
Migration, Assignment, and Scheduling of Jobs in Virtualized Environment

Seung-Hwan Lim⋆, Jae-Seok Huh†, Youngjae Kim†, and Chita R. Das⋆

⋆Pennsylvania State University, †Oak Ridge National Laboratory

{seulim, das}@cse.psu.edu, {huhj, kimy1}@ornl.gov

Abstract
Migration is an interesting issue for managing resource

utilization and performance in clusters. Recent advances

in server virtualization have made migration a practical

method to achieve these goals. Especially, the live mi-

gration of virtualized servers made their pausing times

negligible. However, migration of a virtual machine

(VM) can slow down other collocated VMs in multi-

resource shared systems, where all the system resources

are shared among collocated VMs. In parallel execution

environment, such sudden slow-down phase of systems

is called system noise; it may slow down overall sys-

tems while increasing the variability of system perfor-

mance. When we consider the virtual machine assign-

ment problem as resource allocation, those performance

issues are hard to be properly treated. In this work, we

address how to consider performance in assigning VMs.

To achieve this goal, we model a migration process of

a VM instance as a pair of jobs that run at the hosts of

sender and receiver. We propose a method to analyze

the migration time and the performance impact on multi-

resource shared systems for completing given VM as-

signment plan. This study may contribute to create more

robust performance in virtualized environment.

1 Introduction

Migration can shorten the job completion time by reas-

signing jobs to the underutilized machines [7]. However,

the residual dependency problem with process migra-

tion hindered migrating jobs in practice [3]. By decou-

pling an operating system instance from underlying hard-

ware, server virtualization allows migration with negligi-

ble down-time of a virtualized server, also known as live

migration [3]. With this novel feature of migration, many

virtual machine assignment schemes have been proposed

to increase the resource utilization of servers so as to re-

duce the total cost of ownership [2, 4, 8]. Recently, re-

searchers have realized that the virtual machine assign-

ment problem accompanies the cost to reassign VMs ac-

cording to the optimal assignment [4]. Hermenier et.al.,

in [4] showed that it could take around 50 minutes to

reassign 35 VMs from an overloaded assignment to an

optimal assignment when NASGrid Benchmark is run-

ning on them. Although the time to complete assign-

ment could depend on assignment algorithms, the time

taken to assign all the VMs is an order of magnitude

higher than migrating single VM. Therefore, this study

addresses how to manage the time to complete the entire

assignment process and performance impact.

Prior work mostly concerns the virtual machine as-

signment problem as a resource allocation problem [2,

6, 8]. Thus, they have focused on estimating resource

demands of VMs and increasing the resource utilization

by employing various bin packing algorithms. One of

the most popularly adopted algorithms is First Fit De-

creasing algorithm, where the VM instances are sorted

according to resource demands before assigning them

into physical machines. Since (re-)assigning VMs in-

volves migrations of VMs, researchers have studied indi-

vidual migration cost [9] or total migration cost [4] dur-

ing assigning virtual machines. Since VMs with suffi-

cient resources may provide reasonable performance, we

addressed the virtual machine assignment problem as the

resource allocation problem.

However, with current VM assignment schemes, we

face the perception of unpredictable performance in vir-

tualized environment [1]. Robust performance is criti-

cal to host jobs, especially, a large number of depen-

dent jobs running on many virtual machines, such as

MapReduce workloads and scientific workloads. One

job with outliered completion time may affect the com-

pletion time of the entire workload due to the synchro-

nization among all the dependent jobs. Performancewith

large variance stems from the fact that we assign virtual

machines according to estimated resource demands in-

stead of the estimated performance. Worse, the time to

arrive at the optimal assignment incurs additional perfor-

mance interferences with the workloads. Therefore, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357588288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VM Sender

Receiver

migration time = down time

VM

(a)

migration time

down time ~ 0

VMReceiver

VM
Sender

(b)

Figure 1: Illustrations of migration and down-time of

non-live (a) and live (b) migrations. For live migrations,

down-time cannot be a measure of the migration over-

head and the effect on the system performance should

be understood in terms of the additional workloads of

sender and receiver processes.

need a performance-aware virtual machine assignment

scheme.

In this work, we discuss how to reduce the additional

performance interference that comes from reassigning

virtual machines. Migration involved in reassigning vir-

tual machines can be considered as an auxiliary job to the

system, which can not be seen from virtual machines.

Thus, performance inteference with migration is unex-

pected and invisible cost to process workloads. Contri-

butions in this work are as follows:

• We treat migration as a job in the system to analyze

and measure the performance impact on the system

due to migration.

• We define the assignment cost – the total completion

time to reassign virtual machines.

• We provide a performance analysis method in shared

service systems with multi resource contention, along

with validation results.

• We illustrate how to profile job characteristics and es-

timate assignment cost and performance impact due to

migrations.

2 Analysis of Migration Cost

Migration-time and Down-time For an appropriate

description of migration overhead during live migrations,

we need to clarify the difference between migration time

and down-time. When a migration is issued, two migra-

tion processes – sender and receiver – should be initiated

on a pair of physical machines. We assume that the dura-

tion of these two (temporary) processes are identical, i.e.,

they are synchronized. We call this time span the migra-

tion time, during which dumping, transfer, and reloading

are completed. By down-time, we denote the duration of

the suspension of a migrated VM (refer to Fig. 1).

Sender Machine

Receiver Machine

VM2 (CPU0) VM1* (CPU1)

VM3 (CPU0) VM1* (CPU1)

Migration in Sender

Migration in Receiver

Domain-0 (CPU0, 1)

Domain-0 (CPU0, 1)

Figure 2: Experiment:VM∗

1
migrates.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

C
o

m
p

le
ti

o
n

 R
a
te

s
 (

J
o

b
s
/s

e
c
)

Time (sec)

Migration
Starts

Migration
Ends

VM1*
VM2
VM3

Figure 3: Job completion rates; VM∗

1
represents the mi-

grated VM, VM2 has remained in sender and VM3 has

remained in receiver.

During a non-livemigration, the migration time is con-

sidered to be identical to the down-time; a VM is paused

first and resumes after all the required migration work-

loads are done. In a live migration, the situation is quite

different; the suspension of the VM (hence, the down-

time) is mostly negligible. However, the migration work-

loads still exist significantly during the migration time.

Thus, the down-time becomes inappropriate for the mea-

sure of the migration overhead.

Performance impact due to migration Let us discuss

the performance impact on the system during migration

time. We migrated VM∗

1
from machine 1 (sender) to ma-

chine 2 (receiver) while VMs, VM∗

1
, VM2, and VM3, are

processing the same workload as shown in Figure 2. The

experimental environment for this work is shown in Ta-

ble 1. The performance impact of three VMs and CPU

usage of each VM and domain-0 are shown in Figure 3

and Figure 4, respectively.

During the migration period , we observe:

• VMs in sender show lower job completion rates than

that of receiver, due to the fact that sender has two

workloads and receiver has one workload when mi-

2

 0
 20
 40
 60
 80

 100 VM1*

 0

 20

 40

 60

 80

 100

C
P

U
 u

ti
li
z
a
ti

o
n

 (
%

)

VM2

 0
 20
 40
 60
 80

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
Time (sec)

VM3

total I/O

(a) CPU utilization of virtual machines

 0

 20

 40

 60

 80

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

C
P

U
 u

ti
li
z
a
ti

o
n

 (
%

)

Time (sec)

Dom-0(Sender)

 0

 20

 40

 60

 80

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

C
P

U
 u

ti
li
z
a
ti

o
n

 (
%

)

Time (sec)

Dom-0(Receiver)

total I/O

(b) CPU utilization of domain-0’s

Figure 4: Migration interferes with workloads on the migrated VM (VM∗

1
) and remained VMs (VM2 and VM3).

Table 1: Experimental Environment.

System

CPU Two single-core AMD Opteron 2.4GHz

RAM 4GB

Storage NFS

Network 1Gbps Ethernet, 10Gbps Infiniband

Hypervisor Xen 3.4.2

Dom0
Kernel Linux 2.6.18

CPU runs on both CPUs

VM

Kernel Linux 2.6.18

CPU runs on one CPU

RAM varied from 256 to 2048MB

I/O access

mode

tap:aio, bypasses the buffer cache of

Dom0

Workload compressing 2560 files of size 256KB

gration is initiated.1

• CPU utilization of Domain-0 in sender is higher than

that of receiver, which supports the above observation.

• Job completion rate of VM2 follows that of VM
∗

1
that

migrates, which means that migration competes for re-

sources with all the VMs in the system.

Those observations support that migration is a job that

competes for system resources with workloads. Let us

find which resources are spent by migration.

Migration consumes system resources We migrated

idle VMs and analyzed which resources are the criti-

cal factor of migration time (Figure 5). Since migra-

tion transfers data in memory from the sender to the re-

ceiver, we varied the size of memory and experimented

with two different network technology. Also, to find ad-

ditional overheads, we migrated varing number of VMs

with 256MB RAM. For the given hardware, we find that

the completion time of migration depends on the total

size of migrated memory and the number of concurrent

migrations. The completion time of migration is linearly

proportional to the total size of migrated memory with

some additional overheads. The additional overheads are

accumulated as we increase the number of concurrent

1VM3 shows longer completion time because the overlapped period

with VM∗

1
and VM3 is longer than that of VM∗

1
and VM2.

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

T
o

ta
l

m
ig

ra
ti

o
n

 t
im

e
 (

s
e

c
)

Total size of migrated memory (MB)

1G Ethernet, multiple 256MB RAM VMs
1G Ethernet, single VM

10G IBA, multiple 256MB VMs
10G IBA, single VM

Figure 5: Migration time is proportional to the total mi-

grated memory and the number of concurrently migrated

virtual machines.

migrations. Although the total size of migrated mem-

ory is dominant factor to the migration time, the network

system also affects. In those experiments, we confirm

that migration is a job that spends multiple resources.

Thus, migration time is not sufficient to describe migra-

tion cost properly. We need to understand the perfor-

mance of shared service systems with multiple resources,

which is described in the following section.

3 Estimating Performance Impact and As-

signment Cost

The overheads of migration have two dimensions – time

and performance impact. Let us denote the migration

time by the time to complete an individual migration.

Then, assignment cost can be defined by the total com-

pletion time to assign all the virtual machines according

to given assignment plan. The performance impact falls

into three categories – the performance impact on the

sender and receiver during an individual migration, the

performance impact on the migrating virtual machine,

3

and the performance impact on the system during reas-

signing virtual machines according to given assignment

plan. Then, it is clear that our objective should be man-

aging assignment cost and the performance impact on the

system to complete the assignment of all the virtual ma-

chines, more formally,

Definition 1 (The Virtual Machine Assignment Cost Problem)

Consider a set of virtual machines {1, . . . , n}. Let a

virtual machine v ∈ {1, . . . , n} have a size of pv and

a migration g has a size of pg . Given the set of virtual

machines to be migrated {i, . . . , j}, we want to minimize
the assignment cost, T , with bounded performance

variation, β, for reassigning them to a set of machines

{1, . . . ,m} according to the given assignment decision.

Solving this problem incur challenges in determining job

sizes, pv and pg , and estimating the assignment cost T
and performance variation β since we have to consider

those parameters in the context of shared service systems

with multiple resources. We proceed to explain how to

determine the job size pj of job j, assignment cost T and

performance variation β.

The performance model in shared service systems

with multiple resources Since the time to complete a

job is a primary performancemetric, we propose a model

to estimate the expanded execution time of jobs when

they compete for multiple system resources. Due to the

page limits, we explain a two-resource, two-job model.

Refer to [5] for anm-resource, n-job model.

Suppose that a system consists of only two resources,

r1 and r2. Let us assume that we know the probability of

accessing those resources by two jobs, j1 and j2, which
can be represented by loading vector p

1
= (p1, 1 − p1)

and p
2
= (p2, 1− p2), where pi is the probability of ac-

cessing r1 by job i. Execution times will be expanded

if two workloads access the same resource at the same

time. The probability of accessing the same resource by

two independent jobs is p1p2+(1−p1)(1−p2). Thus, the
expectations of expanded execution times of two com-

peting jobs, Ti, are given by

T1 = τ1 (1 + p1p2 + (1 − p1)(1− p2)) (1a)

T2 = τ2 (1 + p1p2 + (1 − p1)(1− p2)) , (1b)

where 1 comes from the original execution time of each

job. Note that the above equations are quadratic, which

implies that the execution time of a job with multiple re-

source contention does not linearly increase. However, a

challenge is how to determine the probability that job j
accesses each resource, loading vector pj .

We can obtain the access probability of each resource

by job j, loading vector pj from actual systems as fol-

lows. For two identical jobs, Equation 1 becomes

T = τ
(

1 + p2 + (1− p)2
)

. (2)

Algorithm 1 Constructing the loading vector pj

1: Measure τ , the execution time of job j when it is the only

workload in the system.

2: Measure T , the expanded execution time of job j when 2

instances of job j are running concurrently in the system.

3: As to Equation 2, pj = 1

2

(

1±
√

1− 2(2− τ

T
)
)

4: Obtain the loading vector pj = (pj , 1− pj).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

File Only File w/ Mail Mail Only Mail w/ File

sec
Measure without collocated jobs

Measure with collocated jobs
Estimation15.8 % error

2.4 % error

378.15

43.43

Figure 6: Collocating two different workloads does not

lead to linear performance degradation. Loading vectors

for fileserver and mailserver are, pf = (0.02, 0.98) and
pm = (0.10, 0.90), respectively.

We can obtain τ by running one instance of job j and T
by running two instances of job j. Substituting T and τ
in Equation 2 yields a quadratic equation for p. Hence,
by solving a quadratic equation for p, we can obtain pj

for job j. Algorithm 1 illustrates the procedure to con-

struct loading vector pj for job j in the system. We pro-

pose pj as the job size of job j. Then, the assignment

cost T is the function of pj . We may define β =
∑

j

Tj

τj
,

which means the sum of slow-downs of expanded execu-

tion times of jobs due to migrations.

As shown in Figure 6, experiments with two prede-

fined workloads in FileBench Benchmark– file server

and mail server confirm that our model captures the re-

sulting performance with multiple resource contention in

shared service systems. Here, the size of memory re-

served to each guest machine is 1GB and other system

specifications are the same to Table 1.

Numerical examples for migration We may charac-

terize migration as described in Algorithm 1. From the

values in Figure 5, we can construct pmig = (0.85, 0.15)
for 10Gbps infiniband and pmig = (0.94, 0.06) for

1Gbps Ethernet. Also, we know the time τmig to per-

form migration when system is idle; around 3.12 sec for
1G Ethernet and 2.64 sec for 10Gbps infiniband in our

experimental environment. Suppose we have a work-

load j with pj = (0.8, 0.2) and we know the execution

time τ when the workload j is the only workload in the

system. Then, according to Equation 1, we can obtain

4

Tmig = 5.33sec for 1G Ethernet and Tmig = 4.59sec
for 10Gbps infiniband.

We can reason the performance impact of workload

j as follows. The workload will contend for resources

during those migration periods. For τ > 5.33, Tj =
5.33+τ−5.33/1.71. Since the third term, the processed

portion of the workload during migration is already in-

cluded in the first term 5.33, we subtract it. Similarly,

we can obtain the expanded execution time of workload

j for infiniband. Note that we quantified the performance

impact on the system during migration period as well as

the assignment cost in this numerical example.

We may perform similar calculations to obtain the cost

to reassign virtual machines. Suppose that we perform n
migrations without any workload in the system, for sim-

plicity. When we perform all the migrations simultane-

ously, the probability that one migration operation inter-

feres with other n− 1 migrations is given by

(n− 1)(p2 + (1− p)2), (3)

which is the sum of the probability of pairwise resource

contention among migrations.

Therefore, for the migration time without any interfer-

ence τ , the assignment cost Tm, is given by

Tm = τ(1 + (n− 1)(p2 + (1− p)2)). (4)

However, when we perform all the migrations sequen-

tially, the assignment cost Ts = nτ since individual mi-

grations will be performed in τ . In this way, we could

estimate the performance impact on workloads by mi-

gration, given the loading vectors of workloads.

Challenges in solving the virtual machine assignment

cost problem Here, we propose to consider the vir-

tual machine assignment problem as the on-line schedul-

ing problem in order to bound performance impact on

the system during migration and whole assignment pro-

cess. However, in order to adopt various scheduling al-

gorithms, we face challenges. First, propagation effect

in the performance impact needs to be considered. When

a virtual machine is migrated, it incurs performance im-

pact on other collocated virtual machines in the hosts of

sender and receiver, which will slow down other depen-

dent jobs in different hosts. This would be exacerbated if

multiple migrations occur whether they are sequential or

concurrent. Second, the performance impact due to the

migration does not linearly increase. As we discussed in

this section, the expanded execution time of a job due

to multiple resource contention can be described by a

quadratic equation (Equation 1). Thus, summing up the

performance impact due to an individual migration does

not account for the resulting performance impact on the

system. Third, the order of migration may result in dif-

ferent performance impact and assignment cost. Since

migration is also a job, their performance impact also

depends on the current load on the hosts of sender and

receiver. Thus, we should determine the order of migra-

tions when we optimize the assignment cost and perfor-

mance impact.

4 Concluding Remarks

This work studies the importance of assignment cost of

migrated jobs in job scheduling. We argue that migra-

tion itself should be considered as an auxiliary job in

the system, which owns asymmetrical performance im-

pact on sender and receiver of the migrated job. We did

not only empirically analyze the performance impact of

migration on collocated workloads in the systems, but

also, developed a mathematical model that characterizes

the performance impact on the system. Current work is

limited by quantifying and modeling the migration im-

pact on systems between two nodes, however, it needs

further investigation for multiple nodes that run parallel

applications. We plan this as a future work and aim at

developing an on-line job scheduler that incorporates the

performance impact of migrated jobs to the system.

5 Acknowledgments

We acknowledge detailed comments from the anony-

mous reviewers, which helped us improve the quality of

this paper. This work has been funded in part by Google.

References

[1] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ,
R., KONWINSKI, A., LEE, G., PATTERSON, D., RABKIN, A.,
STOICA, I., AND ZAHARIA, M. A view of cloud computing.
Communications of the ACM 53, 4 (2010), 50–58.

[2] BOBROFF, N., KOCHUT, A., AND BEATY, K. Dynamic place-
ment of virtual machines for managing SLA violations. In Pro-
ceedings of the 10th IFIP/IEEE International Symposium on Inte-
grated Network Management, 2007. IM ’07. (2007).

[3] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of
virtual machines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation - Volume 2.
NSDI ’05 (2005).

[4] HERMENIER, F., LORCA, X., MENAUD, J.-M., MULLER, G.,
AND LAWALL, J. Entropy: a consolidation manager for clusters.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. VEE ’09 (2009).

[5] LIM, S.-H., HUH, J.-S., KIM, Y., SHIPMAN, G. M., AND DAS,
C. R. A quantitative analysis of performance of shared service
systems with multiple resource contention. Tech. Rep. CSE 10-
010, The Pennsylvania State University, University Park, 2010.

[6] MENG, X., PAPPAS, V., AND ZHANG, L. Improving the scal-
ability of data center networks with traffic-aware virtual machine
placement. In Proceedings of the 29th conference on Information
communications, 2010. INFOCOM ’10. (2010).

[7] SANDERS, P., SIVADASAN, N., AND SKUTELLA, M. Online
scheduling with bounded migration. Mathematics of Operations
Research 34, 2 (2009), 481–498.

[8] SINGH, A., KORUPOLU, M., AND MOHAPATRA, D. Server-
storage virtualization: Integration and load balancing in data cen-
ters. In Proceedings of Interenational Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2008. SC
2008. (2008).

[9] WOOD, T., SHENOY, P., VENKATARAMANI, A., AND YOUSIF,
M. Sandpiper: Black-box and gray-box resource management
for virtual machines. Comput. Netw. 53 (December 2009), 2923–
2938.

5

