
(Cxx), 1.9 percent. (Cxy), 2.8 percent. (Cyx) and 1.8 percent. 
(Cyy). Superimposed on each graph are the square roots of the 
appropriate diagonal elements from the error covariance 
matrix P. These elements provide a first-order approximation 
to the estimated variance in the states and hence ± Vi^, is an 
approximate measure of the standard deviation of state 
estimate x ,•. 

Increasing the running speed (and hence the excitation 
frequency) has little effect upon the accuracy of estimation, as 
shown by the results in Fig. 2(b) for a running speed of 4500 
rev/min (e0 = 0.569, Qj = 0.380). Reducing the speed starts 
to affect convergence at speeds below 2000 rev/min as shown 
by the results in Fig. 2(c) for a running speed of 1500 rev/min 
(e0 = 0.737, Qj = 3.426) and this slower rate of convergence 
is reflected in the values of the ± V7^ terms. 

A key assumption in producing the above results is that the 
values of (e/c) and <p are known exactly. Where the unbalance 
is introduced artificially this is a reasonable assumption, 
however where natural unbalance is exploited its effective 
magnitude and angular position would be harder to assess. 
Consequently a further set of tests was performed involving 
deliberately-induced errors in the assumed values of (e/c) and 

Typical results (for a running speed of 3000 rev/min) are 
shown in Fig. 3. The error surfaces in Fig. 3 show the amount 
of bias introduced into each of the coefficient estimates when 
the assumed values of (e/c) and ip are in error. It appears that 
the four coefficients are not as sensitive to phase angle errors 
as in a linear processing scheme which used explicit phase 
angle measurements [8]. In the experiments described in 
reference [8] it was suggested that a 5 deg error in phase angle 
could (typically) produce a 30 percent error in the coefficient 
estimates. Using the nonlinear processing scheme, worst case 
errors of 30 percent (in estimates Cxy or Cyx) only occur when 
the phase error exceeds 10 deg or the magnitude error exceeds 
50 percent. 

Discussion 
This note has discussed an approach to the identification of 

linearized journal bearing dynamics under normal operating 
conditions. Given that an effective technique is already 
available for estimating the four oil-film stiffness terms, a 
method must now be developed for extracting reliable 
estimates of the four damping terms, preferably without the 
need to conduct further experiments. We have suggested that 
this can be achieved by reformulating the problem so that an 
existing algorithm can be applied to estimate the damping 
terms from noisy measurements of the displacement responses 
to synchronous excitation. These responses are acquired 
automatically in any identification experiment and hence the 
approach could be applied retrospectively to refine estimates 
of the damping terms. 

The feasibility of the approach has been tested under 
controlled conditions by generating data from a linearized 
model of a simple rotor-bearing system and demonstrating 
that the governing equations can be reconstructed. In practice 
the effectiveness of such an approach will depend upon the 
robustness of the algorithm when processing actual operating 
data and the accuracy with which the unbalance parameters 
can be assessed. The effects of modeling errors (introduced by 
the linearization process) and other disturbances not con­
sidered in this note (for example, surface roughness of the 
shaft and bearings) will obviously be reflected in the eventual 
results. It is hoped that the results presented here will en­
courage experimental work to quantify such effects. 
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Control of Systems Subject to Small Measurement 
Disturbances 

D. D. Sworder1 

When a controlled system is subject to external disturbances 
of large magnitude, the regulator often uses a mixed strategy, 
combining a feedforward link to neutralize the primary 
impact of the disturbance, and a feedback link to reduce the 
effect of any residual. If there is a possibility of error in 
measuring the disturbance, the problem becomes more 
complex. A sophisticated regulator might even try to "learn" 
the true value of the disturbance. Attempts to design such an 
intelligent regulator usually lead to intractable synthesis 
equations. This paper provides a simple alternative for the 
case in which the measurement of the disturbance is close to 
the true value. A study of a simple model of a solar-powered 
boiler shows that the performance of the proposed regulator 
is near that attainable by much more complicated controllers. 

Introduction 
Although the study of linear systems receives dispropor­

tionate attention in the literature, the fact remains that 
nonlinear equations are necessary to adequately describe 
many important control processes. Linear feedback theory 
may still find an application even in this instance. If the 
nonlinear system operates near a known nominal condition, a 
nominal state trajectory and a nominal actuating signal can be 
determined. Under appropriate conditions, the deviations 
from the nominal path can be described by a linear model. 
Linear synthesis algorithms can then be applied to this per­
turbation model, and a regulator which causes the system to 
track its nominal trajectory can be deduced thereby. 

To be more specific about these ideas, consider the problem 
of synthesizing a feedwater flow rate regulator for control of 
a solar receiver. Certain aspects of this problem were ad­
dressed in [1] and [2]. On the California desert, there is in 
operation a 10 MWe generating system which uses a field of 
movable mirrors (heliostats) to focus the sun's energy on 
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panels mounted on a central tower. Water flows through these 
panels, and is transformed into superheated steam which is 
then used to drive a conventional turbine/generator. 

The equations which relate the response of the ther­
modynamic variables describing the panels to a feedwater 
flow rate input are highly nonlinear. Further, as the insolation 
on the panels changes from early morning conditions to those 
of a sunny summer day, the operating point of the panels 
sweeps through a wide range. For this reason the synthesis of 
a feedwater flow rate regulatory is inherently a nonlinear 
design problem. 

Actually this complexity is more apparent than real. The 
operating point of a single panel changes in response to 
changes in panel insolation. There are insolation sensors on 
the panel which provide the regulator with a means of 
calculating the nominal values of the system state and ac­
tuating signal. Because the diurnal variations are so slow, the 
nominal operation condition can be thought of as essentially 
unvarying and a constant coefficient linear perturbation 
model can be defined. On the basis of this model, a simple 
PID regulator can be produced. The gains of the regulator can 
be varied as appropriate. 

This same design philosophy can be extended to operations 
in a more demanding environment. As clouds pass over the 
heliostat field, abrupt and possibly large amplitude changes 
occur in the operating point. It is no longer acceptable to 
consider the operating level as unvarying. Indeed, the tran­
sients occasioned by the motion of clouds on a partly cloudy 
day give the system a special character. Still, the insolation 
sensors give an indication of the current value of the desired 
operating point, and the perturbation dynamics can now be 
descibed by random motion between a set of linear models. 
References [1] and [2] present simple solution algorithms for 
this problem under differing hypotheses on the perturbation 
dynamics. Reference [3] indicates that the linear models 
provide a good indication of the performance attained by the 
nonlinear system. 

While the applicability of such design procedures is not 
limited to solar central receivers, consideration of the 
peculiarities of this specific system does illustrate some of the 
issues involved. There are, in truth, certain features of the 
regulator synthesis problem which are not well captured in the 
models of [l]-[3]. Of principal interest here are errors in 
measuring the insolation on the panels. The solar flux falls 
across the panel in a distributed manner. There are six flux 
sensors placed at various points on the panel which give an 
accurate, but local estimate of the insolation. The "sensed" 
value of insolation is found by a "high select" logic, and is 
actually the maximum value of the sensor readings. The 
maximum is used because the result of an insufficient feed-
water flow rate could be structural damage to the panel and 
supporting framework. Hence there is a bias toward 
overestimating the true value of effective insolation. 

The preceding paragraph illustrates a generic problem 
encountered in the use of the linear design algorithms. The 
regulator is explicitly dependent upon the operating condition 
of the system. Not only does the operating point of the system 
determine the dynamics of the perturbation model, but it also 
indexes the nominal state trajectory and actuating signal. If 
an error is made in identifying the true operating condition, 
the synthesis model will not only have incorrect dynamics, but 
in addition the correction term, which is the output of the 
feedback link, will be referenced to an incorrect "nominal." 

The latter effect is usually neglected in linear synthesis 
algorithms, and often with good reason. If the operating 
condition is unchanging, an error in computing the nominal 
will be reflected as a bias in the perturbation model. The " I " 
(integration) in the PID controller makes the closed loop 
model insensitive to such effects. 

For the class of systems under consideration here, an in­

tegration is not an effective tool. The operating point changes 
too rapidly to "average" out biases. Rather, this problem is 
of the form of classical dual control [4] in which the controller 
must simultaneously regulate the process, and "learn" the 
true value of the incorrectly measured parameters. 

Dual control problems have proven to be so intractable that 
few synthesis examples exist which have been carried out to 
completion. There are, fortunately, some restrictions on the 
design of the feedwater flow rate regulator which yield a 
natural approximation to the optimal control. First, the 
measurement of insolation, while not error free, is at least 
"close" to the true value of effective insolation on the panel. 
Furthermore, the software purchased for this application does 
not have sufficient flexibility to incorporate "learning." 

Abstracting these properties, it will be assumed that there is 
only a small error in the sensed value of the operating point, 
and that the performance improvement obtainable from 
processing past data is negligible. By dispensing with the 
"learning" function of the regulator, a simple design 
algorithm is obtained. The resulting regulator has been tested 
on a low order model of a solar central receiver with a 10 
percent positive mean bias in the sensed insolation level. By 
comparing the performance of the proposed regulator with 
that of a (unrealizable) regulator which utilizes perfect 
knowledge of the operational level, it is shown that there is 
only slight performance degradation attributable to 
misclassification of the true value of insolation. 

Problem Description 
The global model of the system to be controlled will be 

assumed to be given by an ordinary differential equation of 
the form 

$=m,w,t,r)\t*.t0 (1) 

$('o) = fo 
where £ is the vector system state, w the vector actuating 
signal, and r a scalar indicator variable representing the 
exogenous influences on the sytsem. In the case of the solar-
powered boiler, (1) would represent a lumped mass ap­
proximation to the partial differential equations which more 
accurately describe the panel. The vector £ would include 
enthalpies, temperatures, and pressures. The feedwater flow 
rate would be represented by w, and the insolation would be 
indexed by r. 

As mentioned earlier, linear control system synthesis 
procedures are often based upon the linear perturbation 
model associated with (1). Suppose r is a constant, r0, and 
suppose that (x„, v„) satisfies 

x„=f(xn,v„,t,r0) (2) 
xn Uo)~xO 

and represents the desired operating path of the system 
corresponding to the specific value of r. Then (x„, v„) is the 
nominal trajectory for the system corresponding to r0. 

The actual system response (xp, vp) will be subject to a 
variety of external influences. The difference between these 
two sets of functions gives the error variables (x, v); 

x(t)=xpV)-xn(t;r0) (3) 

v(t)=vp(t)-v„U;r0) 
Under appropriate conditions, the error variables satisfy a 
linear set of differential equations. 

x=Frox+GrQv (4) 

xV0) = xpV0)-x„(t0) 
The perturbation model (4) can be used in a synthesis 
algorithm to find v. The actuating signal is simply the sum v 
+ v„ (/;/•„)• 
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The cursory discussion above describes the conventional 
relation between the linear system model (4) and the actuating 
signal. Note that the error variables (3) and the linear model 
(4) are indexed by the realized value of r. If there is an error in 
identifying the true operating point, the regulator will be 
uncertain as to the correct nominal trajectory. This ambiguity 
is reflected in its output. Suppose that the true operating point 
is r* while the current measurement of the operating point is r. 
Then the regulator will add its correction to an incorrect 
nominal vn (t; r) instead of the true nominal v„ (t; /•*). 
Denote by v the difference between vp (t) and v„ (t; r). Then 
if the two nominal functions v„ are close 

x=Fr*x + Gr*v + Gr*(v„V;r)-v„(t,r*)) (5) 

=Fr*x+Gr*v + Gr*Av 

The last term in (5) is a bias created by the regulator's inability 
to determine the true operating level. 

There is a similar confusion in the determination of the 
state error. From (3) 

x(t)=xp(t)-x„V;r)+AAr,n (6) 

Ax(t,r,r*)=xnU;r)-x„(C,r*) 

Denote by y(t) the "measured" state error; i.e., the error the 
regulator thinks exists in the system state variables based upon 
its sensed value of the operating point, r. 

y(t)=xp(t)-x„U\f) (7) 

Then 

y(t)=x{t)-Ax{t,r,r*) (8) 

The dynamic equation for the measured state follows 
directly from (5) and (8) 

y=Fr*y + Gr*v + Pl{r,r*) if r*(t) =r*(t~) (9) 

where 

pl(.r,r*) = G,'Av(r.n + Fr*AAr,rt)-K(r,r*) 

As discussed in the introduction, the peculiarity of this 
system which gives it its character is the discontinuous nature 
of r. In the case of the solar central receiver, these discon­
tinuities are created by the passage of clouds over the heliostat 
field. Suppose that the set of permissible values of r is made 
discrete;i.e., 

r ( / ) € S = [ l s) 

Then, from (8) it is clear that when there is a change in 
operation point (r(f) = j ^ r(t~)=i), there will be an 
associated discontinuity iny\ i.e., 

y(t)=y(r)+\ij (10) 

\v=x„U;i)-x„(fJ) 

where it has been assumed that xp is continuous across 
discontinuities in r. 

To provide a quantitative description of the variations in r, 
it will be assumed that r is a finite state Markov process 
described by a transition matrix Q = [qy]; [5]. 

f\+quA + o{A) i=j 
Prob (r(t+A) =j\r(t) ={) = •{ (11) 

L. quA + o(A) i*j 

The random process r* will change in concert with r, and it 
will be assumed that the probability distribution of r*(t) 
depends on r(t) and is conditionally independent of the 
preceding values of r. 

The regulator tends to misclassify its operating condition. 
Its sensors indicate an operating level of r(t), when in fact the 
operating level is r* ( / ) . If the regulator was ignorant of this 
possibility of error, it would incorrectly identify its per­

turbation model and nominal trajectory. Equations (9) and 
(10) give the dynamic equations for the sensed errors. 

Although y is the measured state error, the coefficients in 
the equation of equation (9) are not known by the regulator 
because of the uncertainty surrounding the value of r*. The 
third term in (9) is a bias induced by the sensor error. If it were 
not for the variability of r, this bias would be of no con­
sequence because its effect could be rendered negligible by 
placing an integrator in the forward path. In this application, 
however, the need to respond to sudden changes in r works 
against the use of a lag compensation. 

As a performance index a quadratic weighting of state 
errors and actuating signal will be used 

J=E\x(tf)Pfx(tf) + j ^ (x'Mx+v'Nv)dt\yUa),r(t0)\ (12) 

subject to 

P / ,M>0;Af>0 

Under appropriate technical assumptions, the feedback 
regulator minimizing J has desirable stability and sensitivity 
properties. The class of regulators generated by criteria like 
(12) is attractive in many instances in which the explicit form 
for J is difficult to justify. 

The design problem described above bears striking 
similarity to those discussed in [1] and [2], but differs in a very 
important way. The indicated references were concerned with 
a Markov decision problem, and were solved using the 
classical method of dynamic programming [6]. Despite the 
fact that r is assumed to be a Markov process, y will, in 
general, not be. A memory of past values of y and r would, if 
properly interpreted, given an indication of the actual value of 
r*. For this reason, the problem as posed is a dual control 
problem [4] with all of the attendant computational dif­
ficulties. 

In the current implementation of the operational feedwater 
flow rate regulator, these complications were avoided by the 
simple artifice of treating r and r* as being identical. Indeed, 
no attempt to estimate r* could be made since the regulator 
software did not have the flexibility to retain or manipulate 
the past values of measured system variables. An explicit use 
of the state derivatives in such a calculation would have been 
deemed inappropriate because of unmodelled state and 
measurement noise. 

The objective of this design study is to use the current 
measurements of the operational state of the system (y(t), 
r(t)) in such a way as to achieve satisfactory performance. 
The optimal regulator of this class will not be sought, but as 
will become clear, if r and r* are close, the deviation from 
optimal will not be large. 

The Synthesis Algorithm 

A brief look at the classical dynamic programming 
algorithm of stochastic control shows immediately the dif­
ficulties which prevent the designer from finding the explicit 
form of the optimal regulator. Let F, be the information 
pattern (the a-field) generated by the observations at the 
regulator; [y(s), r{s); t0 < s < t). Let V(t; F,) be the value 
function 

K(f;F,) =min EU f (x'Mx+v'Nv)dt 

+x'{t/)P/xUf)\T^ 

where U is a suitably selected class of control policies. Then, 
formally, [6] 

V(t;F,)=mm E\( (y + Ax) 'M(y + Ax) +v'Nv)dt 
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+ V(t + dt;FH /)IF,j (13) 

The convoluted form of F(/;F,) precludes an explicit 
solution to (13). Since v(t) is adapted to F,, the requirement 
that the regulator "learn" the value of r* is implicit in the 
minimization. This fact so complicates this quadratic op­
timization that actually solving (13) appears to be beyond 
hope for realistic system models. 

Many investigators have studied (13), or more commonly, 
its discrete time equivalent. Simplification of (13) has been 
achieved by identifying as two separate tasks the operation of 
identification and regulation. Such approximations differ in 
their degree of complexity and the activeness with which they 
seek to identify the unmeasured system parameters [4]. 

For the class of systems under study here, even the simplest 
of these algorithms would be far too elaborate. For reasons 
discussed in more detail earlier, no memory is included in the 
regulator, and v(t) must of necessity be a function of (x(t), 
r(t), t) alone. While the regulator structure is thus con­
strained, the problem is simplified by the fact that r and r* are 
"close," i.e., while the deviation terms in (9) are not 
negligible, they are small. It will, therefore, be assumed that 
V{t; F,) is only weakly dependent on the past values of (y(s), 
r(s)); i.e., the value function admits to the approximation 

K( ( ;F , ) sK( ( j i ( ( ) , r ( ( ) ) (14) 
Note that in contrast with the current implementation, r is 

not identified with r*. Instead, the error terms in (9) are 
retained. Equation (14) simply implies that r and r* are close 
enough that the potential performance improvement at­
tributable to learning is inconsequential. 

Under this simplifying assumption, an approximate 
solution to (13) is easily produced using classical methods; 

v=-N-iG'iPi(y + ai) ify(t)=y,r(t)=i 05) 

V{ts,i) = (y+a,)'P,{y + *,)+pl (16) 

where 

P^-Pfr-F'ft+P&N-iG',P,-M- D q„Pj (17) 
j 

PiVf)=Pf 

ai=(Fi+Pr1M)ai-(pl(i) +PrlMAx(i)) 

+ E quPrlPMi-aJ-\) <18> 

u(tf)=Ax(i) 

j 

0 , ( ' / )=O 

where 

(19) 

(20) 

7, = a ' (Mttj + A' xMUj(i) — a' tMAx(i) —A'x(/)Ma,-

+ E 9y(«/-oij-\jj)'Pj{a,--aj-Xtf) 
j 

and where for a random variable #(/•, /•*) 

gr or g(r)=E{g(r,r*)\r}. (21) 

Equations (15) gives the near optimal regulator and 
(17)-(20) give the design equations for the functions which 
characterize the closed loop system. The regulator has the 
simple form of linear feedback controller with a bias. The 
gain term - iV~ ' G' /P, is precisely what would be ap­
propriate if the random matrices (Fr*, Gr*) were replaced by 
their mean values (Fr, Gr). This might be thought of as a 
"certainty equivalence" gain. 

It is interesting to note that if the conditional distribution of 
r* given r is symmetrical about r, and if the matrices (Fr*, 
Gr*) are locally linear functions of (r—r*) about {Fr, Gr), 
then the equation for P, becomes that associated with r = r*. 
In such a circumstance, the analyst is justified in neglecting 
the misclassification errors in computing the gain. 

The bias term in the regulator ( a h i € S] depends upon the 
mean value of the modal matrices (Ff) as well as the weighted 
mean of the bias terms (p{ (/) +P[~lMAx(i)). If r* is sym­
metrically distributed about r and if Ax and Av are locally 
linear, Ax will be zero. Even in the case, however, pj (/) may 
be nonzero because of the correlation which exists between 
say Fr* and Ax(r, /•*). Thus, a, is not predictable from a 
certainty equivalence argument even in the simplest situation. 
A nonzero mean bias in r (E(r*\r)?± r) compounds this ef­
fect. 

The effect of misclassification is most evident in the 
equation of /?,. Both first and second order moments of Ax 

serve as driving terms for |3 ;. In addition there is an implicit 
dependence of y, on pl and Ax through (a,-; / € S) . 

Equations (15)-(21) give the design equation for a 
suboptimal regulator of a system subject to errors in 
measurement of its operating level. The equations may be 
solved by direct integration, and the resulting regulator is easy 
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Fig. 1 A simplified steam temperature control loop 
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to implement. Because the form of the regulator precludes 
"learning," the performance of the system as given by (16) 
may be inferior to that obtainable by other causal regulators. 
Still, if r and r* are close, the performance degradation will be 
small. 

The precise penalty attributable to the failure to learn r* is 
difficult to quantify because a method for finding the per­
formance of the optimal controller is not available. Some idea 
of this loss can be obtained by comparing the performance of 
(15) with the performance of an optimal control when r = r*. 
This latter is easily produced from (15)—(21) by setting A„ = 
0, A, - 0. 

If [Fh G,; i € S] is constant and if (Tf-t0) is large, there is 
an even simpler way to estimate impact of the failure to better 
estimate r*. Denote the steady state rate of growth of Fas 

V(y,i) = lim - i - V(t,y,i) (22) 

Under weak conditions on Q it is known that V(t, y, i) is 
independent of (y, i) and that [2] 

F = p ( o o ) ' 7 (23) 

where 7 is a vector with components 7, (see (20)) and p (00) is 
the vector of equilibrium probabilities of r. If 7 0 P T is the 
value of (20) when Ax = 0, and A„ = 0, a simple figure of 
merit for (15) would then be 

H= P(°°)'(7(20)-'yOPT) 

P(° ° ) 'YOPT 
(24) 

Since perfect identification is not possible, H represents a 
conservative measure of the loss attributable to the simple 
form of the regulator. If H < .25 perhaps, it would be dif­
ficult to justify the development of a more sophisticated 
regulator to replace (15). 

An Example 

To illustrate the foregoing analysis consider a simple model 
of a solar-powered boiler. Figure one shows a simplified block 
diagram of the steam temperature regulator used to control a 
single boiler panel on the central receiver. The isolation * on 
the panel acts to increase the exterior metal temperature of 
panel (T,„), and this in turn affects the temperature of the 
superheated steam (Ts). By comparing the reference tem­
perature (^ef) with the measured steam temperature, an error 
signal is generated. The nominal feedwater flow rate is 
proportional to insolation (Wnom = K$). The compensation 
acts on the sensed error to provide a correction (6W) to this 
nominal flow rate. 

The steam temperature thermocouple sits in a protective 
well in the primary steam exit pipe, and is very slow to react to 
changes in outlet steam temperature. For this reason, the 
metal temperature inner loop must be responsive to sudden 
changes in loop conditions. This inner loop will be of primary 
importance in this section. 

Reference [7] provides both linear and nonlinear models for 
a solar powered once-through boiler. These models have been 
used for deriving and evaluating various receiver control 
strategies. A simple model for the superheat section of the 
boiler can be written as 

M C T = * -

Abub 

W 
(—\\T 

(Tm-TA (25a) 

•Tf) 

Tf = 
T -\-T •* out ' •* sat 

=f(P,h0M) 

(25b) 

(25c) 

(25d) 

where in this specific instance 

Mm = metal mass, lbm 

Cm = specific heat/metal/btu/lb-°F 
Ab = surface area, ft2 

Ub = heat transfer coef., Btu/ft2-°F-s 
hin = input enthalpy = 496.68 Btu/lbm 

P = outlet pressure = 1535 psia 
Wref = reference flow rate = 3.251bm/s 

Equation (25a) relates changes in the panel metal tem­
perature to changes in insolation (*) and an average fluid 
temperature (Tf). Equation (256) relates the outlet enthalpy 
(/!out) to the inlet flow rate (W) and the associated tem­
peratures. The fluid temperature is an average in the 
superheat region (25c). The outlet temperature is related to the 
outlet enthalpy by a nonlinear relation given symbolically in 
(25d). 

Equation (25) is a simple thermodynamic model, but it 
illustrates nonlinear behavior of the panel. For example, 
metal temperature and output enthalpy are related to a 
fractional power of the input flow rate. For the specific panel 
to be studied, MmC,„ = 46, Abub = 9.2. Suppose that Tsa( = 
600 °F and that the nominal output steam temperature is 
960°F. The nominal values of the actuating signal and the 
panel temperature follow directly from (25). Let (hoM -
hin)nom = A/;nom.Then 

W 
* 

M . 

* /,nom 
| (WrefAhnom)* t_ t 

(26a) 

(266) 
Abub 

The nominal flow rate is directly proportional to the in­
solation while the panel temperature is proportional to $ to a 
fractional power. 

Suppose the receiver is operating on a partly cloudy day. 
For simplicity it will be assumed that the measured insolation 
takes on one of two widely separated values. 

f*,; 4.92 x 102 Btu/s, dense cloud; r = 1 
* = \ (27) 

lj£2; 3.49x 103 Btu/s, unobscured sun; r = 2 

The nominal operating point of the panel is contingent on the 
value of $. Equation (25) can be linearized about the nominal 
pair given in (26); 

x=Fix+Giv (28) 

where x • 

F,= 
1 (w r e ! Ahnomy* 1 

M C Abub *,f + 
Ah„ 

2Cn * ;] (29«) 

1 

G,= 
M n 

+ 
1.6 Cp Wfa 

,*, AbubAh 2 
nom ?) 

M c a 2CpW-lr 1 
AbubAh2

nom *-8 

(296) 

where Cp is the specific heat under outlet conditions. 
The model given by (25) is, of course, rather primitive. The 

dynamics are essentially first order, and the temperature 
gradient across the panel is not explicitly identified. The 
nonlinearity in (25) contains a power law in W with value 0.8 
in (25a) and - 0.2 in (256) with a product nonlinearity in both 
(25a) and (256). Equation (29) gives the coefficients of the 
linearized model. It is evident that F, is strongly dependent 
upon $,. At high insolation levels, the metal temperature 
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error responds (relatively) quickly to changes in the flow rate, 
while if $, is small, the system is more dilatory. The depen­
dence of G on $ is more complex in appearance, but in fact G 
is only weakly dependent upon $. 

The indicated description of the solar-powered boiler is 
typical of a large class of systems which have a well defined, 
smoothly varying, linear model whose parameters are 
determined by the operating point of the system. A fixed 
parameter, linear model would predict closed loop per­
formance quite well if it were not for the large and abrupt 
variations which occur in operating point. The size of these 
changes and the unexpectedness of their occurrence limits the 
utility of a time invariant linear model. 

A feedforward control strategy can be quite effective in 
reducing the size of the transients associated with the 
variation in $. Ideally, this would operate as shown in Fig. 1 
with the measured value of $ used to determine the nominal 
flow rate (Wnom)> the nominal output (Tmnom) and the ap­
propriate compensation. The feedforward link would avoid 
the delay associated with waiting for the effect of insolation 
changes to be reflected in metal or steam temperature 
changes. 

For reasons discussed earlier, this feedforward path may 
introduce errors of its own because the true value of <f> cannot 
be measured without error. To illustrate the effect of this type 
of error, consider a specific example in which there exists the 
possibility of a positive bias in the measurement of $; i.e., 

Prob (<J>r = * * ) = 0.5 
(30) 

Prob (*r = 1.2$,») = 0.5 

The measured value of insolation, $ r , is equal to the true 
value, $ r*, half of the time. The rest of the time, the 
measurement has a 20 percent positive bias. While there are 
only two possible values of $,. (see (27)), the actual insolation 
level will take on one of four different levels. 

To model the behavior of r, cloud data from the Barstow, 
CA site of the receiver is available. Near noon on a day in 
May of 1979 it became partly cloudy. The mean interval that 
clouds obscured the heliostats was approximately 2.3 minutes. 
The mean duration of a clear interval was 4.3 minutes. A 
simple Markov model matching the sample means is 

r-0.43 0.43 1 
* L 0.23 -0.23 J 

The performance weights in (12) are to some extent ar­
bitrary. For the purposes of this example consider the infinite 
horizon problem withM = 3.55 and TV = 100. This choice of 
performance index leads to satisfactory closed loop response 
in the deterministic problem, and it is a natural first choice in 
the stochastic problem. 

To better understand the effect of the classification errors, 
it is convenient to build up a hierarchy of control policies, and 
to study their performance. A lower bound on the per­
formance attainable in this system is given by the case in 
which there are no errors in measuring 4>; i.e., 

Prob (*r = *,*)= 1 (31) 

The solution to this idealized problem is given by the 
algorithm of [2] 

= r0 .1577O-5.914) lb m /mini f* r = *, 
V°PT l o . 08090 + 2.491)lbm /minif$ r = $ 2

 l ' 

The long term average rate of cost growth is 

FOPT=2021 (33) 

The performance given by (33) represents a goal to be 
sought, but measurement errors will prevent its attainment. 
Actually, it is something of a misnomer to refer to the 
regulator of (32) as optimal. It uses "perfect" learning which 
is precluded by hypothesis in this example. It also has to 

contend with only two operating levels, compared with the 
four levels of * r* in (30). Still V0PT does given an optimistic 
indication of the performance attainable from a regulator 
which has the ability to remember and manipulate past ob­
servations. 

The coefficients of the feedback regulator described in 
(15)-(21) can be evaluated to yield 

f. 1597 0 - 2 . 0 4 9 ) lb ra/min if*r = *i 
i>, = \ (34) 

L.08551C +7.984) lbm/min i f * r -* 2 

and 

K=2278 (35) 

It is evident from (33) and (35) that the performance 
deterioration attributable with the errors in measuring $,.* is 
slight when the control policy given in (15)—(21) is used. In 
fact H (see 24)) is only 13 percent. Hence the use of a more 
sophisticated regulator than (34) would be hard to justify. The 
gains of vt and v0PT are quite close, but the biases differ 
significantly. 

The bias in i>OPT is the result of the regulator's attempt to 
prepare the system for the inevitable transition from one 
operating level to another. Thus, y0pT attempts to maintain a 
higher operating temperature when * = <!>, (Tm = 1022.4°F) 
than would be the case if no change in $ r were expected (T,„ 
= 1016.5 °F). In this way I>OPT minimizes the disturbance 
induced by a change in * r . Similarly, if * r = * 2 , a lower 
operating temperature is called for (a2 = 2.5 °F). 

The situation facing the regulator given by (34) is more 
complex. The bias effects mentioned in the preceding 
paragraph are still relevant. Further, there are the biases due 
to misclassification in the feedback link. Because $r > * r *, 
the regulator knows the nominal temperature based upon r is 
greater than or equal to the true nominal. A reasonable, but 
myopic, policy might be to modify the bias in the regulator of 
(34) by adding the mean error in measuring <£; i.e., 

f0.1577() '-1.679)lbm /minif* r = *i 
yM Y P= < (36) 

[0.0809 O + 8.766) lbm/min if * r = $2 

Equation (36) is a reasonably good approximation to (34), but 
since (36) is no easier to calculate or to implement than (34) is, 
there seems to be no advantage to using it. 

The comparison of Vx with KOPT indicates the ability to 
learn the exact value of r conveys little performance im­
provement in this example. To gain a understanding of the 
sensitivity of performance to the correct biases in v, consider a 
regulator which is designed without regard to either the 
random variations in $ or the errors in measuring $. If r = r* 
is assumed to be constant, classical LQ-regulator theory 
provides a direct synthesis algorithm. When applied to the 
model given by (25), a linear regulator results 

f0.1623.ylbm/min if #2 = $, 
ULQ= i (37) 

[0.07915 .ylbm/min if*r = * 2 

The regulator identifies r with r* and assumes that the extant 
conditions are permanent. 

The LQ-regulator has gains which differ little from those 
derived for (31). To see how it performs, suppose 
(pessimistically) that the sensor measuring r* has the 20 
percent bias discussed earlier and that r is a random process 
described by Q. The long term growth in cost is easily com­
puted 

KLO=3530 

The performance deterioration attributable to the neglect of 

Journal of Dynamic Systems, Measurement, and Control JUNE1984, Vol. 106/187 
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



biases is 74.7 percent. On the other hand, the biases in (31) 
make it rather insensitive to the actual sample path of r. 

Conclusions 
This paper provides the analytical basis for an easily 

designed and simply implemented regulator which is useful in 
systems in which there are possible errors in the measurement 
of the nominal operating point. Under the assumption that 
these errors are relatively small, it is shown that a complicated 
regulator which has the ability to "learn" the unknown 
parameters of the system may be unnecessary. For the 
feedwater flow rate regulator discussed earlier, perfect in­
formation provides only slight performance improvement 
over the proposed regulator. 

As the example indicates, neglectng the measurement errors 
and the random variation in operating point may give rise to 
unacceptable performance. A simplified approach which 
simply replaces the random biases by their mean values is of 
some use, but it does not lead to a simpler implementation, 
and for that reason its use does not seem warranted. 

The utility of the design procedure proposed here depends 
upon the measurement error being small. If the error in the 
measurement of r* could be large or if the regulator has the 
capacity for sophisticated data manipulation, an "active 
adaptive" regulator may be justified. Many situations have 
constraints which preclude a solution of such versatility. In 
this event, (15) provides a useful approximation. 

As indicated in the example, the primary effect of the 
measurement errors is in the calculation of the regulator bias. 
Equation (18) would be simplified if r = r* because then 
(p, (/) +PflMAx(i)) would be zero. The size of this term 
gives an immediate indication of the relevance of the 
measurement errors in the regulator synthesis. From the 
definition of Pi, if Fr and Gr are slowly varying functions of 
r, and if Ax and A„ are nearly zero, a design algorithm 
neglecting the error in measuring r* will suffice. When there is 

a significant bias in r, the utility of the regulator proposed 
here will be heightened. 

The development of the regulator and inferences derived 
from the example depend upon the dynamic hypotheses 
implicit in (2). This is a problem shared by all model 
dependent analytical procedures. Because the model selected 
for this paper contains a family of possible realizations 
(sample functions of r), one would expect that the regulator 
given by (15)-(21) will tend to be less sensitive to errors in the 
equations of system evolution than would a regulator 
"tuned" to a specific, time invariant system model. Once the 
principal sources of modeling ambiguity are identified, a 
sensitivity study will provide a quantitative indication of the 
performance changes associated with parameter variations. 
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