
Design of a Framework Using Inkml for Pen-Based
Interaction in a Collaborative Environment

Solen Quiniou1, Mohamed Cheriet1, and Eric Anquetil2

1 Synchromédia Laboratory – École de Technologie Supérieure,
1100 rue Notre-Dame Ouest, Montréal (Québec) H3C 1K3, Canada
2 IRISA—INSA, Campus de Beaulieu, 35042 Rennes Cedex, France

Solen.Quiniou@synchromedia.ca, Mohamed.Cheriet@etsmtl.ca,
Eric.Anquetil@irisa.fr

Abstract. We present a framework based on the standard InkML format to rep-
resent digital ink in a collaborative environment using pen-based interaction
functionalities. This framework includes the capture, the rendering and the in-
terpretation of the digital ink. In the proposed framework, we focus more par-
ticularly on the representation of the contextual environment of the ink and used
for its interpretation (as drawing, for example) as well as on the representation
of semantic information attached to the ink after its interpretation.

Keywords: Digital ink, InkML, annotations, collaborative environments.

1 Introduction

With the emergence of pen-based devices such as PDAs, Tablet PCs or whiteboards,
pen-based input methods are becoming relevant in collaborative environments. In-
deed, they allow users to input elements like text or drawings in a more natural way to
communicate with each other. Pen-based interactions are thus useful in domains like
remote healthcare, collaborative document annotation or active learning in classrooms
where applications like whiteboard sharing allow several users to write or draw on a
virtual shared whiteboard (blank or containing documents like images that can be
annotated, for example).

The digital ink data used for this interaction thus needs to be represented in some
format to be exchanged among the users. This format should also be able to represent
other contextual information that may be needed to interpret the digital ink as text,
drawing or annotations, for example, and should be able to represent the result of this
interpretation process. To do so, the Ink Markup Language (InkML) [1] has been
proposed by the W3C Multimodal Interaction Activity as an open standard for repre-
senting both the ink data (entered with some electronic device) and the inking envi-
ronment. Furthermore, as InkML is an XML-based language, it is easily extensible to
add specific information needed by any developed application.

The context of this paper is the addition of pen-based interaction functionalities
into the collaborative environment Synchromedia. Synchromedia is a consortium
regrouping Canadian Universities (ÉTS, Concordia, Waterloo, UQÀM or Teluq),
companies like Inocybe Technologies Inc. and other partners such as the Hôpital du

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357588079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Design of a Framework Using Inkml for Pen-Based Interaction 343

Sacré-Coeur in Montreal. The aim of this consortium is to develop a collaborative
environment integrating different media (texts, sounds, videos…). The current phase
of this project focuses on methods to improve the communication between users and
to include functionalities that take advantage of pen-based interactions and more par-
ticularly on the interpretation of digital ink to attach semantic information to it. For
this purpose, we propose a framework based on the InkML format, where we focus
more particularly on the representation of the contextual environment of the digital
ink as well as the representation of its interpreted elements. Previous works [2] and
[4] also use InkML to represent digital ink in a collaborative environment but they
focused more on dealing with interoperability problems to send digital ink and to
render it on heterogeneous devices and platforms.

The rest of this paper is organized as follows. In Section 2, we present the basic
elements of InkML and, in Section 3, we describe the framework and more particu-
larly the use of InkML to represent the aforementioned elements. Finally, we draw
some conclusions in Section 4.

2 Overview of the Ink Markup Language (InkML)

InkML[1] is a markup language for representing digital ink which has been proposed
by the W3C as an alternative to proprietary ink data formats (e.g. Microsoft’s Ink
Serializable Format (ISF)). Its specification defines a set of primitive elements for all
basic ink applications. Furthermore, since it is an XML-based language, it is easily
extensible to add application-specific information to suit the needs of the applications.
We present here the basic elements of InkML (see [1] for further details).

The fundamental elements in InkML are traces (defined between <trace> ele-
ments, which are contained within a single <ink> element). A trace represents a
sequence of contiguous ink points between a pen-down and a pen-up. Each point is
represented by values depending on the pen’s position, such as its X and Y coordi-
nates (the <traceFormat> element describes the quantities that may be considered
for the points and may also include the tip force or the angle). The following code
shows an example of a simple InkML file containing the X and Y coordinates of the
points of two traces:

<ink>
 <trace>10 0, 9 14, 8 28, 7 42, 6 56, 6 70</trace>
 <trace>282 45, 281 59, 284 73</trace>
</ink>

Information about the digitizer device can be recorded in the <inkSource> ele-

ment and may include the sample rate, the resolution or the model of the device. The
<context> element enables the ink context to be taken into account and may in-
clude information about the writer or about the graphical context (using the <brush>
element to record the color and the width of the ink). InkML also allows logical re-
grouping of ink using either <traceGroup> or <traceView> elements referring
to <trace> elements. These groups of traces can also be semantically labeled using
<annotationXML> elements.

344 S. Quiniou, M. Cheriet, and E. Anquetil

Furthermore, InkML allows digital ink to be represented into two styles. The
streaming style is more appropriate for applications that deal with transmission of ink
because it allows the ink to be considered as it is entered, relatively to a current state
(context modifications are given according to this state). The archival style is more
relevant for applications that store ink or process stored ink because the contextual
information is separated from the traces (organized and annotated hierarchically).

3 Framework of an Ink Processor Based on InkML

In this section, we present the framework that uses the previously presented InkML
elements to process digital ink.The ink processor consists of three modules to capture,
render and interpret the digital ink (see Fig. 1). In a collaborative environment, each
user has its own ink processor both to deal with its own digital ink and with the ink
from the other users. These three modules are presented in the following sub-sections.

Fig. 1. Ink processor framework

3.1 Ink Capturer

The aim of this module is to capture ink data from a digitizer and to represent these
data in the Streaming InkML style by creating <trace> elements, where each point
coordinates are generated according to the <traceFormat> element.

This module also receives context change events from the Graphical User Interface
(GUI) and generates <context> elements. Among these context events are changes
on the width or color of the ink (that may be specified by the <brush> element).
Other information may be useful for the interpretation of the ink data and may be
added to the InkML format, like a change of mode (a mode corresponds to the nature
of the ink which may correspond to gestures, annotations, texts, drawings or even to a
search mode where the ink may be used as a request). Furthermore, in collaborative
environments, useful information may include the ID of the ink owner or the protec-
tion level of the ink (eg public or private depending of if the data can be shared with
other users). This InkML fragment shows examples of created context changes:

 Design of a Framework Using Inkml for Pen-Based Interaction 345

<context id=’’context1’’>
 <brush
id=’’black15pen’’><width>15</width><color>#FFFFFF</color>
 <mode type=’’drawing’’/>
 <owner id=’’writer1’’/>
 <protection>private</protection>
</context>

All these InkML generated elements are then sent to the ink interpreter module.

3.2 Ink Interpreter

The ink interpreter module receives ink data and context information both from the
user and from the other users. It then sends its interpretation information to the ren-
derer module as well as to the other users (which may depend on whether or not the
ink is public).

The aim of this module is thus to interpret the received ink using the corresponding
context information, received as well. The interpretation process mainly consists in
associated semantic information to the ink data and more particularly the type of the
ink (corresponding to the previously mentioned modes). To do so, the ink interpreter
module may use specific interpreter sub-modules like handwriting, gesture or drawing
recognizers. This overall interpretation process can be done in a synchronous way,
thus generating context elements for changes of modes, before sending the corre-
sponding ink, as shown in the given fragment code (a change to a gesture mode has
been detected by the interpreter and is sent before sending the ink traces):

<context id=’’context3’’>
 <mode type=’’gesture’’/>
</context>
<trace>10 5, 10 7,...</trace>

The interpretation can also be done in an asynchronous way, as a background
process, and the interpretation results will thus refer to previously entered and dis-
played ink, using <inkView> and <annotationXML> elements, as shown below (pre-
vious referenced traces have been interpreted as annotations):

<traceView id=’’L7’’ traceDataRef=’’#L1’’>
 <annotationXML type=’’annotation’’/>
</traceView>

Moreover, in order to allow the ink and its interpretation to be further used, the
corresponding information is stored in a database, after being converted to the Archi-
val InkML style (using the conversion algorithm given in [3]). Thus, when the search
mode activated, the entered ink can be used as a request to retrieve corresponding
documents, with ink documents being converted back to the Streaming style (the
database may also contained documents without ink data).

3.3 Ink Renderer

The aim of this module is to render the ink on the display area of the device, using the
information given by the interpreter module, from the current user as well as the other
ones. Ink rendering is an important aspect of pen-based applications because a non-
satisfactory rendering, for a given user, may lead to a rejection of the corresponding
application by this user.

346 S. Quiniou, M. Cheriet, and E. Anquetil

To perform this rendering, <trace> elements sent by the interpreter module as
well as <context> elements are processed; proprieties of the display device may
also be taken into account to correctly render the ink. Furthermore, as the ink interpre-
tation may be asynchronous, this module may also have to process <traceView>
elements and thus change the rendering of already displayed ink data, according to the
corresponding interpretation (ink data interpreted as annotations may be displayed
with a different color, for example).

4 Conclusion and Future Works

In this paper, we have presented a framework based on the standard InkML format for
representing digital ink in a collaborative context. We have focused more particularly
on the representation of various context elements as well as on how to attach semantic
information to the digital ink (the information being given by interpreter modules).

In future works, we will integrate the proposed framework in the Synchromédia
collaborative environment to add pen-based functionalities into it. Given the domain
applications, other extensions to InkML may also be needed. For example, we may
want to further categorize annotations like in [5] as well as to specify different types
of indexes to add search functionalities on documents (containing or not annotations).

References

1. Chee, Y.-M., Froumentin, M., Watt, S.M.: Ink Markup Language (InkML).
 http://www.w3.org/TR/InkML (October 2006)

2. Keshari, B., Madhvanath S., Prasad, M., Selvaraj, M., Watt, S.M.: Sharing Digital Ink in
Heterogeneous Collaborative Environments. Proc. of the 11th International Conference on
Frontiers in Handwriting Recognition. Montréal (2008)

3. Keshari, B, Watt, S.M.: Streaming-Archival InkML Conversion. Proc. of the 9th Interna-
tional Conference on Document Analysis and Recognition. Curitiba (2007)

4. Neddenriep, J., Griswold, W.G.: RiverInk - an Extensible Framework for Multimodal Inter-
operable Ink. Proc. of the 40th Annual Hawaii International Conference on System Sciences.
Hawaii (2007)

5. Wang, X., Shilman, M., Raghupathy, S.: Parsing Ink Annotations on Heterogeneous Docu-
ments. Proc. of the Eurographics Workshop on Sketch-Based Interfaces and Modeling. Vi-
enna (2006)

	Design of a Framework Using Inkml for Pen-Based Interaction in a Collaborative Environment
	Introduction
	Overview of the Ink Markup Language (InkML)
	Framework of an Ink Processor Based on InkML
	Ink Capturer
	Ink Interpreter
	Ink Renderer

	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

