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Summary

During bioconcentration, chemical pollutants from water are absorbed by aquatic animals via the skin or a respiratory surface,
while the entry routes of chemicals during bioaccumulation are both directly from the environment (skin or a respiratory
surface) and indirectly from food. The bioconcentration factor (BCF) and the bioaccumulation factor (BAF) for a particular
chemical compound are defined as the ratio of the concentration of a chemical inside an organism to the concentration in the
surrounding environment. Because the experimental determination of BAF and BCF is time-consuming and expensive, it is
efficacious to develop models to provide reliable activity predictions for a large number of chemical compounds. Polychlorinated
biphenyls (PCBs) released from industrial activities are persistent pollutants of the environment thereby producing widespread
contamination of water and soil. PCBs can bioaccumulate in the food chain, constituting a potential source of exposure for
the general population. To predict the bioconcentration and bioaccumulation factors for PCBs we make use of the biphenyl
substitution-reaction network for the sequential substitution of H-atoms by Cl-atoms. Each PCB structure then occurs as a
node of this reaction network, which is some sort of super-structure, turning out mathematically to be a partially ordered
set (poset). Rather than dealing with the molecular structure via ordinary QSAR we use only this poset, making different
quantitative super-structure/activity relationships (QSSAR). Thence we developed cluster expansion and splinoid QSSAR for
PCB bioconcentration and bioaccumulation factors. The predictive ability of the BAF and BCF models generated for 20 data
sets (representing different conditions and fish species) was evaluated with the leave-one-out cross-validation, which shows that
the splinoid QSSAR (r between 0.903 and 0.935) are better than models computed with the cluster expansion (r between 0.745
and 0.887). The splinoid QSSAR models for BAF and BCF yield predictions for the missing PCBs in the investigated data sets.

Introduction

Many environmental pollutants, such as dichlorodiphenyl-
trichloroethane (DDT), hexachlorobenzene (HCB), dieldrin
(HEOD), and polychlorinated biphenyls (PCBs), move
through food chains and accumulate at sizeable levels in
the tissues of animals and man [1–6]. Chemicals that have
both a high lipophilicity and a high environmental persis-
tence should be thoroughly investigated for their poten-
tial toxicity through bioconcentration and bioaccumulation,
both measured for long periods of exposure. The biocon-
centration and bioaccumulation of chemical compounds in
aquatic and terrestrial organisms represent important criteria

for ecotoxicological evaluation and hazard assessment
[7–15].

In order to determine the environmental fate of chemicals
released from industrial, agricultural, or residential sources
it is essential to determine their bioconcentration in aquatic
species. The bioconcentration factor (BCF) of a chemical
compound is defined as the ratio between the concentration
of that chemical in an organism (or in the fat, or in a certain
tissue of the organism) and the concentration of the chemical
in the aqueous environment [16–23]:

BCF = Corg

Cm
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where Corg is the concentration of the chemical in the organ-
ism (or tissue), Cm is the concentration of the chemical in the
aqueous environment in which the respective organism lives,
and both concentrations are measured after long-term expo-
sure until steady state is reached. The calculation of BCFs can
be based on the wet weight, BCFw, or on the lipid content,
BCFL, of the aquatic organism or its tissue. BCFs are usu-
ally determined for various species of fish, but other aquatic
organisms can be used, such as algae or mussels.

Aquatic organisms can accumulate chemical compounds
both directly from the environment (via skin or respira-
tory surface) and indirectly (by collecting and concentrating
a chemical compound from food). This process is called
bioaccumulation, and is measured with the bioaccumulation
factor (BAF) which is defined as the ratio of the concentra-
tion of a chemical accumulated inside an organism (from food
and direct exposure) to the concentration in the surrounding
environment [2, 3, 13, 16]:

BAF = Corg

Cm

The bioaccumulation level depends on the nature of the
chemical compound, species, duration of exposure, concen-
tration in water and its accumulation level in food. BAF can
be particularly high for lipophilic compounds highly soluble
in the lipid fraction of the organism, and with a low or neg-
ligible metabolism rate in the organism (which makes them
very persistent). Even when the water concentration of such
chemicals is too low to cause health problems from drink-
ing the water, their high bioaccumulation may pose risks for
those eating fish or shellfish.

BCF values depend not only on the chemical struc-
ture but also on the level of environmental exposure,
on the species, and on various characteristics of the
aquatic organism (age, fat content, duration of exposure to
the chemical). Because the experimental determination of
BCF is time-consuming and expensive, various quantitative
structure-activity relationships (QSAR) models have been in-
vestigated for the BCF prediction from octanol–water par-
tition coefficients or from the structural characteristics of
molecules [24–47].

Posets (or partially ordered sets) have been proposed
[48–50] as of fundamental chemical utility, and reaction-
networks were [51] recognized as posets, which might be
used in identifying (super-structural) regularities in the prop-
erties of the compounds appearing in the network. The
consequent reaction network poset diagrams capture the
structural dependences of molecular properties and can be
used to develop quantitative super-structure-activity relation-
ship (QSSAR) models specifically tailored for networks of
chemicals derived by substitution from a parent skeleton.
Brüggemann and co-workers [52–57] have advocated the use
of poset relationships in the form of Hasse diagrams as an
attractive way of handling complex information within the
environmental area. Sørensen, Carlsen and co-workers used

the relationships induced by Hasse diagrams to rank chemical
compounds according to their environmental effects [58–61].
QSSAR formulations based on substitution reaction networks
[62–68] give reliable models for various physico-chemical
and biological properties [63, 64]. We have used the poset re-
action diagram of chlorobenzenes to model various toxicity
indices for guppy, fathead minnow, brine shrimp, Daphnia
magna, algae, and tadpoles [64]. In the same study we found
also that fish bioconcentration factors can be accurately pre-
dicted with poset QSSAR models. Based on these encourag-
ing results, we intend to extend the application of QSSAR
models to other classes of chemicals.

The objective of this study is to establish BAF and BCF
predicting models for PCBs based on the poset (partially
ordered set) reaction diagrams using our original QSSAR
methods [56–58]. A BCF data set was aggregated from var-
ious literature reports [39–46] while the 19 BAF data sets
were taken from the comprehensive study of Burkhard and
co-workers [47] who measured bioaccumulation factors data
for various fish species (carp, alewife, shad, walleye, smelt,
and yellow perch) in the Green Bay area and in the Hudson
River.

Data and procedures

Experimental data

The release of polychlorinated biphenyls (PCBs) from indus-
trial sources and their persistence in the environment have
resulted in widespread contamination of water and soil, with
subsequent potential exposure of the general population. Due
to their lipophilicity, PCBs from food and from the aqueous
environment accumulate in the fatty tissues of fish and shell-
fish [6–9]. PCBs have a low metabolism rate in the aquatic
species, which makes them very persistent. Even low levels of
PCBs in water can result in significant bioaccumulation in the
food chain, due to their very slow degradation and lipophilic-
ity. Thus, even small concentrations in PCBs in rivers, lakes,
seas and oceans can result in significant bioaccumulation in
fish and shellfish, which may pose human health risks from
their consumption. Due to their importance as environmental
pollutants that can produce serious risks for human health,
we developed QSSAR models for BAFs and BCFs of PCBs.
All experimental data were collected from the literature.

The BCF data set, for 58 PCBs, was aggregated from var-
ious literature reports [39–46]. We consolidated experimen-
tal log BCF values for several fish species (guppies, fathead
minnow, rainbow trout, and bluegill sunfish) because there
are too few data for each individual species. Our assumption
is that the PCB accumulation and metabolism mechanisms in
all these species are similar, and the bioaccumulation factors
depend mainly on the PCBs molecular structure and more
particularly on the placement of each PCB in the biphenyl-
chlorination reaction network described in the next subsec-
tions.
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Table 1. Origin of experimental data and leave-one-out cross-validation statistics (correlation coefficient

r and standard deviation s) for cluster-expansion and splinoid poset QSSAR for polychlorinated biphenyls

BCF and BAF.

Cluster-expansion Splinoid poset

No. Origin Property r s r s
#

PCBs

1 BCF to several species 0.908 0.372 0.958 0.245 58

(guppies, fathead minnow,

rainbow trout, bluegill sunfish)

2 Zone 1 BAF to alewife YOY 0.828 0.396 0.921 0.237 45

Green Bay

3 BAF to alewife adult 0.884 0.422 0.922 0.331 45

4 BAF to carp 8 yrs 0.840 0.470 0.908 0.336 50

5 BAF to smelt YOY 0.816 0.420 0.924 0.241 45

6 BAF to smelt adult 0.860 0.396 0.924 0.259 46

7 Zone 2 BAF to alewife YOY 0.826 0.387 0.903 0.258 47

Green Bay

8 BAF to alewife adult 0.866 0.453 0.932 0.301 49

9 BAF to carp 3 yrs 0.745 0.495 0.911 0.275 49

10 BAF to carp 10 yrs 0.814 0.479 0.921 0.296 51

11 BAF to carp 12 yrs 0.840 0.471 0.926 0.305 49

12 BAF to shad YOY 0.762 0.454 0.904 0.263 48

13 BAF to smelt YOY 0.862 0.382 0.916 0.269 46

14 BAF to smelt adult 0.868 0.400 0.935 0.258 46

15 BAF to walleye 1 yrs 0.823 0.467 0.914 0.309 53

16 BAF to walleye 3 yrs 0.857 0.428 0.923 0.292 51

17 BAF to walleye 4 yrs 0.844 0.462 0.927 0.297 52

18 Zone 3 BAF to alewife adult 0.887 0.421 0.903 0.341 44

Green Bay

19 BAF to smelt YOY 0.879 0.398 0.905 0.301 40

20 Zone 4 BAF to yellow perch 0.867 0.401 0.911 0.261 31

Hudson R.

Dataset 1 from ref. [39–46] and datasets 2–20 from ref. [47].

We collected 19 BAF data sets from the comprehensive
study of Burkhard and co-workers [47]. These data sets rep-
resent bioaccumulation factors for various fish species (carp,
alewife, shad, walleye, smelt, and yellow perch) in the Green
Bay area and in the Hudson River (see Table 1 for condi-
tions and fish origin). The bioaccumulation factors reported
by Burkhard and co-workers [47] represent log BAFfd

L val-
ues, which are based upon concentrations of freely dissolved
chemical in the ambient water and concentrations of the
chemical in the lipid fraction of the organism.

Partially ordered sets

Formally, a partially ordered set (poset) consists of a set P
with a (partial ordering) relation � which satisfies two con-
ditions: first, for α, β ∈ P, α � β ⇒ β �� α; and second
for α, β, γ∈P, α � β and β � γ ⇒ α � γ . Here our set P
consists of chemical compounds and the ordering α � β is
to mean that β is obtainable from α after some (non-zero)
number of chlorinations. The relation which allows either

α � β or α = β is denoted α � β. The relation where
α � β without any intervening members of P is denoted
α → β, and in mathematical language one says α covers
β. The poset P may be represented diagrammatically with
each member of P represented by a node and each covering
relation represented by an arrow, all organized so that the ar-
rows all have a component in the “downward” direction. For
our current case this (Hasse) diagram is simply the reaction
network.

It has been emphasized that poset diagrams could be used
to represent a range of chemical reaction networks that take
place by a progressive chain of substitutions on a fixed molec-
ular skeleton [51]. These hierarchical reaction diagrams en-
code structural information that can be used to predict various
physico-chemical and biological properties of the chemicals
that form the diagram.

Poset diagrams can also be used in other ways to orga-
nize information related to various environmental systems,
as shown by Brüggemann and co-workers [52–57] in stud-
ies that investigate their use in the evaluation of toxicological
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fish tests, in ordering environmental pollutants, and in ecosys-
tem comparison. Poset diagrams based on molecular structure
properties were used by Sørensen, Carlsen and co-workers to
rank chemical compounds according to their environmental
effects [58–61].

The super-structural poset diagrams based on the hier-
archical network of substitution reactions have been used
[48–51] to develop quantitative super-structure-activity re-
lationship (QSSAR) models specifically tailored for chemi-
cal structures derived by substitution from a parent skeleton.
Various mathematical fitting schemes can be developed from
these poset diagrams – such including cluster expansion, av-
erage poset, or splinoid poset methods. The simple “average-
poset” model was applied [63] for a wide range of properties
of chloro- and methyl-benzenes, and more recently we ap-
plied all 3 of these QSSAR models for the poset diagram of
chlorobenzenes to model various toxicity indices for several
aquatic species [64].

The poset diagram for polychlorinated biphenyls

In this section we describe the poset diagram of polychlori-
nated biphenyls, which represents the basis for the QSSAR
model. The QSSAR procedure is a predictive scheme based
on similarity comparisons to the corresponding activities of
related structures, in which the property predictions are made
based on the posetic (reaction-network) “super-structure”.
This super-structure considered here is neatly represented by
the diagrammatic substitution–reaction network, hierarchi-
cally organized following the substitution level: it starts with
the unsubstituted skeleton, and ends with the completely sub-
stituted compound, having intermediate lavels of compounds
with the same substitution degree.

The first three and last three layers of compounds from
the poset diagram of PCBs are shown in Figure 1. The PCB
poset diagram starts with biphenyl at the top and ends with
decachlorobiphenyl at the bottom, while all the different pat-
terns of substitution occur in between. The arrows indicate the
hierarchic generation of the different patterns of more sub-
stituted compounds from the different patterns of less substi-
tuted ones. From this diagram it is easy to recognize that from
biphenyl one may obtain three monochloro-biphenyl con-
geners, namely 2-chlorobiphenyl, 3-chlorobiphenyl and 4-
chlorobiphenyl, respectively. Similarly, 2,3-dichlorobiphenyl
has incoming connections from 2-chlorobiphenyl and 3-
chlorobiphenyl, but not from 4-chlorobiphenyl, thus indicat-
ing the two distinct pathways for its generation from less
substituted PCBs. The complete poset reaction network for
PCBs has 210 vertices and 840 edges.

In Figure 2 we show a condensed notation for a group
of PCBs that have the same number of substitutents for each
benzene ring. The notation from the top line shows the sub-
stitution pattern (one Cl atom in the right ring and none in
the left ring) and the number of PCBs having this substitu-
tion pattern, while the bottom line shows the corresponding
three monosubstituted PCBs. Using the notation exemplified

in Figure 2, we show in Figure 3 the condensed biphenyl
substitution reaction poset.

QSSAR models

In this section we present the mathematical basis for the
QSSAR models used in this study, namely the splinoid
poset and cluster-expansion models. These procedures are
general and can be applied for any network of chemi-
cal compounds that can be included in a formal hierar-
chical reaction network. An earlier “average-poset” model
[63] was not used, since it requires a denser network
of known activity values than currently available for the
PCBs.

Splinoid poset model

The chloro-substitution network of biphenyl is represented
here as a Hasse diagram H(P) (Figures 1 and 3) which math-
ematically represents a finite poset P. An oriented edge in
the Hasse diagram here represents the transition between a
chemical compound α with n chlorine atoms to one β with
n +1 chlorine atoms, and is denoted by α→β, and we attach
a real variable xα→β ranging from 0 to 1, that represents the
transformation of α into β. When formulating the splinoid
QSSAR model [65] for a property X, we consider a cubic
spline polynomial on the oriented edges α→β of the Hasse
diagram H(P):

fα→β (xα→β ) = aα→β x3
α→β + bα→β x2

α→β

+ cα→β xα→β + dα→β

with aα→β , bα→β , cα→β , and dα→β are constants. Each
vertex α of H(P) or P is identified by a value aα and a slope
bα . The splinoid poset QSSAR model is generated based on
known values of the property X for a subset of the chemical
compounds, namely for vertices α∈K⊆P. The splinoid fit is
such that: first, the cubic splines match values aα at the nodes
α∈K to the known property values; second, the incoming and
outgoing slopes through each node match the corresponding
bα value; and third, a relevant total “curvature” of the over-
all spline is minimized (subject to the constraints of the first
two conditions). With the splinoid QSSAR determined for
the vertices from K, one can predict the property values for
the remaining chemical compounds that do not have an ex-
perimental value for the property X, compounds that form the
set U of vertices α /∈ K. An algorithm results for predicting
the values of X for the set U of chemical compounds. Let A
denote the adjacency matrix of the Hasse diagram H(P), and
let S denote the oriented adjacency matrix of H(P), where:

Sαβ =
⎧⎨⎩ 1

−1
0

if β → α

if α → β

otherwise
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Figure 1. The biphenyl substitution reaction poset. The black enlarged dots indicate the sites on which an H atom of biphenyl has been replaced by a Cl atom.

The number of each isomer on each substitution layer is given in parentheses.

Figure 2. The condensed notation for the PCB congeners exemplified for

monochlorobiphenyls.

The in-degree on vertex α∈P is denoted by d→α , and
the out-degree on vertex α∈P is denoted by dα→. Based
on this notation, we introduce the following two diagonal
matrices:

D = diag[dα→ − d→α]

Δ = diag[dα→ + d→α]

We define the matrices U (the | U | × |P| submatrix of the
unity matrix I, with rows indexed by the elements of U), and
K (the |K|×|P| submatrix of the unity matrix I, with rows
indexed by the elements of K), and the derived matrix:

M = 2(Δ − A) − 3(D − S)(A + 2Δ)−1(D + S)

The (column) vector of known property values is denoted
by 	k. Then, the vector 	u that contains the unknown property
values aα is computed from:

	u = −(UMUt )−1(UMKt )	k

For a few different reaction networks we have studied the
matrix UMUt which appears in practice to be invertible

regardless of how sparse the “known” data are in the net-
work up to the point that very few (≤2) known data are
available. The a, b, c, d coefficients appearing in the spline
polynomials f do not explicitly appear in our splinoid for-
mula for 	u, but they are complicit in the derivation of this
formula for 	u. The present formula gives 	u in terms of the
poset, and thence completes the splinoid QSSAR algorithm,
which turns out to give a robust model in accommodating
a diversity of missing values for several compounds (which
may possibly even be adjacent). This is a significant advan-
tage of the splinoid model, which uses the topology of the
Hasse diagram to generate a response web for the investigated
property.

Cluster expansion model

Formal cluster expansions in general re-express a scalar
function (or property) for the different members of a poset
in terms of related (transformed) functions focusing more
strongly on earlier members of the poset. Chemical applica-
tion in the case that the partial ordering is based on a poset
of molecular graphs is described in [62, 66–68]. Generally
for a scalar property X defined on the members of a poset
P (with partial ordering �) one may expand X for α∈P,
as

X (α) =
�α or =α∑

β

f (β, α)X f (β)

where the sum goes over all β � α, f(β,α) is a cluster function
that maps pairs of members of P onto real numbers with
f (β, α) = 0 whenever β �� α, and is such that f(α,α) �= 0.
Further X f (β) is an f transform property which is obtained by
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Figure 3. The condensed schematic biphenyl substitution reaction poset.

some sort of fitting procedure and which depends on X and
the cluster function f. Conveniently, this cluster- expansion
may be truncated to a limited sequence of non-zero cluster
terms X f , and so applied when the earlier terms alone offer
a good approximation for the property X.

For our reaction-network posets we choose [64, 68] that
f(β,α) be the number of ways in which the substitution pat-
tern α occurs as a subset of substitution pattern β. For the
poset diagram of polychlorinated biphenyls, we have trun-
cated the cluster-expansion model to X f contributions from
the chlorine atoms situated through the second row of the
poset (in Figure 1) as well as some of the terms in the third
row. To keep the number of parameters (i.e., the X f (β)) down
we choose to retain only 6 of the 12 X f (β) from the third

row as non-zero, and further we assume some equalities, so
that there remain just 3 independent parameters from this
row:

X f (2,3-Cl2φφ) = X f (3,4-Cl2φφ) = X f (4,5-Cl2φφ)

= X f (5,6-Cl2φφ) ≡ d

X f (2,4-Cl2φφ) = X f (3,5-Cl2φφ) = X f (4,6-Cl2φφ) ≡ e

X f (2,5-Cl2φφ) = X f (3,6-Cl2φφ) ≡ f

(where φ indicates phenyl and φφ biphenyl). These equali-
ties are rationalized in that the effects of two Cl ligands on
the same benzene ring are reasonably imagined to have sim-
ilar effects on the electronic structure (of the ring and of the
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ligands) whenever the (topological) distance between the two
Cl atoms is the same. For a single isolated benzene ring this
is certainly true, and has been so quite successfully used [64],
and a rather similar treatment of another ring is found in [68].
The parameters associated to the second row of the poset are
abbreviated to

X f (2 - Clφφ) ≡ a, X f (3-Clφφ) ≡ b, X f (4-Clφφ) ≡ c.

For a single isolated ring these would be the same, but here
we retain their distinction, hoping that this will ameliorate
the presumption of the equalities for the dichloro species.
The X f for dichloro species with one Cl in each benzene ring
are taken = 0, so presuming that the effects of substitution
in the two rings are independent, and accounted for by the
parameters already retained. In each series of QSSAR mod-
els, biphenyl was considered as a reference structure, namely
the property values are shifted so that X(φφ) = 0 in which
case X f (φφ) 0 (or alternatively one need not so shift the
various X(α) values, but simply take X f (φφ) = X(φφ). The
set of X f (β) parameters (a, b, c, d, e, f) can be computed [68]
by a least-squares procedure based on a subset of molecules,
or by “inversion” from small systems - and here we use the
former choice.

Results and discussion

We applied the splinoid poset and cluster-expansion QSSAR
for the modeling of bioconcentration factors and bioaccumu-
lation factors of PCBs for various fish species. Particularly
the splinoid-poset scheme is not much like a statistical fit,
but rather is like an exact numerical interpolation – and out
of a whole (infinite) ensemble of conceivable exact piece-
wise polynomial fits, the splinoid criterion selects that which
is least “curved”. To generate some sort of statistics for the
splinoid scheme we have made successive fits leaving each

Figure 4. Plot of experimental vs. predicted PCB log BCF for fish, with the posetic QSSAR models (dataset 1 from Table 1).

one of the known values out and comparing its predicted value
with its actually known value. The cluster-expansion proce-
dure is more conventional in generating its own statistical
indicators. But to make comparisons between the splinoid
and cluster-expansion schemes, we treat (and report) both
model’s statistics generated by the same leave-one-out cross-
validation procedure. The prediction statistics for all 20 data
sets are collected in Table 1. In the last column of Table 1 we
report the number of PCBs that were used to develop each
QSSAR model.

The first model from Table 1 was obtained for biocon-
centration factors of 58 PCBs collected from the literature
[39–46]. This data set uses BCFs for several fish species,
namely guppies, fathead minnow, rainbow trout, and bluegill
sunfish. This aggregation of experimental BCF from differ-
ent fish species is hopefully justified since the PCB accu-
mulation and metabolism in all these species are similar,
and the BCFs depend mainly on the PCBs’ molecular struc-
ture. Also, the BCFs are determined in the laboratory, in a
controlled environment and standardized conditions, which
can further justify the aggregation of data for different fish
species. Both cluster-expansion (rcv = 0.908) and splinoid
poset (rcv = 0.958) predictions are good, with better results
for the splinoid QSSAR. The plots of these two predictions
are presented in Figure 4, showing that there are no significant
outliers.

The remaining 19 QSSAR models reported in Table 1
were obtained with the PCB bioaccumulation factors deter-
mined for various fish species (carp, alewife, shad, walleye,
smelt, and yellow perch) in the Green Bay area and in the
Hudson River [47]. BAFs were measured in the natural
ecosystems, which can add noise and other errors in the mea-
surements. As a consequence, we can expect that the BAF
models will be of somewhat lower quality than the QSSAR
model obtained for BCF. There seems to be more variation of
BAFs between species and even between age groups within
a species, so that we retain 19 distinct data sets each of which
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is separately fit. Indeed, the results reported in Table 1 show
this trend. Overall, the BAF predictions are of good quality,
showing again that the splinoid poset gives better predictions
than the cluster expansion. The predicted correlation coeffi-
cients for the cluster-expansion QSSAR range between 0.745
and 0.887. The splinoid QSSARs give notably better predic-
tions, with correlation coefficients ranging between 0.903 and
0.935.

The BCF values predicted for PCBs with the splinoid
QSSAR method for different fish species (data set 1 from
Table 1) and BAF values predicted for carp 10 yrs and to
smelt adult (data sets 10 and 14 from Table 1) are presented
in Table 2. The BCF and BAF experimental values used to
compute the QSSAR models are presented in bold-face in
Table 2.

For this table the PCBs are numbered according to the
Ballschmiter list of congeners, and biphenyl is labeled with
the number 0. The Ballschmiter labeling of PCBs is detailed
at www.epa.gov/toxteam/pcbid.

The results of a cluster-expansion QSSAR model are pre-
sentable in a more conventional manner, and though presently
of lower quality than the splinoid fits, they are not unreason-
able. The fitted cluster-expansion parameters for the same
cases are reported in Table 3 for the same cases as reported
for the splinoid fits (of Table 2).

To summarily illustrate the BAF QSSAR, we present in
Figures 5 and 6 the prediction plots for alewife young-of-the-
year (YOY) from zone 2 Green Bay (experiment 8) and from
zone 3 Green Bay (experiment 18). Again, the predictions do
not show significant outliers or increased errors for low or
high BAF values.

Conclusions

Chlorinated compounds are produced in large quantities
and have properties that explain their accumulation in var-
ious ecosystems (namely, lipophilicity and low or negligible
metabolism rate in the organism). Due to their lipophilicity,
chlorinated compounds from food and from the aqueous en-
vironment accumulate in the fatty tissues of fish and shellfish.
Although the aqueous concentration of these pollutants might
be low, their bioaccumulation in various species of fish and
shellfish can cause serious risks for human health. Polychlori-
nated biphenyls released from industrial activities are persis-
tent pollutants of the environment that produce a widespread
contamination of water and soil. PCBs can bioaccumulate in
food chain, constituting a potential source of exposure for the
general population.

In the present study we have investigated the application
of quantitative super-structure-activity relationships for the
prediction of the bioconcentration factors and bioaccumu-
lation factors of PCBs. The experimental determination of
BCFs and BAFs is time-consuming and expensive, so that
theoretical models for their prediction are particularly ap-
pealing. To predict the bioconcentration and bioaccumulation

Table 2. PCBs experimental and predicted values with splinoid QSSAR for

BCF (different fish species, data set 1 from Table 1) and BAF (carp 10 years

and smelt adult, data sets 10 and 14 from Table 1). The experimental values

are presented in bold.

# log BCF log BAF for log BAF for

PCB for fish smelt adult carp 10yrs

0 2.64 4.09 5.04

1 3.15 4.79 5.60

2 3.24 4.78 5.61

3 2.77 4.77 5.58

4 3.38 5.40 6.00

5 4.11 5.47 6.15

6 3.80 5.44 6.24

7 3.55 5.46 6.11

8 3.57 5.46 6.12

9 3.89 5.46 6.16

10 3.69 5.44 6.02

11 3.79 5.50 6.22

12 3.66 5.49 6.16

13 3.66 5.49 6.16

14 3.78 5.50 6.20

15 3.28 5.50 6.16

16 4.18 5.99 6.57

17 4.21 6.05 6.61

18 4.11 5.90 6.57

19 4.03 5.86 6.09

20 4.25 6.15 6.74

21 4.26 6.18 6.74

22 4.25 6.23 6.77

23 4.30 6.17 6.78

24 4.26 6.08 6.66

25 4.23 6.13 6.61

26 4.26 6.24 6.89

27 4.21 5.98 6.55

28 4.20 6.20 6.76

29 4.26 6.19 6.78

30 4.19 6.08 6.61

31 4.23 6.22 6.81

32 4.18 6.05 6.63

33 4.25 6.13 6.68

34 4.26 6.15 6.75

35 4.23 6.25 6.82

36 4.27 6.25 6.84

37 4.16 6.34 6.89

38 4.26 6.35 6.89

39 4.25 6.37 6.92

40 4.23 6.61 7.13

41 4.74 6.69 7.21

42 4.71 6.76 7.25

43 4.69 6.55 7.14

44 4.84 6.73 7.26

45 4.64 6.37 6.96

46 4.61 6.20 6.71

(Continued on next page)
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Table 2. (Continued)

# log BCF log BAF for log BAF for

PCB for fish smelt adult carp 10yrs

47 4.85 6.79 7.21

48 5.00 6.75 7.26

49 4.84 6.80 7.31

50 4.64 6.53 6.97

51 4.64 6.33 7.02

52 4.63 6.87 7.35

53 4.63 6.26 6.83

54 3.85 6.37 6.81

55 4.71 6.86 7.33

56 4.73 6.90 7.39

57 4.73 6.92 7.42

58 4.73 6.89 7.38

59 4.68 6.72 7.23

60 4.69 6.96 7.43

61 4.75 6.90 7.40

62 4.69 6.76 7.26

63 4.70 7.10 7.64

64 4.60 6.80 7.30

65 4.70 6.77 7.29

66 4.69 6.96 7.42

67 4.76 6.92 7.41

68 4.72 6.91 7.38

69 4.67 6.67 7.15

70 4.77 6.96 7.45

71 4.70 6.59 7.15

72 4.75 6.88 7.38

73 4.70 6.67 7.18

74 4.68 7.10 7.65

75 4.68 6.69 7.13

76 4.77 6.89 7.38

77 4.59 7.10 7.57

78 4.84 7.00 7.47

79 4.83 7.05 7.52

80 4.79 6.955 7.44

81 4.84 7.67 8.00

82 5.15 7.31 7.74

83 5.15 7.65 8.07

84 5.10 7.07 7.53

85 5.18 7.52 7.90

86 5.26 7.29 7.75

87 5.38 7.32 7.72

88 5.16 7.09 7.53

89 5.13 6.55 7.32

90 5.00 7.38 7.80

91 5.13 7.26 7.66

92 5.22 7.32 7.74

93 5.13 7.14 7.60

94 5.11 7.06 7.55

95 5.15 7.13 7.57

(Continued)

Table 2. (Continued)

# log BCF log BAF for log BAF for

PCB for fish smelt adult carp 10yrs

96 5.00 6.94 7.43

97 5.43 7.25 7.73

98 5.09 7.02 7.46

99 5.00 7.55 7.92

100 5.05 6.92 7.01

101 5.40 7.50 7.90

102 5.16 7.04 7.53

103 5.11 7.13 7.57

104 4.90 6.95 7.40

105 5.00 7.50 7.92

106 5.22 7.45 7.88

107 5.20 7.87 8.22

108 5.18 7.48 7.89

109 5.00 7.24 7.68

110 5.15 7.31 7.75

111 5.21 7.47 7.90

112 5.15 7.30 7.73

113 5.16 7.33 7.78

114 5.20 7.60 8.02

115 5.10 7.37 7.79

116 5.15 7.30 7.74

117 5.12 7.40 7.83

118 5.00 7.87 8.32

119 5.10 7.25 7.70

120 5.23 7.53 7.96

121 5.11 7.29 7.74

122 5.21 7.47 7.90

123 5.23 7.62 8.04

124 5.27 7.53 7.97

125 5.17 7.25 7.73

126 5.81 7.73 8.15

127 5.35 7.56 7.99

128 5.77 7.74 8.14

129 5.59 7.71 8.12

130 5.55 7.83 8.18

131 5.53 6.89 7.32

132 5.55 7.54 7.96

133 5.57 7.79 8.20

134 5.52 7.62 8.03

135 5.53 7.61 8.08

136 5.43 7.46 7.89

137 5.88 7.80 8.21

138 5.39 7.80 8.20

139 5.49 7.63 7.99

140 5.48 7.51 7.92

141 5.81 7.71 8.11

142 5.56 7.52 7.94

143 5.54 7.52 7.98

144 5.55 7.53 8.00

(Continued on next page)
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Table 2. (Continued)

# log BCF log BAF for log BAF for

PCB for fish smelt adult carp 10yrs

145 5.46 7.42 7.87

146 5.59 7.79 8.16

147 5.51 7.66 8.05

148 5.39 7.59 8.10

149 5.57 7.48 7.81

150 5.44 7.50 7.92

151 5.54 7.32 7.65

152 5.48 7.51 7.95

153 5.65 7.90 8.29

154 5.46 7.60 7.97

155 4.93 7.45 7.76

156 5.39 7.95 8.37

157 5.39 7.92 8.35

158 5.48 7.76 8.17

159 5.58 7.87 8.30

160 5.52 7.6 8.04

161 5.51 7.75 8.27

162 5.59 7.98 8.40

163 5.53 7.81 8.21

164 5.56 7.82 8.25

165 5.54 7.78 8.22

166 5.54 7.74 8.14

167 5.62 8.46 8.95

168 5.53 7.76 8.21

169 5.97 8.03 8.46

170 5.80 8.09 8.54

171 5.80 7.89 8.34

172 5.81 8.08 8.55

173 5.79 7.81 8.28

174 5.80 7.84 8.18

175 5.78 7.86 9.02

176 5.77 7.77 8.22

177 5.79 8.03 8.42

178 5.78 7.92 8.39

179 5.76 7.81 8.27

180 5.80 8.18 8.65

181 5.84 7.94 8.38

182 5.80 7.96 8.44

183 5.84 7.93 8.33

184 5.71 7.89 8.32

185 5.82 7.50 8.00

186 5.78 7.85 8.29

187 5.80 7.91 8.33

188 5.75 7.87 8.35

189 5.78 8.30 8.71

190 5.77 8.04 8.44

191 5.84 8.18 8.61

192 5.79 8.05 8.50

193 5.80 8.50 8.94

194 5.81 8.68 9.27

(Continued)

Table 2. (Continued)

# log BCF log BAF for log BAF for

PCB for fish smelt adult carp 10yrs

195 5.92 8.29 8.76

196 5.92 8.29 8.83

197 5.93 8.21 8.68

198 5.88 8.23 8.81

199 5.88 8.33 8.90

200 5.89 8.18 8.64

201 5.89 8.05 8.50

202 5.82 8.19 8.69

203 5.91 8.24 8.72

204 5.92 8.22 8.70

205 5.92 8.46 8.50

206 5.81 8.66 9.26

207 5.84 8.52 9.04

208 5.71 8.50 9.02

209 5.44 8.66 9.28

Table 3. Fitted cluster-expansion parameters for log BCF and log BAF.

Case a b c d e f

BCF for fish 1.343 1.547 1.529 −0.544 −0.492 −0.328

BAF to carp 10 yrs 2.020 2.279 2.299 −0.703 −0.736 −0.624

BAF to smelt adult 1.788 2.114 2.251 −0.664 −0.655 −0.497

factors for PCBs we applied two poset QSSAR models
(namely the splinoid poset and cluster-expansion) specifi-
cally developed for a network of chemical compounds that
can be derived by a substitution reaction from a parent skele-
ton (here biphenyl). These QSSAR models based on the poset
reaction diagram reflect in distinct ways the topology of the
reaction network (or “super-structure”, being “beyond” ordi-
nary molecular structure) that describes the interconversion
of the chemical species in the network. The cluster-expansion
is a parametric method, which bears some relation [68] to
QSAR models based on standard subgraphic cluster expan-
sions. On the other hand the splinoid poset method is a global
interpolation method. The two may be reasonably compared
using the leave-one-out cross validation procedure. Problems
[69,70] found in some QSAR schemes (i.e., those where the
set of descriptors chosen to make a fitting is optimally selected
from a much larger super-set of descriptors) are avoided
with the present cluster-expansion QSSAR scheme in that
we entertained no larger super-set of descriptors – with the
poset, the cluster-expansion descriptors are themselves par-
tially ordered, and one naturally takes the earlier ones. For the
splinoid scheme even speaking of descriptors (and thence sets
or super-sets of descriptors) is simply somewhat “foreign”.
Our two (robust) QSSAR models considered here were pur-
posely developed for modeling properties in series of com-
pounds that can be formally derived by substitution from a
parent skeleton, such as benzene, but also naphthalene, or
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Figure 5. Plot of experimental vs. predicted PCB log BAFs for alewife YOY from Green Bay zone 2, with the posetic QSSAR models (dataset 8 from Table 1).

Figure 6. Plot of experimental vs. predicted PCB log BAFs for alewife YOY from Green Bay zone 3, with the posetic QSSAR models (dataset 18 from Table 1).

biphenyl, or other parent frameworks. Previously the splinoid
poset QSSAR has been used to model various toxicity indices
of chlorobenzenes for guppy, fathead minnow, brine shrimp,
Daphnia magna, algae, and tadpoles [64].

Using the cluster-expansion and splinoid QSSAR we have
here modeled the bioconcentration factors of 58 PCBs mea-
sured for several fish species, namely guppies, fathead min-
now, rainbow trout, and bluegill sunfish. The best predictions
were obtained with the splinoid poset (rcv = 0.958), which
gives a QSSAR model that can be used to predict the BCF
for the remaining PCBs.

The BAF models were obtained for 19 series of PCB
bioaccumulation factors determined for various fish species
(carp, alewife, shad, walleye, smelt, and yellow perch) in
the Green Bay area and in the Hudson River. Because
BAFs were measured in natural ecosystems, the experimen-
tal values seem to be affected by larger errors than BCF

values, which explains the somewhat lower prediction statis-
tics obtained in the BAF QSSAR models. Nonetheless, the
BAF predictions are of good quality, showing again that
the splinoid poset gives better predictions than the present
cluster-expansion.

Thus we find compelling evidence showing that QSSAR
models based on poset reaction diagrams can be success-
fully used to model the BCFs and BAFs of polychlorinated
biphenyls. Presumably the splinoid QSSAR models for BAFs
and BCFs could be used to obtain reliable predictions for
other reaction networks of interest.
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based on partial order ranking, SAR QSAR Environ. Res., 13 (2002)

153–165.
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