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Abstract

We present significant numerical evidence, based on the entropy
analysis by lumping of the binary expansion of certain values of the
Gamma function, that some of these values correspond to incompress-
ible algorithmic information. In particular, the value Γ(1/5) corre-
sponds to a peak of non-compressibility as anticipated on a priori
grounds from number-theoretic considerations. Other fundamental
constants are similarly considered.

This work may be viewed as an invitation for other researchers to
apply information theoretic and decision theory techniques in number
theory and analysis.

February 12, 2004

1 Introduction

Nature provides us with a wide variety of symbolic strings ranging from the
sequences generated by the symbolic dynamics of nonlinear systems to RNA
and DNA sequences or DLA patterns (diffusion limited aggregation patterns
are a classical subject in Nonlinear Chemistry) [4, 38, 39].

Entropy-like quantities are a very useful tool for the analysis of such se-
quences. Of special interest are the block entropies, extending Shannon’s
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classical definition of the entropy of a single state to the entropy of a suc-
cession of states [38]. In particular, it has been shown in the literature that
scaling the block entropies by length sometimes yields interesting information
on the structure of the sequence [18, 19].

In particular, one of the present authors has derived an entropy criterion
for the specialized, yet important algorithmic property of automaticity of a
sequence. We recall that, a sequence is called automatic if it is generated
by a finite automaton (the lowest level Turing machine). For more details
about automatic sequences the reader is referred to [14], and for their role in
Physics to [1].

This criterion is based on entropy analysis by lumping. Lumping is the
reading of the symbolic sequence by ‘taking portions’ (see expression (1) ),
as opposed to gliding where one has essentially a ‘moving frame’. Notice
that gliding is the standard approach in the literature. Reading a symbolic
sequence in a specific way is also called decimation of the sequence.

The paper is articulated as follows. In Section two we recall some use-
ful facts. In Section three we present the mathematical formulation of the
entropy analysis by lumping. In Section four we present our intuitive mo-
tivation based on algorithmic arguments while in Section five we present a
central example of an automatic sequence, taken from the world of nonlinear
Science, namely the Feigenbaum sequence. In Section six we present our
main results. In Section seven we speak about automaticity and algorithmic
compressibility measures. In section eight we analyse exp(π/

√

(2)). Finally,
in Section nine we draw our main conclusions and discuss future work.

2 Some definitions

We first recall some useful facts from elementary number theory. As is well
known, rational numbers can be written in the form of a fraction p/q, where
p and q are integers and irrational ones cannot take this form. The k-ary
expansion of a rational number (for instance the decimal or binary expansion)
is periodic or eventually periodic and conversely. Irrational numbers form two
categories: algebraic irrational and transcendental, according to whether they
can be obtained as roots of a polynomial with rational coefficients or not.
The k-ary expansion of an irrational number is necessarily aperiodic. Note
that transcendental numbers are well approximated by fractions. In 1874 G.
Cantor showed that ‘almost all’ real numbers are transcendental.
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A normal number in base k ≥ 2 is a real number x such that, for each
integer d ≥ 1, each block of length d occurs in the k-ary expansion of x
with (equal) asymptotic frequency 1/kd. A rational number is never normal,
while there exist numbers which are normal and transcendental, like Cham-
pernowne’s number. This number is obtained by concatenating the decimal
expansions of consecutive integers [13]

0.1234567891011121314...

and it is simultaneously transcendental and normal in base 10.
There is an important and widely believed conjecture, according to which

all algebraic irrational numbers are believed to be normal. But present tech-
niques fall woefully short on this matter, see [2]. It seems that E. Borel was
the first who explicitly formulated such a conjecture in the early fifties [6].
Actually, normality is not the best criterion to distinguish between algebraic
irrational and transcendental numbers. In fact, there exist transcendental
numbers which are normal, like Champernowne’s number [13], [12], [1] and
probably π [39], [40] [1]. One of the first systematic studies towards this
direction dates back to ENIAC also some fifty years ago [34, 7]. No truly
‘natural’ transcendental number has been shown to be normal in any base,
hence the interest in computation.

3 Entropy analysis by lumping

For reasons both of completeness and for later use, we compile here the
basic ideas of the method of entropy analysis by lumping. We consider a
subsequence of length N selected out of a very long (theoretically infinite)
symbolic sequence. We stipulate that this subsequence is to be read in terms
of distinct ‘blocks’ of length n,

. . . A1...An
︸ ︷︷ ︸

B1

An+1 . . . A2n
︸ ︷︷ ︸

B2

. . . Ajn+1 . . . A(j+1)n
︸ ︷︷ ︸

Bj+1

. . .

We call this reading procedure lumping. We shall employ lumping throughout
the sequel. The following quantities characterize the information content of
the sequence [33, 18]
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i) The dynamical (Shannon-like) block-entropy for blocks of length n is
given by

H(n) := −
∑

(A1,...An)

p(n)(A1, . . . , An) · ln p(n)(A1, . . . , An) (1)

where the probability of occurrence of a block A1 . . . An, denoted p(n)(A1, ..., An),
is defined (when it exists) in the statistical limit as

p(n)(A1, . . . , An) =
#of blocks of the formA1 . . . An found when lumping

Total # of blocks found
(2)

starting from the beginning of the sequence, and the associate entropy
per letter

h(n) =
H(n)

n
. (3)

ii) The conditional entropy or entropy excess associated with the addition
of a symbol to the right of an n-block

h(n) = H(n + 1) − H(n). (4)

iii) The entropy of the source (a topological invariant), defined as the limit
(if it exists)

h = lim
n→∞

h(n) = lim
n→∞

h(n) (5)

which is the discrete analogue of metric or Kolmogorov entropy.

We now turn to the selection problem, that is to the possibility of emer-
gence of some preferred configurations (blocks) out of the complete set of dif-
ferent possibilities. The number of all possible symbolic sequences of length
n (complexions in the sense of Boltzmann) in a K-letter alphabet is

NK = Kn. (6)

Yet not all of these configurations are necessarily realized by the dynamics,
nor are they equiprobable. A remarkable theorem due to McMillan [33], gives
a partial answer to the selection problem asserting that for stationary and
ergodic sources the probability of occurrence of a block (A1, . . . , An) is

pn(A1, . . . , An) ∼ e−H(n) (7)
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for almost all blocks (A1, . . . , An). In order to determine the abundance of
long blocks one is thus led to examine the scaling properties of H(n) as a
function of n.

It is well known that numerically, block entropy is underestimated. This
underestimation of H(n) for large values of n is due to the simple fact that
not all words will be represented adequately if one looks at long enough
samples. The situation becomes more and more prominent for calculating
H(n) by ‘lumping’ instead of ‘gliding’. Indeed in the case of ‘lumping’ an
exponentially fast decaying tail towards value zero follows after an initial
plateau.

Since the probabilities of the words of length m are calculated by their
frequencies, i.e. pn = N1/N[sample] where N[sample] is the size of the available
data-sample i.e. the length of the ‘text’ under consideration, then as N1 → 0
for long words, the block entropy calculated will reach a maximum value, its
plateau, at

HMAX = log[K](N[sample])

where K the length of the alphabet. Indeed, this corresponds to the maxi-
mum value of the entropy for this sample, given when

pn = 1/N[sample].

This value corresponds also to an effective maximum word length

nmax = ln N[sample]

in view of eqs. (1), (6) and (7).
For instance, if we have a binary sequence with 10,000 terms, of course

b = 2 and N[sample] = 104. This way, the value of HMAX can determine a safe
border for finite size effects. In our case

HMAX = nmax = ln
(
104
)

= 9.2 . . . , (8)

so that nmax = 9 and we can safely consider the entropies until n = 8.
After this small digression, we recall here the main result of the entropy

analysis by lumping, see also [28, 29]. Let mk be the length of a block
encountered when lumping, H(mk) the associated block entropy. We recall
that, in view of a result by Cobham (Theorem 3 of [14]), a sequence is
called m-automatic if it is the image by a letter to letter projection of the
fixed point of a set of substitutions of constant length m. A substitution
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Figure 1: Deterministic finite automaton described by Cobham’s algorithmic
procedure. This automaton contains two states: i and a and to each state
corresponds by the function of exit F a symbol; either F (i) = R = 1 or
F (a) = L = 0. To calculate the nth term of the 2∞ sequence we first express
the number n in its binary form and then we start running the automaton
from its initial state, according to the binary digits of n. In this trip we read
the symbols contained in the binary expansion of n from the left to the right
following the targets indicated by the letters. For instance n = 3 = (11 base
2) gives the run i → i → i so that u(3) = R = 1, while n = 9 = (1001 base
2) gives the run i → i → a → i → i so that u(9) = R = 1.

is called uniform or of constant length if all the images of the letters have
the same length. For instance, the Feigenbaum symbolic sequence can in an
equivalent manner be generated by the Metropolis, Stein and Stein algorithm
[35, 25], or as the fixed point (σF )∞(R) of the set of substitutions of length
2: σF (R) = RL, σF (L) = RR starting with R, or by the finite automaton of
Figure 1 (see also Section five).

The term ‘automatic’ comes from the fact that an automatic sequence is
generated by a finite automaton.

The following properties then holds:

• If the symbolic sequence (un)n∈N is m-automatic, then

∃ ko ∈ {0, 1}, m ∈ N ∗, ∀ k ≥ ko : H(mko) = H(mk) (9)

when lumping, starting from the beginning of the sequence.

6



The meaning of the previous proposition is that for m-automatic se-
quences there is always an envelope in the diagram H(n)/n versus n, falling
off exponentially as ∼ m−k for blocks of a length mk, k = 1, 2, .... For in-
finite ergodic strings, the conclusion does not depend on the starting point.
Similar conclusions hold if instead of a one-to-one letter projection we have
a one-to-many letters projection of constant length. In particular, we have
the following result.

• If the symbolic sequence (un)n∈N is the image of the fixed point of a
set of substitutions of length m by a projection of constant length µ,
then

∃ ko ∈ {0, 1}, m ∈ N ∗, ∀ k ≥ ko : H(µ · mko) = H(µ · mk)
(10)

when lumping, starting from the beginning of the sequence.

Our propositions give an interesting diagnostic for automaticity. When
one is given an unknown symbolic sequence and numerically applies entropy
analysis by lumping, then if the sequence does not obey such an invariance
property predicted by the propositions, it is certainly non-automatic. In the
opposite case, if one observes evidence of an invariance property, then the
sequence is a good candidate to be automatic.

For stochastic automata, the following proposition also holds (see [31]).

• If the symbolic sequence (un)n∈N ∈ {0, 1} is generated by a Cantorian
stochastic automaton, then [31]

∀ k ≥ 1 : H(mk) = k · H(m) (11)

when lumping, starting from the beginning of the sequence.

4 The example of the Feigenbaum sequence

Before proceeding to the analysis of binary expansions of the values of the
gamma function Γ(1/n) (which as we shall see presently seems not to be
automatic) we first give an example of entropy analysis by lumping of a
2-automatic sequence: the period-doubling or Feigenbaum sequence, much
studied in the literature [23, 19, 25].
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The Feigenbaum symbolic sequence can in an equivalent manner be gen-
erated by the Metropolis, Stein and Stein algorithm [35, 25], or as the fixed
point (σF )∞(R) of the set of substitutions of length 2: σF (R) = RL, σF (L) =
RR starting with R, or by the finite automaton of Fig.1. According to our
first proposition, this sequence satisfies

H(1) = H(2) = · · · = H(2k) (12)

when lumping, while for any integer r,

H(2 · r) = H(r) (13)

as is shown in [25].
Thus, the Feigenbaum sequence appears to be extremely compressible

from the viewpoint of algorithmic information theory—memorizing the finite
automaton (instead of memorizing the full sequence) lets one reproduce every
term and so, the complete sequence. We say that the information carried by
the Feigenbaum sequence is ‘algorithmically compressible’.

The period-doubling sequence, is the only one for which an exact func-
tional relation between the block-entropies when lumping and when gliding
exists in the literature, so that it is an especially instructive example.

5 Motivation for the Gamma function

The basis of reduced complexity computation of Gamma function values is
illustrated by the cases of π = Γ2(1/2), and of Γ(1/4), and Γ(3/4). These
algorithms are discussed at length in [8] and related material is to be found
in [7]. Their origin is very classical relying on the early elliptic function
discoveries of Gauss and Legendre but they do not appear to have been
found earlier.

Algorithm. Let x0 :=
√

2, π0 = 2 +
√

2 and y1 := 21/4, compute

xn+1 :=

(√
xn + 1/

√
xn

)

2

for n ≥ 0 and

yn+1 :=

(
yn
√

xn + 1/
√

xn

)

yn + 1
,
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πn :=
xn + 1

yn + 1
πn−1

for n > 0. Then
0 < πn − π < 10−2n+1

.

Hence

(2 +
√

2)
∏

n≥1

1 + xn

1 + yn
= Γ2

(
1

2

)

while

(1 + 1/
√

2)
∏

n≥1

xn
1 + xn

1 + yn
= Γ4

(
3

4

)

,

and

(1 + 1/
√

2)3
∏

n≥1

x−1
n

(
1 + xn

1 + yn

)3

=
1

16
Γ4

(
1

4

)

,

provide corresponding quadratic algorithms for Γ(1/2), Γ(3/4) and Γ(1/4),
[8, pp. 46–51].

There are similar algorithms for Γ(1/6), Γ(1/3), Γ(2/3) and Γ(5/6), and
related elliptic integral methods for Γ(k/24) for all positive integer k are
given by [?]. For example,

K

(√
3 − 1

2
√

2

)

=
3−1/4

4
β

(
1

3
,
1

6

)

=
31/4

41/3

Γ3
(

1
3

)

π
.

In consequence, since elliptic function values are fast computable, we
obtain algorithms for Γ (k/6).

No such method is known for other rational Gamma values, largely be-
cause the needed elliptic integral and Gamma function identities are too few
and do not allow one to separate Γ(1/5) and Γ(2/5), for example, while they
do allow for their product to be computed.

This does not rule out the existence of other approaches but it sug-
gests that the algorithmic complexity of Γ(1/5) should be greater than that
of Γ(1/5) Γ(2/5), and that the algorithmic complexity of Γ(1/5) or Γ(1/9)
should be greater than that of Γ(1/12). This in part motivates our analysis.

Similarly, we note that

Γ

(
1

20

)

Γ

(
3

20

)

Γ

(
7

20

)

Γ

(
9

20

)

= 160

√

+
√

5 − 2 π K (k5)
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where

k5 =

√√
5 − 1

2
−

√
10 −

√
2

4
.

Thus this Gamma product is fast computable, as are many others.

6 Results

In this work, we have considered the first 10,000 digits of the binary expan-
sions of numbers of the form Γ(1/n), where n = 2, 3, 4, 5, 8, 9, 12, 24. We have
good statistics until a block length n = 9.

We can report the following results:

1. The binary expansion of Γ(1/5) presents the maximum value of the
entropy throughout almost the whole range.

2. The binary expansions of Γ(1/5)Γ(2/5) and Γ(1/2) present the mini-
mum value of the entropy through almost the whole range. This cor-
responds to significant algorithmic compressibility.

3. The binary expansion of Γ(1/3) presents (within the limits of the nu-
merical precision) non-monotonic behaviour of the block entropy per
letter (not recorded below), indicating a deep and unanticipated algo-
rithmic structure for this number.

4. The binary expansions of the other numbers present intermediate be-
havior.

There is now the question of the error bars. In any case, due to finite-
sample effects the values of the entropy are underestimated, as we have al-
ready explain in Section three. To estimate the error of these computations,
suppose that, for k = 1 there is an error in one digit over 10,000 digits. Then
the corresponding error in the entropy H1 by lumping will be

δH1 = − 1

104
ln

1

104
∼ 0.00092 ' 0.001, (14)
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while due to lumping there is an error for the entropy H8 (at the limit of our
numerical precision) of 1 block per 104

8
= 1250 blocks of length 8, leading to

a corresponding error in the entropy H8 by lumping

δH8 = − 1

1250
ln

1

1250
∼ 0.0057 ' 0.006, (15)

so that we can keep three significant digits of the entropy in the whole range.
In particular, we have the following results for H(k)/k for k from 1 to 9,

12 and 24.

n = 2
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.692
5 0.689
6 0.688
7 0.680
8 0.670

n = 3
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.692
5 0.692
6 0.690
7 0.688
8 0.679

n = 4
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.692
5 0.692
6 0.690
7 0.685
8 0.681

n = 5
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.693
5 0.692
6 0.692
7 0.690
8 0.687
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n = 8
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.692
5 0.692
6 0.689
7 0.688
8 0.679

n = 9
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.693
5 0.691
6 0.690
7 0.687
8 0.680

n = 12
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.693
5 0.692
6 0.690
7 0.687
8 0.681

n = 24
k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.693
5 0.692
6 0.689
7 0.687
8 0.681

The basic conclusion from these tables is that these Gamma function
values correspond to little compressible information, as the entropy per letter
H(n)/n approaches in all cases its maximum value

h(n)
max = ln 2 = 0.693147.... (16)

Furthermore, on inspecting the blocks that appear, one can check that
(within the limits of our numerical precision), all possible blocks of letter
occur in the binary expansions of these Gamma function values (as we would
say in the language of the ergodic theory and dynamical systems, the system
is “mixing”), a fact that validates both the statistics and the conclusions
about the algorithmic incompressibility of the next Section.

We have also considered the first 5,000 digits of the binary expansion
of Γ(1/5)Γ(2/5). We have good statistics up to a block length n = 9. In
particular, we obtain the following results for H(k)/k for k from 1 to 8. This
as conjectured shows significantly more compressibility.
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k H(k)/k

1 0.693
2 0.693
3 0.693
4 0.692
5 0.690
6 0.689
7 0.680
8 0.667

7 Automaticity measures

As we have already mentioned, when a symbolic sequence is generated by a
deterministic finite automaton with m-states, then the block entropies mea-
sured by lumping respect an invariance property:

H(m) = H(m2) = · · · = H(mj) = const.

for k integer, k > 1.
When this invariance property breaks, the sequence is not generated by

a deterministic finite automaton with m-states. Still, one can still obtain a
measure of algorithmic complexity (in particular of “”algorithmic compress-
ibility”) taking values from 0 % to 100 % the index: (in our notation)

A(j) =

∣
∣
∣
∣

h(mj+1) − h(mj)

hmax(mj+1)

∣
∣
∣
∣
, (17)

properly normalized, on dividing by hmax(m
j+1).

To fix the ideas, let us consider the 2-states automaticity measure (so
m = 2) of order j = 1, which can be expressed as

A(2) =

∣
∣
∣
∣

h(8) − h(4)

hmax(8)

∣
∣
∣
∣
= 0.032 = 3.2% (18)

In terms of 2-states automata, the variation of these indices is as follows:
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n A(2)

2 3.2
3 1.9
4 1.6
5 0.9
8 1.9
9 1.9
12 1.7
24 1.7

from which our conclusion about the algorithmic non-compressibility of Γ(1/5)
follows. Indeed, the more incompressible the sequence, the smaller the index
A(k). In confirmation of our earlier analysis, the corresponding value of A(2)
for Γ(1/5)Γ(2/5) is 3.6%, indicating the highest algorithmic compressibility.

We arrive at exactly the same conclusions if we treat the values of h(m)
individually (instead of taking the absolute differences), searching directly
for an alternative index of algorithmic compressibility

A′ =
h(i)

hmax(i)
%. (19)

8 Entropy analysis of the constant eπ/
√

2

It has been shown [15, 16, 24] that, for a wide class of Hamiltonian dynamical
systems, the constant

% := eπ/
√

2

plays the role that is played by the Feigenbaum constant δ for the logistic
map and for dissipative systems in general [36, 20, 21, 10, 11, 22]. Thus, this
constant (bifurcation ratio of period doubling bifurcations) is not universal,
rather it depends on the particular dynamical system considered.

Recently, after the calculation of the Feigenbaum fundamental constants
α and δ for the logistic map (quadratic non-linearity), to more than 1,000
digits by D. Broadhurst [10], a careful statistical analysis of these constants
has been presented [32], indicating the real possibility that these constants
are non-normal (so probably transcendental) numbers.

Now, it is easy to show that the constant % is transcendental [41, 42,
43]. Indeed, according to the theorem of Gel’fond and Schneider—which

14



resolved Hilbert’s seventh problem—for a nonzero complex number λ and an
irrational algebraic number b, one at least of the three numbers eλ, ebλ, b is
transcendental. In our case, taking λ = iπ and b =

√
2, we easily obtain the

transcendence of e
π
√

2 . As this constant is a combination of three fundamental
constants π, e and

√
2, presumably all normal, it is reasonable to ask if %

also appears normal.
We first present an entropy analysis of the first 100,000 terms of the

binary expansion of the constant % = eπ/
√

2. We have reliable statistics for
block lengths not exceeding n = 10.

Regarding the error bars now, we estimate the error of these computations
as follows. Suppose that,for k = 1 there is an error in one digit over 100,000
digits. Then the corresponding error in the entropy H1 by lumping will be

δH1 = − 1

105
ln

1

105
∼ 0.000115... ' 0.0001, (20)

while due to lumping there is an error for the entropy H10 (at the limit of
our numerical precision) of 1 block per 105

10
= 104 blocks of length 10, leading

to a corresponding error in the entropy H10 by lumping

δH8 = − 1

104
ln

1

104
∼ 0.00092 ' 0.001. (21)

For reasons of uniformity of our treatment, however, we keep three significant
digits for the entropy per letter.

In particular, we record the following results for H(k)/k as a function of
k.

Length Lumping of %

1 0.693
2 0.693
3 0.693
4 0.693
5 0.693
6 0.693
7 0.693
8 0.692
9 0.691
10 0.688
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This indicates serious evidence that % is a normal number in base 2, since
the entropy per letter approaches in all cases its maximum value h

(n)
max =

ln 2 = 0.693....
One should also notice that, all possible blocks of letters (within the range

computed) appear in the binary expansions of % (as we would say in the lan-
guage of the ergodic theory and dynamical systems, the system is “mixing”),
a fact that validates both the statistics and the conclusion about algorithmic
incompressibility.

In order to observe the results of the change of the basis expansion, we
also present here an entropy analysis of the first 100,000 terms of the decimal
expansion of the constant % = eπ/

√
2. We have reliable statistics for block

lengths not exceeding n = 5.
For the error bars now, we estimate the error of these computations,

suppose that,for k = 1 there is an error in one digit over 100,000 digits.
Then the corresponding error in the entropy H1 by lumping will be

δH1 = − 1

105
ln

1

105
ln 10 ∼ 0.000265... ' 0.0003, (22)

while due to lumping there is an error for the entropy H4 (at the limit of our
numerical precision) of 1 block per 105

4
= 25, 000 blocks of length 4, leading

to a corresponding error in the entropy H4 by lumping

δH4 = − 1

25, 000
ln

1

25, 000
ln 10 ∼ 0.000933 ' 0.001. (23)

For reasons of uniformity, we also decided to keep three significant digits
for the entropy per letter. In particular, we record the following results for
H(k)/k.

Length Lumping of %

1 2.303
2 2.302
3 2.298
4 1.952

This again indicates serious evidence that % would be a normal number
in base 10, since the entropy per letter approaches in all cases its maximum
value h

(n)
max = ln 10 = 2.303.... Again, we notice that, one can check that all
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possible blocks of letters appear, a fact that validates both the statistics and
the conclusion about the algorithmic incompressibility.

Finally, we note that in terms of algorithmic complexity % is one of the
most accessible constants. The following algorithm, a precursor to those
given above for Γ(1/n) [8, 7] provides O(D) good digits with log D operations.

epi:=proc(r,N) local k,n;

k:=r; for n to N

do k:=sqrt(1-k^2); k:=(1-k)/(1+k) od;

(k/4)^(-2^(-N));end;

Then epi(
√

2−1, N) returns roughly 2N good digits of % while epi(1/
√

2, N)
does the same for exp(π).

9 Conclusions and outlook

We have performed an analysis of some binary expansions of the values of
the Gamma function Γ(1/n) by lumping. The basic novelty of this method
is that, unlike use of the Fourier transform or conventional entropy analysis
by gliding, it gives results that can be related to algorithmic characteristics
of the sequences and, in particular, to the property of automaticity.

In light of the paucity of analytic techniques for establishing normal-
ity or other distributional facts about specific numbers, such experimental-
computational tools are well worth exploring further and refining more.

Acknowledgments. All the entropy calculations in this work have been
performed using the program ENTROPA by V. Basios [5] mainly at the
Centre of Experimental and Constructive Mathematics (CECM) in Burnaby,
BC, Canada and also at the Centre for Nonlinear Phenomena and Complex
Systems (CENOLI) in Brussels, Belgium.

We first thank Professors G. Nicolis and J.S. Nicolis for useful discussions
and encouragement. We should also like to thank M. Waldschmidt, G. Fee,
N. Voglis, and C. Efthymiopoulos for fruitful discussions.

JB thanks the Canada Research Chair Program and NSERC for fund-
ing assistance. Financial support from the Van Buuren Foundation and the
Petsalys-Lepage Foundation are gratefully acknowledged. KK has benefited

17
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