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Abstract. Due to the increasing complexity of multi/many-core architectures (with their mix of caches and scratch-pad memories)
and applications (with different memory access patterns), the performance of many workloads becomes increasingly variable. In
this work, we address one of the main causes for this performance variability: the efficiency of the memory system. Specifically,
based on an empirical evaluation driven by memory access patterns, we qualify and partially quantify the performance impact
of using local memory in multi/many-core processors. To do so, we systematically describe memory access patterns (MAPs)
in an application-agnostic manner. Next, for each identified MAP, we use OpenCL (for portability reasons) to generate two
microbenchmarks: a “naive” version (without local memory) and “an optimized” version (using local memory). We then evaluate
both of them on typically used multi-core and many-core platforms, and we log their performance. What we eventually obtain is
a local memory performance database, indexed by various MAPs and platforms. Further, we propose a set of composing rules for
multiple MAPs. Thus, we can get an indicator of whether using local memory is beneficial in the presence of multiple memory
access patterns. This indication can be used to either avoid the hassle of implementing optimizations with too little gain or,
alternatively, give a rough prediction of the performance gain.
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1. Introduction

In the last few years, multi/many-core processors
have been becoming extremely popular. With the in-
creasing number of processing cores, the ratio of CPU
to memory speed is growing rapidly. To exploit the full
benefits of the increasing number of processing cores,
architects need to ensure that memory bandwidth are
optimized. Utilizing a cache hierarchy, as well as in-
creasing the cache size, are traditional approaches to
alleviate the memory bottleneck [3].

Alternatively, modern multi/many-core processors
like GPUs use programmer-managed scratch-pad
memories (SPM). Studies have shown that scratch-pad
memories use 34% lesser area and consume 40% less
power than a cache of the same capacity [27]. Since
the on-chip cache typically consumes 25–50% of the
processor’s area and energy, these savings are signif-
icant. Like caches, scratch-pad memories are situated
on-chip and are much faster than the off-chip memo-
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ries. Therefore, proper use of scratch-pad memories of-
ten leads to a higher effective memory bandwidth and
a better overall performance.

OpenCL (Open Computing Language) [15], the
standard proposed by the Khronos Group for program-
ming many-cores, recognizes SPMs under the name
of local memory in its conceptual device architecture.1

Eager to be part of the development and deployment
of the common programming model for many-cores,
many vendors have implemented OpenCL and local
memory on top of their hardware and software stacks.
For example, NVIDIA maps local memory onto the
on-chip SPM, while the cache-only processors2 such
as the multicore CPUs map it to the off-chip mem-
ory [9].

Due to architectural disparities and, in particular, the
differences in implementing local memory, program-
mers often use the trial-and-error approach to enable

1NVIDIA uses the term ‘shared memory’, while AMD calls it ‘lo-
cal data store’. In this paper, we use the OpenCL name ‘local mem-
ory’ [15].

2Cache-only processors have on-chip caches but no SPMs.

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357587884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


240 J. Fang et al. / Aristotle: A performance impact indicator for the OpenCL kernels using local memory

local memory and evaluate its efficiency: taking a naive
kernel, they translate the code into an “optimized” ver-
sion that uses local memory and then measure its im-
pact. This is a time-consuming process, as program-
mers have to address, in their OpenCL code, chal-
lenges like (1) geometry mismatches, (2) work-items3

masking and binding switches, and (3) inefficient local
memory organization [6]. Similarly, for architectures
where using local memory is not recommended, pro-
gramming effort is often spent on removing the code
related to local memory for improved performance.
We argue that solving these problems requires a lot
of effort to be spent on non-computational and non-
functional details of kernels, which hinders productiv-
ity. Therefore, we propose a solution to quantify the
performance impact of using local memory before im-
plementing it. Our analyzer will help sparing a lot of
useless programming effort.

Despite common belief [1,11,22], the impact of
local memory usage on performance is not easy to
determine. For example, data reuse is a commonly
recognized source of performance gains of using lo-
cal memory [8,12,19,26]. However, data reuse and lo-
cal memory are not always correlated: data reuse does
not automatically lead to a higher local memory effi-
ciency (see Section 2.2.1), nor does the lack of data
reuse mean lack of performance improvement (see
Section 2.2.2). Furthermore, in the case of CPUs, the
off-chip placement of the local memory makes pro-
grammers choose not to use it [11], but properly us-
ing it can lead to performance improvement (see Sec-
tion 2.2.3).

In this work, we address the issue of performance
unpredictability when using local memory in a two-
stage approach: quantification and composition. For
quantification, we develop a benchmark-based ap-
proach to quantify the performance impacts of using
local memory for 33 memory access patterns (MAPs)
in isolation. For each MAP, we generate two types
of benchmarks: with and without using local memory.
We empirically evaluate these benchmarks on typically
used platforms, and record the achieved performance
in a performance database. In practice, we can obtain
the performance benefits of using local memory for a
single MAP by querying the database. For composi-
tion, we present a set of rules (empirically validated)
to determine whether to use local memory or not in
the presence of multiple MAPs. The database plus the
composing rules will produce an indicator of whether

3In the context, we use ‘work-item’ and ‘thread’ interchangeably.

to use local memory for a given application. We name
the approach, including the code generator and valida-
tor, as Aristotle.

To summarize, we make the following contribu-
tions:

• We formalize the benchmark design space and de-
velop a code generator which helps applying our
approach on any OpenCL-compliant platform.

• We evaluate the performance impacts of using lo-
cal memory on a broad category of processors
and generate a comprehensive and representative
database.

• We design and validate a set of composing rules
to determine whether to use local memory in the
presence of multiple MAPs.

The paper is organized as follows: We list three
counter-intuitive observations of using local memory
in Section 2. Our approach is presented in Section 3.
We extend a mathematical model to describe mem-
ory access patterns and derive a set of MAPs in Sec-
tion 4. We explore the design space of using local
memory and produce benchmarks using a code gener-
ator in Section 5. We generate a performance database
by running the microbenchmarks on seven typically
used platforms in Section 6. In Sections 7 and 8, we
propose and validate a set of composing rules in the
presence of multiple MAPs. We present related work
in Section 9 and we summarize our findings in Sec-
tion 10.

2. Background and motivation

2.1. OpenCL and local memory

OpenCL is a relatively new standard for parallel pro-
gramming of heterogeneous systems [15]. An OpenCL
program has two parts: kernels that execute on one
or more OpenCL devices (typically accelerators such
as GPUs) shown in Fig. 1, and a host program that
executes on the host (typically a traditional CPU).
The host program defines the contexts for the ker-
nels and manages their execution, while the computa-
tional task is coded into kernel functions. When a ker-
nel is submitted onto devices for execution, an index
space of work-items (instances of the kernel) is defined.
A work-item is typically executed on a processing ele-
ment (PE) of the device. Further, work-items are orga-
nized into work-groups, which run on computer units
(CU) in a lock-step fashion.
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Fig. 1. Conceptual device architecture with processing elements
(PE), compute units (CU). The memory regions include private
memory, caches (architecture-related), local memory (LM), and
global/constant memory. The host is not shown.

Each work-item has its own private memory space,
and can share data via local memory with the other
work-items in the same work-group. All work-items
can read/write the global memory. Figure 1 shows the
OpenCL device architecture with local memory [15].
To achieve a high bandwidth, local memory is di-
vided into equally-sized memory banks, which are or-
ganized in such a way that successive words are as-
signed to successive banks, i.e., interleaved. A bank
conflict occurs when two or more work-items access
different words in the same bank [1,22]. Accesses that
map to the same bank are serialized and serviced in
consecutive cycles, resulting in performance degrada-
tion. Thus, a key to effectively use the local memory
is to control the access pattern so that simultaneous ac-
cesses are mapped to different banks.

2.2. Three observations

Our work is based on the observation that local
memory, although perceived as a guarantee of perfor-
mance gain, does not always behave so. In this section,
we give a more detailed analysis of three types of such
behaviors/observations.

2.2.1. Data reuse �= performance improvement
The occurrence of data reuse is a widely used cri-

terion of moving data from global memory to lo-
cal memory. However, this statement does not always
hold. Table 1 shows the memory bandwidth when run-
ning NBody [23] on NVIDIA GTX580. We see that
although the input data elements are shared by all

the threads for NBody, using local memory performs
worse than not using it (by around 20%). The per-
formance loss is due to the fact that GTX580 has
caches (L1 and L2) that make better use of data sharing
than the local memory. Specifically, local memory en-
ables data sharing among work-items within one work-
group, while the L1 cache can identify the data sharing
within one work-group, and the L2 cache will enable
global data sharing on the input data (i.e., among work-
groups as well). Additionally, using local memory in-
troduces extra overheads for data movement operations
in and out of local memory. Therefore, the caches may
“cancel” the performance gains of using local memory.

2.2.2. No data reuse �= performance loss
Let us consider data movements between local

memory and global memory. Suppose we have N com-
pute units and the bandwidth of local memory access
is Wl. An application requires D data elements to be
moved when using global memory only (with a band-
width of Wg), and D′ data elements to be moved from
global memory to local memory (with a bandwidth of
W ′

g). We compute the time of data movement with-
out (Tw/o) in Eq. (1) and with local memory (Tw/i)
in Eq. (2). We see that performance improvement of
using local memory comes from two factors: either
the decrease of data amount (D′ < D), and/or the
increase of global memory bandwidth (W ′

g > Wg).
Thus, considering data reuse as a must for local mem-
ory performance gain is incorrect and will lead to
missed opportunities for local memory usage. Taking
a straightforward approach for a Matrix Transpose on
GPUs for example, the implementation will violate the
coalesced constraints on the global memory access.
Using local memory, we can ensure coalescing for both
input and output memory access, and thus improve the
bandwidth:

Tw/o =
D

Wg
, (1)

Tw/i =

⎧⎪⎪⎨
⎪⎪⎩

D

Wl
+

D′

W ′
g

, N = 1,

max

(
D

Wl
,
D′

W ′
g

)
=

D′

W ′
g

, N > 1.

(2)

2.2.3. Local memory use on CPUs �= performance
loss

At the moment of writing, local memory is allocated
within the main memory space of the CPUs (global
memory in Fig. 1). Thus, it is not recommended to use
local memory on CPUs [11]. However, we have found
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Table 1

Memory bandwidth (GB/s) of NBody where the local memory is allocated dynamically

64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

LMw/o 613.50 636.43 646.06 616.42 589.95

LMw/i 512.44 495.28 516.04 518.61 520.64

Loss (%) 16.47 22.18 20.13 15.87 11.75

Notes: LMw/o represents the naive kernel and LMw/i represents the kernel using local memory. We use five datasets each with a different
matrix/input size.

Table 2

Memory bandwidth (GB/s) of convolution with and without local memory for six datasets

64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048

LMw/o 6.81 7.77 7.81 8.06 8.13 8.15

LMw/i 12.23 13.81 14.08 14.56 14.70 14.56

Speedup 1.80 1.78 1.80 1.80 1.81 1.79

that this does not always hold. Table 2 shows the mem-
ory bandwidth of a convolution kernel on Intel Xeon
E5620 (a dual-socket 4-core processor). We see that
using local memory delivers better performance than
not using it (around 2× faster). Using local memory on
CPUs introduces extra overheads, but it also changes
the usage of caches and allows compilers to do spe-
cific optimizations for data placed by the users in local
memory.

To summarize, these three counter-intuitive observa-
tions show that using local memory makes it difficult to
predict the performance gain and thus the performance
unpredictability. Further, our analysis indicates that the
unpredictability results from the diversity of architec-
tures/processors and applications.

3. The design of Aristotle

Based on all these observations (Section 2), we be-
lieve that a better understanding of the cases when lo-
cal memory is useful, and better quantifying its useful-
ness are equally required. Thus, we propose a hybrid
approach to tackle this issue: use MAP modelling to
generate microbenchmarks, and use traditional perfor-
mance measurement to quantify local memory useful-
ness.

Figure 2 shows the Aristotle framework. For all
memory access patterns, we generate 2 benchmark ker-
nels: one without local memory, and the other one with
local memory. Then we evaluate the benchmarks on
typically used many-core processors and generate a
performance database. Given a kernel, we identify the
MAPs embedded in it and use the composing rules to
generate a performing list of whether or not to use local
memory on each MAP.

Fig. 2. Aristotle overview.

Note that our benchmarks start with memory access
patterns (MAPs), which we consider to be models of
the input kernels. Our goal is to evaluate the bench-
marks empirically, giving accurate information on the
benefit of using local memory. Thus, given an appli-
cation MAP and a platform, a simple query in our
database can show how using local memory impacts
the application performance. Furthermore, the memory
access patterns can be manually identified from input
kernels [13], or automatically abstracted during run-
time [24], and are, for now, outside the scope of this
work.

4. MAP description

We express a MAP as a memory access sequence,
which allows us to represent discrete memory refer-
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ences and loops. Our approach is based on the notation
in [13,17]. We make use of a similar notation, which
enables us to study memory access patterns systemat-
ically. To keep the number of analyzed MAPs under
control, we rewrite the formulation such that we clearly
separate the inter-thread and intra-thread parallelism,
and we focus on five categories of patterns. Specifi-
cally, we assume a 2D thread configuration (tx, ty), for
which we investigate the resulting inter-thread access
patterns, and five different intra-thread access patterns,
to match the most important MAPs found in real-life
applications. Using these limitations, we are able to
fully analyze a set of MAPs that are intuitive and cover
a large set of real-life applications.

4.1. The notation

According to [13], a memory access sequence �s can
be expressed as a combination of a memory access ma-
trix, M, an iteration vector, �i, and an offset vector, �o.
The dependency is presented in Eq. (3). Note that this
notation is applicable to loop nests of arbitrary depth,
and depending on the mapping of these iterations on
the threads space, the memory access matrix will cover
both the inter- and intra-thread memory access pat-
terns.

�s = M�i+ �o, (3)

�s = �eMAP + �iMAP = M �tid + �iMAP. (4)

We have adapted this notation to express our spe-
cific range of MAPs – see Eq. (4). In this new notation,
we have clearly separated the inter-thread ( �eMAP) and
intra-thread ( �iMAP) components. Intuitively, eMAP

generates a base access index for each thread, while
iMAP provides an offset which represents the distance
from the base address. We focus on 2D thread orga-
nization: M becomes a 2 × 2 mapping matrix of the
threads ( �tid) to the data. The �iMAP component is a vec-
tor representation of the intra-thread access pattern. We
further rewrite Eq. (4) to Eq. (5), and we use this form
to exhaustively generate our benchmarks:

�s =

[
M00 M01
M10 M11

] [
ty
tx

]
+

[
iMAP0
iMAP1

]
. (5)

4.2. eMAP

When M00,M01,M10,M11 ∈ {0, 1}, we generate
16 cases of eMAP (shown in Fig. 3). As we have men-
tioned, eMAP encodes the base index of the memory
references for each thread. For example, Fig. 4 shows
the base index of eMAP-14 for each thread. We as-
sume a 8 × 8 workgroup, and a dataset of (at least)
15 × 8; for simplicity, in this example, we consider
�iMAP =

[ 0
0

]
. In this case, consecutive work-items in

the x-dimension will access contiguous data elements
in the horizontal direction; consecutive work-items in
the y-dimension will access the elements on the diago-
nal line. Thus, the base index of each thread is located
within the shaded area (Fig. 4(a)).

When M00,M01,M10,M11 /∈ {0, 1}, the eMAPs
become more complex. When M00 = 2, we see
(Fig. 4(b)) ‘gaps’ between rows due to the larger stride,
compared with eMAP-14. We can imagine that any
non-unit stride will introduce such ‘gaps’. For now, our
work only considers [0, 1] cases (Fig. 3). We believe
the extension to larger strides will not bring changes to
our methodology. However, it will lead to cases very[

0 0
0 0

] [
ty
tx

]

(01)

[
0 0
0 1

] [
ty
tx

]

(02)

[
0 0
1 0

] [
ty
tx

]

(03)

[
0 1
0 0

] [
ty
tx

]

(04)[
1 0
0 0

] [
ty
tx

]

(05)

[
0 0
1 1

] [
ty
tx

]

(06)

[
0 1
0 1

] [
ty
tx

]

(07)

[
1 0
0 1

] [
ty
tx

]

(08)[
1 0
1 0

] [
ty
tx

]

(09)

[
0 1
1 0

] [
ty
tx

]

(10)

[
1 1
0 0

] [
ty
tx

]

(11)

[
1 1
1 0

] [
ty
tx

]

(12)[
1 1
0 1

] [
ty
tx

]

(13)

[
1 0
1 1

] [
ty
tx

]

(14)

[
0 1
1 1

] [
ty
tx

]

(15)

[
1 1
1 1

] [
ty
tx

]

(16)

Fig. 3. eMAP cases (numbered 01 to 16).
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Fig. 4. Base index example: (a) eMAP-14: the shaded elements are the ones accessed by the whole 8 × 8 workgroup; the arrows indicate (some
of) the one-to-one relations between threads and data items; (b) the base index in the data structure when M00 = 2 (only show the first four
rows). (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140390.)

rarely seen in real-life applications and a large increase
in the experimentation time.

4.3. iMAP

iMAP captures the memory access patterns of a sin-
gle thread, i.e., the way one thread accesses data el-
ements. We have identified five typical iMAPs from
real-life applications [6] – namely, Single, Row, Col-
umn, Block and Neighbor – and briefly describe them:

• Single (1): each thread accesses one data element
indexed by its base index.

• Row (2): each thread references a row of data ele-
ments within the row indexed by its base.

• Column (3): each thread accesses a column of
data elements within the column indexed by its
base index.

• Block (4): each thread accesses a block of data el-
ements within the block centered at the base index
and sized ((2Rx + 1) × (2Ry + 1)).

• Neighbor (5): each thread accesses the data el-
ements lying at the base index and its four (or
more) neighbors.

The iMAP representations are listed as follows,
where W and H represents the width and height of the
input matrix, respectively; (Rx,Ry) is the radius of a
block:

Single: iMAP =

{[
0
0

]}
,

Row: iMAP =

{[
0
i

] ∣∣∣ 0 � i < W , i ∈ N

}
,

Column:

iMAP =

{[
j
0

] ∣∣∣ 0 � j < H , j ∈ N

}
,

Block:

iMAP =

{[
j
i

] ∣∣∣ −Rx � i � Rx, i ∈ N ;

−Ry � j � Ry , j ∈ N

}
,

Neighbor:

iMAP =

{[
−1
0

]
,

[
0
−1

]
,

[
0
0

]
,

[
0
1

]
,

[
1
0

]}
.

4.4. MAP = eMAP + iMAP

Once eMAP and iMAP are specified, we get 80
(16 × 5) memory access patterns (MAPs), and hence
need to generate and evaluate 80 microbenchmarks.
The name of each MAP is a concatenation of the iMAP
and eMAP numbers. For example, MAP-407 is a com-
bination of iMAP-4 (Block) and eMAP-07. In the re-
mainder of this paper, we also group MAPs by their
iMAP name, having Single MAPs (the MAPs that have
the “Single” iMAP), and similarly Row MAPs, Col-
umn MAPs, Block MAPs and Neighbor MAPs.

When analyzing our 80 MAPs, we find that some
combinations of eMAP and iMAP are either under-
specified (resulting in non-interesting cases) or over-
specified (resulting in contradictory definitions). Take
for example MAP-101, in which each thread should
access one element (according to the iMAP), but due
to the eMAP (01), all threads end up accessing the
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same element (i.e., the (0, 0) element from the dataset),
an uninteresting case – i.e., an underspecified MAP.
MAP-206 is also underspecified: all threads end up ac-
cessing the same row (i.e., row 0 from the dataset). On
the other hand, MAP-216 is an overspecified MAP, as
the eMAP and iMAP specify contradictory rules for
accessing the same elements.

We generalize the classes of compatible eMAPs for
each iMAP as follows:

• Single: M should have at least one ‘1’ per row.
• Row: M should have no ‘1’ on the bottom row,

and at least one ‘1’ on the top row.
• Column: M should have no ‘1’ on the top row, and

at least one ‘1’ on the bottom row.
• Block: similar to (1).
• Neighbor: similar to (1).

After removing the under/overspecified MAPs, only
33 MAPs remain valid, and are listed in Table 3. Note
that, in the paper, we do not take the random memory
access into account since we assume that local memory
is mainly suitable for applications with specific mem-
ory access patterns.

We note that this approach is, so far, application-
agnostic. In other words, we attempt to generate all
possible MAPs for our representation and evaluate
their local memory impacts. Thus, our database is
generic and fully reusable by any application.

Table 3

The memory access patterns

Single (1) Row (2) Column (3) Block (4) Neighbor (5)

01 – – – – –

02 – – 302 – –

03 – – 303 – –

04 – 204 – – –

05 – 205 – – –

06 – – 306 – –

07 107 – – 407 507

08 108 – – 408 508

09 109 – – 409 509

10 110 – – 410 510

11 – 211 – – –

12 112 – – 412 512

13 113 – – 413 513

14 114 – – 414 514

15 115 – – 415 515

16 116 – – 416 516

Note: ‘–’ represents an impossible MAP – either under or overspec-
ified.

5. Design space exploration and code generation

5.1. Exploring design space

When generating benchmarks (for a MAP) with lo-
cal memory, we need to consider the issues of local
space allocation, local data staging and local memory
access.

5.1.1. Local space allocation
Regarding the size of local space, we propose

two approaches: the min-approach and the max-
approach [5]. The min-approach allocates a right-sized
space of local memory to hold the necessary data el-
ements with none or very few wasted cells, while the
max-approach allocates a large enough space accord-
ing to the shape of a work-group. We demonstrate how
these two approaches work for MAP-407 in Fig. 5,
where Rx = Ry = 1 and thus each thread needs a
3 × 3 data block. Using the min-approach consumes
less local memory (Fig. 5(b)), and may enable more
work-groups active. Nevertheless, when using the min-
approach, programmers need to perform work-item
binding and data element shuffling according to spe-
cific memory access patterns. By comparison, the max-
approach is easier for implementation (e.g., from a
script). In this work, we implement both the max-
approach and the min-approach, and we compare their
performance in Section 6.3.1. Because we know the
size of local space in advance, we use the static allo-
cation approach (i.e., allocating local memory in the
kernel).

When using the max-approach, we calculate the size
of local space as follows. Each MAP has two parts –
eMAP and iMAP, and the size of local space Range is
determined by these two factors. The eMAP part spec-
ifies the Base (the area outlined by the dashed-line
rectangle shown in Fig. 5(c)) and the iMAP part spec-
ifies the Border. Suppose the Base is of size w × h,
and w, h is calculated as follows (WGx × WGy repre-
sents work-group size):

w =

{
WGx (M00 ⊕M01 = 1),
2 × WGx (M00 ∧M01 = 1),

h =

{
WGy (M10 ⊕M11 = 1),
2 × WGy (M10 ∧M11 = 1).

We can then calculate the Range covered by a
work-group as (w + 2 × Rx) × (h + 2 × Ry). Fur-
thermore, the use of the min-approach depends on the
MAPs and thus it is a MAP-dependent optimization.
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Fig. 5. Two approaches to hold data elements using local memory for MAP-407: (a) data elements in global memory space for a work-group
of 8 × 8 (only the shaded cells need to be transferred into local memory), (b) data elements in local memory space using the min-approach
(occupying 50 local memory cells), (c) data elements in local memory space using the max-approach (occupying 100 local memory cells).

5.1.2. Local data staging
After allocating the required local memory, we need

to stage data in the local space specified by the Range.
Note that this process is independent of how data is
used (to be mentioned in Section 5.1.3), which pro-
vides a large degree of freedom to optimize the data
staging process. In [6], we have proposed the FCTH
(i.e., loading the base data first, and then the border
data) and TBT (i.e., reading data in a tile-by-tile fash-
ion) to stage the local data and shown that FCTH gives
us a better performance. Hence, in this work, we use
the FCTH approach.

5.1.3. Local data access
Compared with accessing the data in global space,

the key issue of accessing local data is the index
space conversion. Specifically, we need to use
the local thread index instead of global thread in-
dex while keeping the logic of using global memory. In
addition, to ensure that the work-items within a work-
group efficiently reference the data elements in local
space, we need to avoid bank conflicts, i.e., to force
the access requirements from multiple work-items of
a work-group fall into different banks. By using data
padding, we remove bank-conflicts from the generated
microbenchmarks.

5.2. Code generator

Our code generator consists of two templates: host
code and kernel code. The engine of the host code cre-
ates a driver that allocates/deallocates global space, ini-
tializes the data space, transfers data between the host
and the device and launches kernels. It also has a mod-
ule of time keeping and results validation. With re-
gard to the kernel code, each microbenchmark of us-
ing local memory includes three major steps: statically

Fig. 6. A code template to generate kernels in OpenCL (@type rep-
resents the used data type, @bxy represents the base data index for
each group which is MAP-dependent, @lmAlc is the name-holder
for local space allocation, @varDec declares temporal variables,
@lmLoad is the name-holder of loading data into local memory and
@lmUse is that of how to use it, and @lmOut is the final returned
results).

allocate local memory space, load data elements into
local memory, and use them. We found that different
iMAPs differ in their code generators. Thus, we have
developed a different code generating engine based on
the iMAPs. Figure 6 shows the kernel template for the
Block iMAP.

Taking MAP-407 (Fig. 5) for example, we show the
three steps in detail.

Step 1 (Allocating local memory (@lmAlc)). We use
the approaches mentioned in Section 5.1.1 to calculate
the local size and allocate the local space. For MAP-
407 (shown in Fig. 5), the min-approach and max-
approach need different amounts of local space. The
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local space size is calculated as (WG + 2 ×R) × (4 ×
R + 1) for the min-approach and (WG + 2 × R)2 for
the max-approach, where WG is the work-group size
(WGx = WGy = WG), R is the radius of the block
(Rx = Ry = R). In Fig. 5, WG = 8 and R = 1.
Thus, the min-approach needs 50 cells, while the max-
approach needs 100 cells. We have implemented the
max-approach in the code generator and we use the
min-approach as a post-optimization step.

Step 2 (Loading data into local memory (@lmLoad)).
When moving data elements from global memory
to local memory, multiple passes are needed with
FCTH [6]. When using the max-approach, we bind one
thread to one data element in the central shaded area
(outlined by dashed square in Fig. 5(c)). Thereafter,
we load the border data into the local space. Neverthe-
less, loading data with the min-approach is more com-
plicated. Apart from thread masking, we have to deal
with data shuffling to put the data elements in the right
places and thus it is MAP-dependent.

Step 3 (Accessing local memory (@lmUse)). Using
data elements in local memory is straightforward. The
key is to find the correspondence between the global
data index and its local data index. For MAP-407, each
thread needs a block of data elements around its thread
index (the light-shaded elements in Fig. 5(b) and (c)).
Besides, we need to re-shuffle the access index when
using the min-approach.

By using our code generator, we obtain 66 mi-
crobenchmarks (33 using local memory and 33 using
global memory only).4 Our experience shows that the
technical difficulty of designing the code generator is
dealing with the aforementioned three steps. Given that
the use of the min-approach and bank-conflict removal
varies from MAP to MAP, we take them as post-step
optimizations of the kernels.

6. Performance database

6.1. Performance metric

We use memory bandwidth as our performance met-
ric. Suppose we have W ×H threads, and each needs
N data elements of type data type (N is determined
by iMAP). We run each kernel and measure the kernel

4The code generator is available: https://github.com/
haibo031031/aristotle.

execution time T . Then we calculate the bandwidth as
W ×H ×N × size(type)/T . We measure the memory
bandwidth for cases without (b) and with local memory
(B), use b as the reference, and calculate the memory
bandwidth ratio (mbr = B/b). If mbr > 1, using local
memory is beneficial in terms of memory bandwidth;
otherwise, using local memory leads to a performance
loss.

6.2. Experimental setup

We have run and compared the benchmarks on seven
platforms, whose configurations are shown in Table 4.
When measuring memory bandwidth, we used six data
sets (W × H in Section 4.3): 128 × 128, 256 × 256,
512 × 512, 1024 × 1024, 2048 × 2048, 4096 × 4096.
For the Block MAPs, we set the radius to be 3 (Rx =
Ry = 3) and we expect memory bandwidth to increase
with a larger radius. For each measurement, we run
21 iterations (the first iteration as a warm-up run). To
avoid data reuse between iterations and cache interfer-
ence, we flush caches between iterations. Furthermore,
we believe that the choice of work-group sizes has an
impact on the memory bandwidth. In this work, we set
it to be 16 × 16.

6.3. Performance optimization considerations

6.3.1. The max-/min-approaches
For MAP-407, we compare the mbr of the max

and min approaches on the seven platforms in Fig. 7.
We see that the min-approach is not always perform-
ing better than the max-approach. In fact, the min-
approach can achieve much better performance on
C1060 and X5650, and it performs slightly better on
K20m (up to 15%). On C2050, HD7970 and E5-2620,
the performance of the min-approach is slightly worse.
We also note that the bandwidth suffers around a 40%
loss with the min-approach on Xeon Phi. Thus, the
overall performance can be significantly influenced by
the way of using local memory. When predicting per-
formance, we need to take the design choice into ac-
count.

6.3.2. Removing bank-conflicts
As a post-step optimization, we use the padding ap-

proach to remove bank-conflicts. Taking MAP-204 as
an example, we show the performance impacts of re-
moving bank-conflicts in Fig. 8. We see that remov-
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Table 4

Details of the used platforms

Platform I Platform II Platform III Platform IV

Host Intel Core i7 920 Intel Xeon E5620 Intel Xeon E5620 Intel Xeon E5620

Host OS UBUNTU v11.10 CentOS v6.2 CentOS v6.2 CentOS v6.2

Device NVIDIA Tesla C1060 NVIDIA Tesla C2050 NVIDIA Tesla K20m AMD HD7970

GCC v4.6.1 v4.4.6 v4.4.6 v4.4.6

OpenCL CUDA v5.5 CUDA v5.5 CUDA v5.5 AMD APP v2.8

Platform V Platform VI Platform VII

Host Intel Xeon E5-2620 Intel Xeon E5-2620 Intel Xeon X5650

Host OS CentOS v6.2 CentOS v6.2 CentOS v6.2

Device Intel Xeon Phi 5110P Intel Xeon E5-2620 Intel Xeon X5650

GCC v4.4.6 v4.4.6 v4.4.6

OpenCL Intel OCL SDK v3.0 Intel OCL SDK v3.0 Intel OCL SDK v3.0

ing bank-conflicts on the GPUs (i.e., C1060, C2050,
K20m, HD7970) significantly increases the memory
bandwidth (up to 7×), while the ‘optimization’ leads to
a performance decrease on the cache-only processors
(i.e., Xeon Phi, E5-2620 and X5650). Thus, we con-
clude that this optimization is specific for processors
with a scratch-memory.

6.4. Performance database

6.4.1. Database record
After running the microbenchmarks, we obtain a

performance database indexed by three items (plat-
form, map, dataset) shown in Fig. 9. Once the index is
specified, a query in the database will return a database
record. Each record consists of the memory bandwidth
without local memory (b), the memory bandwidth with
local memory (B), and their ratio (mbr).

6.4.2. Observations
We run each experiment for 21 times, and calculate

the average value and the standard derivation value.
For demonstration simplicity, we show the b and B
(the average and the standard derivation number) of
the performance database (available on-line5): the hor-
izontal axis represents the six data sets and the verti-
cal axis represents bandwidth. Overall, we found that
the performance benefits of using local memory are
heavily dependent on the size of the data sets. In most
cases, the bandwidth increases over datasets. Only
in a few cases (e.g., the Column MAPs on E5-2620
and X5650), the bandwidth without local memory de-
creases over datasets. Besides, we make the following
observations for each platform:

5https://github.com/haibo031031/aristotle/tree/master/pdb.

C1060. It differs from other processors in that it has a
scratch-pad memory, but no caches. We see that using
local memory on C1060 can achieve a memory band-
width increase for most memory access patterns (29
out of 33 MAPs). When looking into the microbench-
marks, we found that there are two factors leading to
the bandwidth increase – data reuse and changes in
global memory access orders. As we have mentioned
in Section 2, data reuse is a common indicator of using
local memory. Taking the Single MAPs for example
(see Table 3), we can reuse data for MAPs-(107, 116).
Using local memory can also change the memory ac-
cess order and reduce the number of memory transac-
tions (thus increase the off-chip memory bandwidth).
For the Single MAPs, memory access orders of MAPs-
(107, 110, 112, 113, 115) are changed when using local
memory. For MAP-108, performance is lost (mbr < 1)
because no data reuse or changes in memory access or-
der appear. The performance loss results from the over-
head of using local memory. Although data reuse exists
in MAP-109, the data request from the off-chip mem-
ory can be serviced in a broadcast manner, and thus us-
ing local memory brings no bandwidth improvement.
Furthermore, all the Row MAPs, Column MAPs, and
Block MAPs can benefit from data reuse, and some of
them can even achieve a bandwidth increase due to the
common effort of both data reuse and memory access
changes.

C2050 and K20m. They have not only scratch-pad
memories but also caches. Similar to C1060, using lo-
cal memory on C2050 and K20m is highly benefi-
cial in most cases. On C2050 and K20m, the band-
widths follow the same trends with that on C1060, but
the changes are less significant: the older cache-less
C1060 benefits much more from local memory than
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Fig. 7. Performance comparison of the max/min approaches. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140390.)
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Fig. 8. Performance comparison before and after removing bank-conflicts. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140390.)
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Fig. 9. The database dimensions and its record. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-140390.)

the newer C2050 and K20m. This happens because the
caches will alter the performance benefits of the ex-
plicit usage of local memory. In some cases, hardware
caches are able to make use of the inherent data local-
ity in the MAP without using scratch-pad memory (see
MAPs-116, 508 and 514). In other cases, with more
complicated locality patterns, explicit usage of local
memory remains beneficial on C2050 and K20m (see
MAPs-204, 303, 410, etc.).

HD7970. The processor also has both scratch-pad
memories and caches. For most MAPs, the perfor-
mance benefits are less significant and the bandwidth
varies a lot over the data sets, which significantly dif-
fers from that on NVIDIA GPUs. We believe this is
because HD7970 has a different cache architecture and
implementation compared to C2050 and K20m.

Phi-5110P, E5-2620 and X5650. These processors
only have caches on-chip, and implement OpenCL lo-
cal memory on global memory, in an emulation mode.
Thus, using local memory is equivalent to using the
off-chip global memory and introduces extra over-
heads (compared with using global memory directly),
which might slow down the execution. However, we
get better performance for some MAPs (e.g., Column
MAPs) by using local memory (see Table 5). This is
due to better caching when using a smaller memory
space. We also note that the bandwidth varies more sig-
nificantly between runs on E5-2620 and X5650 than
on Phi-5110P and GPUs (see the error bars in the on-
line figures). Another interesting observation is that us-
ing local memory preserves bandwidth on MAPs like
MAP-302 while the bandwidth drops over datasets on
E5-2620 and X5650. We conclude that data reuse is
a must to obtain a bandwidth increase by using local
memory on cache-only processors.

6.4.3. Performance factors analysis
As we have shown, two factors contribute to the

memory bandwidth improvement: data reuse (Fac-

Fig. 10. Performance factors and MAPs distribution.

tor A) and access order changes (Factor B). We ana-
lyze the MAPs and identify the factors for each MAP
in Fig. 10. We see that 11 MAPs present the poten-
tials of reusing data, while 4 MAPs can benefit from
the changes in memory access orders due to the usage
of local memory. Typically, data access orders can be
changed when loading data from global space to lo-
cal space. Besides, there are 16 out of the 33 MAPs
that can use both of them. Data reuse can be a bene-
fit source for both caches and scratch-pad memories,
whereas access order changes does not necessarily lead
to a bandwidth increase.

6.4.4. Architecture-dependent analysis
We roughly divide the selected processors into three

groups: the SPM-only processors, the SPM-Cache pro-
cessors, and the Cache-only processors. The SPM-only
processors (e.g., C1060) have a scratch-pad memory,
but have no on-chip caches. Using local memory on
such processors can benefit from either data reuse (i.e.,
less off-chip data movements) or higher effective off-
chip bandwidth (shown in Section 2.2.2). For C2050,
K20m and HD7970, they have both scratch-pad memo-
ries and caches. Using local memory can give a higher
bandwidth (than without it) when the MAPs are cache-
unfriendly. Otherwise, adopting local memory leads to
a performance decease due to the overheads.

The cache-only processors (Phi-5110P, E5-2620 and
X5650) do not have a on-chip scratch-pad memory and
local memory is allocated on the global space. How-
ever, using local memory can change data layouts (i.e.,
access orders) and thus can be seen as a ‘software’ op-
timization technique. By using local memory, the data
elements are first loaded into the local space and then
accessed within the local space. In this way, we may
avoid ‘unnecessary’ cache-line replacements and have
a better utilization of caches.

We measure the number of cache-line (L1 and L2)
replacements for MAP-302 and MAP-204 on E5-2620
(Figs 11 and 12). For MAP-302, we see that the num-
ber of cache replacements is larger without using local
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Fig. 11. The number of cache replacements for MAP-302. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140390.)

Fig. 12. The number of cache replacements for MAP-204. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140390.)

memory for both L1 cache and L2 cache. Thus, using
local memory on MAP-302 is beneficial on E5-2650
especially for large datasets. However, for MAP-204,
cache-lines are replaced less frequently when using lo-
cal memory on the L1 cache while it occurs more of-
ten on the L2 cache. We note that using local memory
gives a smaller bandwidth for this MAP.

6.4.5. Performance gain/loss distribution
We define that using local memory has a similar per-

formance to that using global memory when |1.0 −
δ| � mbr � |1.0 + δ|. Therefore, using local mem-
ory has a gain performance when mbr > |1.0 + δ|,
and using local memory has a loss performance when
mbr < |1.0 − δ|. We show the overall performance
gain/loss distribution in Table 5, where δ = 0.05 (5%).
We note that, in most cases on NVIDIA GPUs, using
local memory gives us a bandwidth increase. Specifi-
cally, the number is around 90% on C1060, and 80%
on C2050 and K20m. Thus, using caches partially
‘cancels’ the benefits of using local memory. On AMD

HD7970, over half of the MAPs have a similar perfor-
mance between with and without adopting local mem-
ory for the small datasets, while the number becomes
smaller for the larger datasets and more MAPs can
benefit from using local memory. On the cache-only
processors (Phi-5110P, E5-2620, X5650), using local
memory leads to a performance decrease for around
half of the MAPs for small datasets. For large datasets,
we note less MAPs on Phi-5110P but more MAPs on
E5-2620 and X5650 that has a performance decrease
by using local memory. This is mainly due to the fact
that they have a difference cache architectures (i.e.,
Xeon Phi has a distributed last-level cache while the
other processors have a unified one). We recommend
using local memory for the better MAPs based on the
guidelines mentioned in Section 5; for the cases with
little or no bandwidth increase (or even bandwidth de-
crease), using local memory is not recommended due
to the low ratio between performance gain and pro-
gramming effort.



J. Fang et al. / Aristotle: A performance impact indicator for the OpenCL kernels using local memory 253

Table 5

Performance gain/loss distribution (δ = 0.05)

C1060 C2050 K20m HD7970 Phi-5110P E5-2620 X5650

128 Gain 27 (81%) 21 (63%) 20 (60%) 6 (18%) 7 (21%) 12 (36%) 9 (27%)

Loss 1 (3%) 4 (12%) 0 (%) 5 (15%) 16 (48%) 17 (51%) 17 (51%)

Similar 5 (15%) 8 (24%) 13 (39%) 22 (66%) 10 (30%) 4 (12%) 7 (21%)

256 Gain 29 (87%) 25 (75%) 26 (78%) 13 (39%) 7 (21%) 9 (27%) 9 (27%)

Loss 2 (6%) 5 (15%) 4 (12%) 3 (9%) 20 (60%) 22 (66%) 20 (60%)

Similar 2 (6%) 3 (9%) 3 (9%) 17 (51%) 6 (18%) 2 (6%) 4 (12%)

512 Gain 29 (87%) 26 (78%) 26 (78%) 13 (39%) 8 (24%) 7 (21%) 11 (33%)

Loss 3 (9%) 6 (18%) 6 (18%) 3 (9%) 18 (54%) 20 (60%) 21 (63%)

Similar 1 (3%) 1 (3%) 1 (3%) 17 (51%) 7 (21%) 6 (18%) 1 (3%)

1024 Gain 29 (87%) 26 (78%) 26 (78%) 14 (42%) 16 (48%) 8 (24%) 11 (33%)

Loss 4 (12%) 6 (18%) 6 (18%) 1 (3%) 14 (42%) 24 (72%) 19 (57%)

Similar 0 (%) 1 (3%) 1 (3%) 18 (54%) 3 (9%) 1 (3%) 3 (9%)

2048 Gain 29 (87%) 26 (78%) 26 (78%) 15 (45%) 17 (51%) 8 (24%) 8 (24%)

Loss 4 (12%) 6 (18%) 6 (18%) 5 (15%) 15 (45%) 24 (72%) 21 (63%)

Similar 0 (%) 1 (3%) 1 (3%) 13 (39%) 1 (3%) 1 (3%) 4 (12%)

4096 Gain 29 (87%) 26 (78%) 26 (78%) 16 (48%) 16 (48%) 9 (27%) 12 (36%)

Loss 4 (12%) 6 (18%) 6 (18%) 5 (15%) 15 (45%) 22 (66%) 20 (60%)

Similar 0 (%) 1 (3%) 1 (3%) 12 (36%) 2 (6%) 2 (6%) 1 (3%)

7. Composing MAP impacts

We have quantified the performance impacts of us-
ing local memory for isolated MAPs and a simple
query in the database can tell us the performance ben-
efits. However, a real-world kernel often has multiple
data structures (and memory access patterns). In this
section, we propose composing rules in the presence of
multiple MAPs to give the performing order of using
local memory.

For a given MAP, let ⊕ represent that using local
memory brings a ‘positive’ performance impact (pos-
itive MAP) and let � represent that using local mem-
ory gives a ‘negative’ performance impact (negative
MAP). Assume we have two MAPs (two data struc-
tures in a kernel): MAP1 and MAP2, which can be the
same pattern or two different patterns. For each MAP,
we have two choices: l – choose to use local memory,
and g – choose not to use local memory (thus using
global memory). Then we can obtain four versions of
code for this kernel: (g, g), (g, l), (l, g) and (l, l). We
need to pick the most efficient choice among the four.

We use two metrics to evaluate the efficiency: per-
formance and programming efforts, of which perfor-
mance is taken as our first priority. In this work, we
consider an effort of enabling local memory usage for
a data structure as the unit of programming effort. Ide-
ally, we prefer an efficient solution with less program-

ming effort. To compose MAP impacts, we propose
and analyze the following rules.

Rule 5.1. �+� → (g, g).

Analysis. For either MAP1 or MAP2, using local
memory leads to a performance loss. When compos-
ing them, we cannot find any sources of a performance
gain. Thus, we choose not to use local memory for both
of them.

Rule 5.2. ⊕+� → (l, g), �+⊕ → (g, l).

Analysis. Suppose MAP1 can benefit from using lo-
cal memory (⊕), while MAP2 suffers a performance
loss (�). Since using local memory on MAP2 brings us
no performance gain, we choose not to use local mem-
ory on it. Next, let us consider MAP1. Further suppose
that we need D1 data elements for MAP1 and D2 data
elements for MAP2, and their bandwidths are W1 and
W2, respectively. Let W be the overall bandwidth and
T represent the data transfer time. Thus, we can obtain

T =
D1 +D2

W (W1,W2)
.

As we have analyzed, the performance gain of us-
ing local memory comes from two factors: either the
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decrease of data amount (D), and/or the increase of
global memory bandwidth (W ). Thus, we need to con-
sider two cases.

Case 1. Using local memory on MAP1 decreases D1.
In such a case, we need to move less data from global
memory (D), thus posing less contention for the shared
resources (e.g., channels and ports) and leaving more
chances for MAP2 to transfer data. Therefore, using lo-
cal memory on MAP1 will improve the overall perfor-
mance, i.e., φ(l, g) > φ(g, g).

Case 2. Using local memory on MAP1 increases W1.
In case of a under-utilized bandwidth, we can bet-
ter utilize shared resources (ports and channels) and
thus have a better performance. Once we reach the
maximum achievable bandwidth, using local mem-
ory further brings us no performance gain. In other
words, using local memory on MAP1 can guarantee
that φ(l, g) � φ(g, g).

Therefore, we choose (l, g) in this case. Likewise,
we choose (g, l) for the �+⊕ combination.

Rule 5.3. ⊕+⊕ → (?, l).

Analysis. As we infer from Rule II, we can guaran-
tee that φ(l, g) � φ(g, g). Thereafter, we need to take a
decision of enabling local memory on MAP2. We can
see similar performance benefits as shown in Rule II.
However, using local memory on MAP2 also increases
the amount of used local memory and thus may reach
the maximum limit on the device. Therefore, we need
to check whether there remains enough local space be-
forehand. If there is enough local space for MAP2, we
will choose to perform allocation for it.

Rule 5.4. ⊕+⊕+ · · ·+⊕︸ ︷︷ ︸
m

+�+�+ · · ·+�︸ ︷︷ ︸
n

→

(?, ?, . . . , l︸ ︷︷ ︸
m

, g, g, . . . , g︸ ︷︷ ︸
n

).

Analysis. Assume that, when using local memory, we
divide the MAPs into two groups based on the perfor-
mance benefits: m MAPs can benefit from using local
memory while n MAPs suffers in performance. By iter-
atively using Rule 5.1, we choose not to use local mem-
ory on these n negative MAPs. According to Rule 5.2,
we use local memory on the right-most MAP. There-
after, it is unclear whether to use local memory or not
based on Rule 5.3. Thus, this rule is a derivation of
Rules 5.1–5.3.

Up to now, there remains one question: which posi-
tive MAP do we select first? Different MAPs may dif-
fer in performance benefits due to the MAP feature and
its run-time dataset. Suppose when using local mem-
ory on MAP1, the performance benefit is mbr1 and the
dataset is D1; when using local memory on MAP2, the
performance benefits is mbr2 and the dataset is D2.
Then we can calculate the performing order weight ω.
When using local memory, we will select the MAP
with the largest ω until we do not have enough local
space

ω1 =
D1

D1 +D2
× mbr1,

ω2 =
D2

D1 +D2
× mbr2.

8. Composing rules validation

8.1. A MAP composer

To validate our composing rules, we compose MAPs
based on the code generator mentioned in Section 5.
When multiple MAPs are used in a kernel, we con-
sider the use of local memory in an incremental man-
ner. In other words, the kernel template takes multiple
MAPs as input and we use local memory on them one
by one. For 2 MAPs, we have built a composer and
show its structure in Fig. 13.6 The composer generates
three code versions: (v0) without using local memory,
(v1) a code version of using local memory on MAP1,
and (v2) a code version of using local memory on both
MAP1 and MAP2. Thus, when we have N MAPs (they

Fig. 13. The composer architecture.

6The composer is available: https://github.com/haibo031031/
aristotle.
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can be the same or different), the composer will gener-
ate N + 1 versions of code.

We validate our proposed rules for each use of local
memory. We take the test case as a successful predic-
tion when the results meet with those from the compos-
ing rules. We calculate the prediction accuracy as the
number of successful tests divided by the total number
of tests. We assume that a test fails when we observe
one of the follows:

(1) A positive MAP gives a performance degradation
from using local memory.

(2) A negative MAP gives a performance increase
from using local memory.

8.2. Rule validation

We use 7 platforms and 6 datasets (see Section 6.2),
and use 2 data structures which are of the same MAP
or 2 different MAPs.7 Note that we can guarantee
there is sufficient local space when considering 2 data
structures. With 33 MAPs, we need to evaluate 2178
(33 × 33 × 2) test cases for each platform and dataset.
Thus, we can evaluate the performing order ω in an
exhaustive manner.

Our validation results are shown in Table 6. We see
that the rules holds with an accuracy of around 90% on
NVIDIA GPUs, while the number ranges from 55% to
75% on the AMD GPU. On the cache-only processors
(Xeon Phi, E5-2620), the prediction accuracy is up to
80%, while we note that the rules see a relatively low
accuracy on X5650. We believe this is because of the
cache interferences between the data structures.

8.3. Using Aristotle

Given a kernel, users first need to abstract the
MAP for each data structure. Depending on the given
platform and the MAP, we query the performance

Table 6

Rule validation results (%)

128 256 512 1024 2048 4096

C1060 90 95 94 93 92 93

C2050 93 94 94 93 92 91

K20m 90 91 91 90 89 88

HD7970 55 63 69 69 75 66

Phi-5110P 74 80 81 77 79 83

E5-2620 61 73 78 80 81 80

X5650 65 68 72 70 73 65

7Running the validation experiments for 2 MAPs takes 2–6 days
per platform and we cannot afford to validate more MAP composi-
tion.

database. If it is beneficial, we will perform code trans-
formation to enable local memory on the input kernel.
Otherwise, we keep the original kernel code. When the
given kernel has multiple MAPs, we need to calcu-
late the performing order weight ω based on the iso-
lated mbr. The composing rules (in Section 7) provide
users with a reference on how to compose multiple
MAPs. For NVIDIA GPUs, the prediction accuracy is
high, but it is relatively low on the cache-only proces-
sors such as X5650. We recommend the use of local
memory (as a software optimization technique) for the
MAPs that have a large bandwidth benefit (e.g., mbr >
1.5). For the MAPs that show smaller bandwidth ben-
efits, using local memory is not recommended.

9. Related work

In this section, we discuss prior work on bene-
fits prediction and code transformation of using local
memory.

Enabling local memory has been studied extensively
for the SPMs on GPUs. In [14], Kandemir et al. pro-
pose a scratch-pad memory design and optimization
framework. In this framework, the compiler has a
central role in the sense that it manages the flow of
data across a given hierarchy (by staging computa-
tion and data). In [27], Sumesh Udayakumaran et al.
propose a highly predictable, low overhead, and dy-
namic memory-allocation strategy for embedded sys-
tems with scratch pad memory. The scheme can follow
changing working sets by moving data from scratch-
pad to DRAM under compiler control. In [8], the au-
thors present a method for computing precisely which
memory cells are reused due to temporal locality of
scientific codes. By way of precise data dependence in-
formation, they can determine exactly when to copy a
value to fast memory, when to copy an updated value
back to main memory and when to relocate a value in
fast memory. In [29], the authors present a source-to-
source compiler called PPCG, which accelerates com-
putations from any static control loop nest of a sequen-
tial program and generates multiple CUDA kernels. In
particular, they take care of the use of on-chip shared
memory and consider two criterion: data reuse and co-
alescing. In [28], Nicolas Vasilache et al. propose a set
of automated techniques to optimize memory reuse in
programs with explicitly managed memory.

In addition, Pouchet et al. present a fully automated
C-to-FPGA framework, including an end-to-end solu-
tion for on-chip buffer optimization that automatically
detects and implements the available date reuse in a
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loop nest [25]. Therefore, most studies focus on identi-
fying data reuse (e.g., using a polyhedral model) when
enabling local memory. We predict the benefits of us-
ing local memory in a generic manner, which is nec-
essary when we have diverse computing devices. Fur-
ther, our performance indicator can serve as the input
of the aforementioned code transformers.

Alternatively, several API-based approaches have
also been proposed to enable local memory. In [4], the
authors present CudaDMA, an extensible API for ef-
ficiently managing data transfers between the on-chip
and off-chip memories of GPUs. In [6], we present a
user-friendly API, ELMO, based on identifying pat-
terns of local memory usage.

A more generic related topic is auto-tuning. Gener-
ally, there are two types of auto-tuning: empirical op-
timization [7,18,20,21] and model-driven optimization
[2,10,16,30]. Although empirical optimization tech-
niques giving the optimal performance, it generates a
large number of parameterized code variants and the
time cost of searching for the best code variant makes it
less attractive. In contrast, model-driven optimizations
self-tune implementation-related parameters to obtain
optimal performance. Using model-driven auto-tuning
typically has an O(1) cost, since the parameters can be
derived from the analytical model. However, it may not
give optimal performance, because analytical models
are only simplified abstractions of architectures and/or
applications. Our approach relates both: we use mod-
elling to build our database, and use the database to
potentially prune the search space of empirical auto-
tuners.

10. Conclusions and future work

Architecture diversity and application implementa-
tion differences make the performance benefits of us-
ing local memory much less predictable than expected.
In this work, we presented a benchmark-based ap-
proach (Aristotle) to tackle this issue starting with the
memory access patterns (MAPs). For each such MAP,
we generated benchmarks for a naive version (with-
out local memory) and an optimized one (using local
memory). We evaluated the microbenchmarks on the
NVIDIA GPUs (C1060, C2050, K20m), AMD GPUs
(HD7970), Intel Xeon CPUs (E5-2620 and X5650),
and Intel Xeon Phi 5110P, and obtained a performance
database.

By analyzing the memory access patterns and the
performance impacts of using local memory, we have
found that both data reuse and changes in access or-

der may contribute to the effective bandwidth increase.
On the processors with both scratch-pad memories and
caches, the performance benefits of using local mem-
ory in OpenCL kernels are less significant. Further-
more, using local memory on the cache-only proces-
sors (e.g., the traditional multicore CPUs) can be seen
as a software optimization and might be efficient by
better utilizing caches.

This is the first extensive, systematic study of local
memory impacts based on generalized MAPs. Not only
can this work provide essential information for perfor-
mance prediction with database queries, but it can also
give a performance indicator of local memory usage.
Further, we presented four rules to generate the per-
forming order of using local memory when we have
multiple data structures. Our results validated the use-
fulness of our composing rules on GPU architectures
in particular. Meanwhile the prediction accuracy is rel-
atively low on the cache-only processors largely due
to the cache interference between multiple data struc-
tures. We believe that this issue is impossible (or dif-
ficult at least) to fix because of the dynamic nature of
cache interference.

We note that for new emerging platforms (with
OpenCL support), the database can be easily extended:
one can simply use the microbenchmarking and log-
ging tools to expand it. The performance database, to-
gether with the composing rules will give us an indica-
tor of whether or not to use local memory.

For future work, we want to implement an auto-
tuner based on the performance database and the de-
rived conclusions. This auto-tuner will enable or re-
verse the use of local memory based on the perfor-
mance (memory bandwidth) benefits. Furthermore, the
configuration of caches and SPMs needs further explo-
ration from the perspective of computer architects –
which configurations are suitable (considering both
power consumption and performance) for which spe-
cific class of applications?
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