed. The logic of the proposed method can be
explained as a two-player game: a clustering decision-maker
first makes clustering decision, and then an adversarial player
chooses values of missing features from certain intervals.
Thus, a robust clustering decision-maker will select the
cluster, such that the worst-case cluster objective function is
minimized.

To introduce robust clustering problem,wefirst define the
following robust cluster objective function:

𝐽𝑅 (𝑈, 𝑉) = max{ 𝐾∑
𝑘=1

∑
𝑖∈𝐼

𝑢𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑖 + 𝑦𝑖 − V𝑘
󵄩󵄩󵄩󵄩𝑝𝑝 : 𝑦𝑖

∈ [−𝛿𝑖, 𝛿𝑖] , ∀𝑖 ∈ 𝐼} ,
(4)

where 𝛿𝑖 = (𝛿𝑖1, . . . , 𝛿𝑖𝑚)T, 𝑦𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑚)T, and 𝑦𝑖𝑗
represents the uncertainty in the 𝑗th feature of the object𝑖. Thus, the robust clustering problem can be formulated as
follows:

(RCP) min {𝐽𝑅 (𝑈, 𝑉) : subject to (2)} . (5)

(RCP) is a discrete minimax problem. When there is no
missing data, that is, 𝐽0𝑖 = 0 for any 𝑖 ∈ 𝐼, (RCP) reduces to the
classical clustering problem (1). Since problem (1) is NP-hard
problem [31, 32], finding the global optimal solution of (RCP)
is a challenging task. In the next section, we propose effective
robust K-median and K-means algorithms for (RCP).

3. Algorithms

3.1. Robust K-Median Clustering Algorithm. In this subsec-
tion, we provide a robust K-median clustering algorithm for
(RCP) when 𝑝 = 1. We first show how to simplify the robust
cluster objective function.

𝐽𝑅 (𝑈, 𝑉)
= ∑
𝑖∈𝐼

∑
𝑗∈𝐽

max{ 𝐾∑
𝑘=1

𝑢𝑖𝑘 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 + 𝑦𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 : −𝛿𝑖𝑗 ≤ 𝑦𝑖𝑗 ≤ 𝛿𝑖𝑗} (6)
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= ∑
𝑖∈𝐼

∑
𝑗∈𝐽

max{ 𝐾∑
𝑘=1

𝑢𝑖𝑘 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − 𝛿𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 , 𝐾∑
𝑘=1

𝑢𝑖𝑘 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 + 𝛿𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨} (7)

= ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐾∑
𝑘=1

𝑢𝑖𝑘max {󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − 𝛿𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 + 𝛿𝑖𝑗 − V𝑘𝑗

󵄨󵄨󵄨󵄨󵄨} , (8)

where (7) uses the fact that the maximum of a convex
function over a convex set is attained at extreme points and
(8) uses constraints (2). Since max{|𝑥 − 𝑦|, |𝑥 + 𝑦|} = |𝑥| + |𝑦|
and 𝛿𝑖𝑗 = 0, for any 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽1𝑖 , we further have

𝐽𝑅 (𝑈, 𝑉) = 𝐾∑
𝑘=1

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑢𝑖𝑘 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 + 𝐾∑
𝑘=1

∑
𝑖∈𝐼

∑
𝑗∈𝐽0
𝑖

𝑢𝑖𝑘𝛿𝑖𝑗. (9)

Equation (9) shows that the existence of missing values
increases the cluster objective function. Based on (9), the
robust K-median clustering algorithm can be given in Algo-
rithm 1.

Algorithm 1 (robust K-median clustering algorithm).

Input.The featurematrix𝑋, interval size 𝛿𝑖𝑗 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽) and𝐾.
Output. The cluster prototype matrix 𝑉∗ and membership
matrix 𝑈∗.
Step 1 (initialization). Set iteration index 𝑡 = 0 and randomly
select𝐾 different rows from𝑋 as the initial cluster prototypes{V𝑡𝑘 : 𝑘 = 1, . . . , 𝐾}.
Step 2. Let 𝑡 = 𝑡 + 1 and update 𝑈𝑡 by fixing 𝑉𝑡−1.

For any 𝑖 ∈ 𝐼, randomly select 𝑘∗ ∈ arg min{∑𝑗∈𝐽 |𝑥𝑖𝑗 −
V𝑡−1𝑘𝑗 | + ∑𝑗∈𝐽0

𝑖

𝛿𝑖𝑗 : 𝑘 = 1, . . . , 𝐾}, and set 𝑢𝑡𝑖𝑘∗ = 1 and, for any𝑘 ̸= 𝑘∗, set 𝑢𝑡𝑖𝑘 = 0.

Step 3. Update 𝑉𝑡 by fixing 𝑈𝑡:
For any 𝑘 = 1, . . . , 𝐾, let 𝐼𝑘 = {𝑖 ∈ 𝐼 : 𝑢𝑡𝑖𝑘 = 1}. For any𝑗 ∈ 𝐽, set V𝑡𝑘𝑗 as the median of {𝑥𝑖𝑗 : 𝑖 ∈ 𝐼𝑘}.

Step 4 (stop criterion). If 𝑢𝑡𝑖𝑘 = 𝑢𝑡−1𝑖𝑘 for any 𝑖 ∈ 𝐼 and𝑘 = 1, . . . , 𝐾, then stop and return to 𝑈∗ = 𝑈𝑡 and 𝑉∗ = 𝑉𝑡;
otherwise, go to Step 2.
3.2. Robust K-Means Clustering Algorithm. In this subsec-
tion, a robust K-median clustering algorithm for (RCP) when𝑝 = 2 is proposed. Similarly to the analysis of 𝐽𝑅(𝑈, 𝑉) when𝑝 = 1, we first simply the robust cluster objective function as
follows:

𝐽𝑅 (𝑈, 𝑉)
= ∑
𝑖∈𝐼

∑
𝑗∈𝐽

max{ 𝐾∑
𝑘=1

𝑢𝑖𝑘 (𝑥𝑖𝑗 + 𝑦𝑖𝑗 − V𝑘𝑗)2 : −𝛿𝑖𝑗 ≤ 𝑦𝑖𝑗 ≤ 𝛿𝑖𝑗}
= ∑
𝑖∈𝐼

∑
𝑗∈𝐽

max{ 𝐾∑
𝑘=1

𝑢𝑖𝑘 (𝑥𝑖𝑗 − 𝛿𝑖𝑗 − V𝑘𝑗)2 , 𝐾∑
𝑘=1

𝑢𝑖𝑘 (𝑥𝑖𝑗 + 𝛿𝑖𝑗 − V𝑘𝑗)2}
= ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐾∑
𝑘=1

𝑢𝑖𝑘max {(𝑥𝑖𝑗 − 𝛿𝑖𝑗 − V𝑘𝑗)2 , (𝑥𝑖𝑗 + 𝛿𝑖𝑗 − V𝑘𝑗)2} .

(10)

Since max{(𝑥 − 𝑦)2, (𝑥 + 𝑦)2} = 𝑥2 + 𝑦2 + 2|𝑥||𝑦|, we have
𝐽𝑅 (𝑈, 𝑉) = 𝐾∑

𝑘=1

∑
𝑖∈𝐼

𝑢𝑖𝑘
⋅ (󵄩󵄩󵄩󵄩𝑥𝑖 − V𝑘

󵄩󵄩󵄩󵄩22 + ∑
𝑗∈𝐽0
𝑖

(2𝛿𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 + 𝛿2𝑖𝑗)) .

(11)

To minimize 𝐽𝑅(𝑈, 𝑉), we need to update 𝑈 and 𝑉 in
an alternative manner. Specifically, when the value of 𝑉 is
fixed, each object 𝑖 ∈ 𝐼 can be assigned to any cluster in the
following index set:

argmin
{{{
󵄩󵄩󵄩󵄩𝑥𝑖 − V𝑘

󵄩󵄩󵄩󵄩22 + ∑
𝑗∈𝐽0
𝑖

(2𝛿𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 + 𝛿2𝑖𝑗) : 𝑘 = 1, . . . , 𝐾}}} . (12)

When the value of 𝑈 is fixed, for each cluster 𝑘 = 1, . . . , 𝐾,
let 𝐼𝑘 = {𝑖 ∈ 𝐼 : 𝑢𝑖𝑘 = 1}. Then the optimal value of V∗𝑘
can be obtained by solving the following piecewise convex
optimization problem:

min ∑
𝑖∈𝐼𝑘

∑
𝑗∈𝐽

((𝑥𝑖𝑗 − V𝑘𝑗)2 + 2𝛿𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨) . (13)

Note that optimization problem (13) is decomposable in 𝑗.
Thus, to obtain the optimal value of V∗𝑘𝑗, it is sufficient to solve
the following subproblem:

min 𝑓 (V𝑘𝑗) = ∑
𝑖∈𝐼𝑘

((𝑥𝑖𝑗 − V𝑘𝑗)2 + 2𝛿𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − V𝑘𝑗
󵄨󵄨󵄨󵄨󵄨) . (14)

Procedure 1 (procedure of solving the Subproblem (14)).

Input. Given 𝑘 and 𝑗, 𝐼𝑘,𝑋 and 𝛿𝑖𝑗 (𝑖 ∈ 𝐼𝑘).
Output. V∗𝑘𝑗.

Step 1 (ranking). Rank {𝑥𝑖𝑗 : 𝑖 ∈ 𝐼𝑘} in the increasing order.
To simplify notations, in the following, we omit indices 𝑘 and𝑗, and suppose 𝑥1𝑗 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑛𝑘𝑗, where 𝑛𝑘 = |𝐼𝑘|.
Step 2. Identify potential minimum points.



Mathematical Problems in Engineering 5

For 𝑙 = 1, . . . , 𝑛𝑘 + 1, calculate V𝑙 = (∑𝑛𝑘𝑖=1 𝑥𝑖 + ∑𝑛𝑘
𝑖=𝑙
𝛿𝑖 −∑𝑙−1𝑖=1 𝛿𝑖)/𝑛𝑘.

Step 3. Return to V∗𝑘𝑗 = arg min{𝑓(V) : V = V𝑙, 1 ≤ 𝑙 ≤ 𝑛𝑘 +1, V = 𝑥𝑖𝑗, 𝑖 ∈ 𝐼𝑘}.
Subproblem (14) is a piecewise convex quadratic opti-

mization problem and can be solved by Procedure 1.
Procedure 1 solves Subproblem (14) by enumerating all

potential minimum points. It is easy to see that Procedure 1
can be implemented in O(𝑛𝑘 log 𝑛𝑘) time if the ranking step
uses effective sorting methods, such as the Heapsort.

Based on the above discussion, the robust K-means
clustering algorithm can be described in Algorithm 2.

Algorithm 2 (robust K-means clustering algorithm).

Input. The feature matrix𝑋, interval size 𝛿𝑖𝑗 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽) and𝐾.
Output. The cluster prototype matrix 𝑉∗ and membership
matrix 𝑈∗.
Step 1 (initialization). Set iteration index 𝑡 = 0 and randomly
select𝐾 different rows from𝑋 as the initial cluster prototypes{V𝑡𝑘 : 𝑘 = 1, . . . , 𝐾}.
Step 2. Let 𝑡 = 𝑡 + 1 and update 𝑈𝑡 by fixing 𝑉𝑡−1:

For any 𝑖 ∈ 𝐼, randomly select 𝑘∗ that belongs to the index
set (12).

For any 𝑘 ̸= 𝑘∗, set 𝑢𝑡𝑖𝑘 = 0.
Step 3. Update 𝑉𝑡 by fixing 𝑈𝑡.

For any 𝑘 = 1, . . . , 𝐾 and 𝑗 ∈ 𝐽, obtain V𝑡𝑘𝑗 using Procedure
1.

Step 4 (stop criterion). If 𝑢𝑡𝑖𝑘 = 𝑢𝑡−1𝑖𝑘 for any 𝑖 ∈ 𝐼 and𝑘 = 1, . . . , 𝐾, then stop and return to 𝑈∗ = 𝑈𝑡 and 𝑉∗ = 𝑉𝑡;
otherwise, go to Step 2.
3.3. Computational Complexity. It is well known that the
time complexity of the classical K-median and K-means
algorithms is O(𝑛𝑚𝐾𝑇), where 𝑛 = |𝐼| is the number of
objects, 𝑚 = |𝐽| is the dimension of features, 𝐾 is the
number of clusters, and 𝑇 is the number of iterations. We
will show that the proposed robust K-median clustering
algorithm has an 𝑂(𝑛𝑚𝐾𝑇) time complexity and the robust
K-means clustering algorithm has an𝑂(𝑛𝑚(𝐾+log 𝑛)𝑇) time
complexity.

Specifically, the initialization step of Algorithm 1 takes
O(𝑚𝐾) time to initialize the cluster prototype matrix. For a
given cluster prototype matrix, Algorithm 1 takes O(𝑛𝑚𝐾)
time to update the membership matrix. Note that the median
of 𝑛 scalar can be computed in O(𝑛) time [33]. Let |𝐼𝑘| = 𝑛𝑘
and we have∑𝐾𝑘=1 𝑛𝑘 = 𝑛.Therefore, Step 3 of Algorithm 1 can
be implemented in O(𝑛𝐾 + 𝑚∑𝐾𝑘=1 𝑛𝑘) = 𝑂((𝐾 + 𝑚)𝑛) time.
The last step of Algorithm 1 takes O(𝑛𝐾) time. Therefore, the

time complexity of the robust K-median clustering algorithm
is 𝑂(𝑛𝑚𝐾𝑇).

For the robust K-means clustering algorithm, it is easy
to see that the first two steps of Algorithm 2 take O(𝑚𝐾)
and O(𝑛𝑚𝐾) time, respectively. Let |𝐼𝑘| = 𝑛𝑘. For given 𝑘
and 𝑗, Procedure 1 takes O(𝑛𝑘 log 𝑛𝑘) time to compute V𝑡𝑘𝑗.
Therefore, Step 3 of Algorithm 2 takesO(𝑚𝑛 log 𝑛) time since𝑚∑𝐾𝑘=1 𝑛𝑘 log 𝑛𝑘 ≤ 𝑚𝑛 log 𝑛 time. Note that the last step of
Algorithm 2 also takes O(𝑛𝐾). Thus, the time complexity
of the robust K-means clustering algorithms is 𝑂(𝑛𝑚(𝐾 +
log 𝑛)𝑇).

In addition, it is easy to see that both the robust K-
median and robust K-means clustering algorithms have a
space complexity of 𝑂((𝑚 + 𝑛)𝐾). Therefore, compared
with the classical K-median and robust K-means algorithms,
the proposed robust clustering algorithms consume same
computation resources.

4. Numerical Experiments

In this section, we compare the proposed robust clustering
algorithms with others on two data sets from the UCI
machine learning repository. Section 4.1 describes the data
sets and experimental setup, and Section 4.2 reports and
discusses the experimental results.

4.1. Data Sets and Experimental Setup. Two widely used data
sets, Iris and Seeds, are used to test the performance of the
proposed algorithms. The Iris data consists of 150 objects
and each object has four features of Iris flowers, including
sepal length, sepal width, petal length, and petal width. The
Iris data includes three clusters, Setosa, Versicolour, and
Virginica, and each cluster contains 50 objects. The optimal
cluster prototypes of the Iris data have been reported by
Hathaway and Bezdek [34].The Seeds data set consists of 210
kernels of three different varieties of wheat, and each kernel
has seven real-valued features, including area, perimeter,
compactness, length of kernel, width of kernel, asymmetry
coefficient, and length of kernel groove.

We generate the missing values under the missing com-
pletely at random (MCAR) mechanism as in Hathaway and
Bezdek [14] and Li et al. [20]. Specifically, we randomly select
a specified percentage of components and designate them as
missing. Tomake the incomplete data tractable, we alsomake
sure that the following constraints are satisfied:

(1) each object retains at least one feature;
(2) each feature has at least one value present in the

incomplete data set.

In addition to the Iris and Seeds data sets with artifi-
cially generated missing values, we also test the proposed
algorithms on a real-world incomplete data set and the Stone
Flakes data set [35], which consists of 79 eight-dimensional
attribute stone flake objects in the prehistoric era. These
objects belong to three different historic ages. The Stone
Flakes data set is incomplete and there are 6 incomplete
objects with 10 missing feature values.
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Table 1: Performance of different K-median algorithms on the IRIS data.

%
Misclassification rate Prototype error

WDS PDS NPS RKM1 WDS PDS NPS RKM1
0.05 0.10 0.15 0.05 0.10 0.15

0 17.2 17.2 17.2 17.2 17.2 17.2 0.126 0.126 0.126 0.126 0.126 0.126
5 18.2 20.9 18.1 16.7 16.5 17.3 0.213 0.322 0.217 0.165 0.160 0.178
10 20.1 23.0 19.8 17.3 17.1 18.5 0.263 0.419 0.283 0.218 0.221 0.249
15 24.9 26.3 24.2 19.2 19.3 20.2 0.488 0.599 0.493 0.563 0.553 0.572
20 25.1 28.2 26.5 21.6 22.1 23.6 2.319 2.773 2.185 1.391 1.508 1.857

Table 2:Misclassification rates of different K-median algorithms on
the Seeds data.

% WDS PDS NPS RKM1
0.05 0.10 0.15

0 10.62 10.62 10.62 10.62 10.62 10.62
5 11.76 13.48 12.43 10.14 10.23 11.73
10 11.24 21.81 14.95 12.24 11.67 12.49
15 13.38 22.67 17.05 12.81 12.65 13.35
20 17.86 32.48 16.05 14.38 14.19 15.94

Li et al. [20] use the 𝑞 nearest neighbors to construct
intervals for missing feature values and, from their numerical
experiments, 𝑞 = 6 is a good choice. To further test the
impact of the interval size on the clustering performance of
the proposed robust clustering algorithms, the interval for the
missing value𝑥𝑖𝑗 is constructed as [(1−𝜃)𝑥𝑖𝑗, (1+𝜃)𝑥𝑖𝑗], where𝑥𝑖𝑗 is estimated by the 𝑞 nearest neighbors and 𝜃 ∈ (0, 1).
4.2. Results and Discussion. We first test and compare the
performance of the proposed robust K-median (labelled
“RKM1”) on both Iris and Seeds data sets under different
missing rates from 0% to 20%. The classical K-median
algorithms have also beenmodified based onWDS, PDS, and
NPS to handle incomplete data sets. Since the performance
of K-median algorithm depends on the initial cluster pro-
totypes, we repeat each algorithm 100 times and report the
averaged performance.

Tables 1 and 2 report the averaged performance of differ-
ent K-median algorithms on the incomplete Iris and Seeds
data, respectively. The first column in each table gives the
missing rate. The second to seventh columns give the avera-
ged misclassification rates by comparison with the true clus-
tering result, where the fifth to seventh columns correspond
to the RKM1 algorithms with different values of 𝜃 ranging
from 0.05 to 0.15. In Table 1, the eighth to thirteenth columns
give the averaged cluster prototype errors of different algo-
rithms, which are calculated by

󵄩󵄩󵄩󵄩󵄩𝑉∗ − 𝑉̃󵄩󵄩󵄩󵄩󵄩1 = 𝐾∑
𝑘=1

∑
𝑗∈𝐼

󵄨󵄨󵄨󵄨󵄨V∗𝑘𝑗 − Ṽ𝑘𝑗
󵄨󵄨󵄨󵄨󵄨 , (15)

where𝑉∗ represents the cluster prototypes given by a certain
K-median algorithm and 𝑉̃ is the actual cluster prototypes

of the Iris data set without missing values. Since the actual
cluster prototypes of the Seeds data set are unknown, such
results are not reported in Table 2.

From Tables 1 and 2, we have the following observations.
(1) When there is no missing value, that is, the missing

rate is equal to zero, all K-median algorithms give the
same results. As the missing rate increases, in most
cases, both the misclassification rate and prototype
error of all algorithms become larger.

(2) When the missing rate is small, the missing data
have little adverse effect on the performance of the
proposed RKM1. For example, the misclassification
rate of RKM1 when the missing rate is around 5% is
even smaller than that of RKM1when themissing rate
is zero.

(3) When the missing rate is large, compared with the
WDS, PDS, and NPS based K-median algorithms,
RKM1 provides clustering results with lower numbers
of misclassification and prototype errors.

(4) Experimental results also show that the interval size
affects the performance of RKM1. Specifically, as the
value of 𝜃 increases from 0.05 to 0.15, for most cases,
the misclassification rate of RKM1 first decreases and
then increases. However, when the missing rate is
high (20%), RKM1 with a small value of 𝜃 provides
the best clustering performance.

The proposed robust K-means algorithm (labelled
“RKM2”) is also tested on both Iris and Seeds data sets and
compared with the WDS, PDS, and NPS based K-means
algorithms. Tables 3 and 4 report the averaged performance
of these algorithms by repeating each algorithm 100 times.

Tables 3 and 4 also validate the robustness of the proposed
RKM2 against the missing values. When there are missing
values, RKM2 provides robust cluster results with smaller
misclassification rate and prototype error compared with
the WDS, PDS, and NPS based K-means algorithms. For
example, when the missing rate is 5%, the misclassification
rate given by RKM2with 𝜃 = 0.10 on the Seeds data set is only10.34%,while the bestmisclassification rate given by other K-
means algorithms is 12.10%. The impact of the interval size
on the performance of RKM2 is similar to that of RKM1; that
is, for most cases the RKM2 with 𝜃 = 0.10 provides the best
clustering performance in terms of bothmisclassification rate
and prototype error.



Mathematical Problems in Engineering 7

Table 3: Performance of different K-means algorithms on the IRIS data.

%
Misclassification rate Prototype error

WDS PDS NPS RKM2 WDS PDS NPS RKM2
0.05 0.10 0.15 0.05 0.10 0.15

0 17.8 17.8 17.8 17.8 17.8 17.8 0.165 0.165 0.165 0.165 0.165 0.165
5 19.2 21.5 19.1 17.1 17.4 18.3 0.243 0.147 0.238 0.485 0.513 0.626
10 21.3 23.0 20.1 18.1 18.3 19.2 0.193 0.208 0.316 0.761 0.729 0.831
15 25.1 26.1 24.8 21.2 22.5 23.7 0.52 0.637 0.496 1.653 1.721 1.796
20 25.8 27.0 26.7 24.8 24.4 25.6 2.641 2.871 2.373 2.587 2.673 2.639

Table 4: Misclassification rates of different K-means algorithms on
the Seeds data.

% WDS PDS NPS RKM2
0.05 0.10 0.15

0 10.76 10.76 10.76 10.76 10.76 10.76
5 12.10 13.29 12.71 10.62 10.34 11.26
10 11.05 22.62 15.38 13.67 13.28 14.61
15 13.48 23.67 17.38 14.33 13.97 15.56
20 19.00 35.86 16.95 15.81 15.16 16.33
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Figure 1: Numbers of misclassification of different algorithms on
the Stone Flakes data set.

Finally, we test the performance of the proposed robust
clustering algorithm on a real-world incomplete data set, the
Stone Flakes data set. From the above discussion, we set 𝜃 =0.10 for both RKM1 and RKM2. Figure 1 demonstrates the
numbers of misclassification of different algorithms. From
Figure 1, we see that RKM1 provides the lowest misclassifi-
cation rate and RKM2 provides the second best performance.

5. Conclusion

This paper considers the clustering problem for incomplete
data. To reduce the effect of missing values on the perfor-
mance of clustering results, this paper represents the missing
values by interval data and introduces the concept of robust
cluster objective function, which is defined as the worst-case
cluster objective functionwhen themissing values vary in the
constructed intervals. Then, we propose a robust clustering

model which aims at minimizing the robust cluster objective
function. Robust K-median and K-means algorithms are
designed to solve the proposed robust clustering problem.
The time complexity of the robust K-median and K-means
clustering algorithms is 𝑂(𝑛𝑚𝐾𝑇) and 𝑂(𝑛𝑚(𝐾 + log 𝑛)𝑇),
respectively. Numerical experiments on both artificially gen-
erated and real-world incomplete data sets show that the
proposed algorithms are robust against the missing data and
provide better clustering performance by comparison with
the existing WDS, PDS, and NPS based K-median and K-
means algorithms.

Both K-median and K-means algorithms solve clustering
incomplete data with hard constraints; that is, each object
only belongs to one cluster. To solve clustering incomplete
data with soft constraints, we will further study the robust
fuzzy K-median and K-robust clustering algorithms in the
future.
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