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Bayesian Approach to Patient-Tailored
Vectorcardiography

Rik Vullings∗, Chris H. L. Peters, Iman Mossavat, S. Guid Oei,
and Jan W. M. Bergmans, Senior Member, IEEE

Abstract—For assessment of specific cardiac pathologies, vector-
cardiography is generally considered superior with respect to elec-
trocardiography. Existing vectorcardiography methods operate by
calculating the vectorcardiogram (VCG) as a fixed linear com-
bination of ECG signals. These methods, with the inverse Dower
matrix method the current standard, are therefore not flexible with
respect to different body compositions and geometries. Hence, they
cannot be applied with accuracy on patients that do not conform
to the fixed standard. Typical examples of such patients are obese
patients or fetuses. For the latter category, when recording the
fetal ECG from the maternal abdomen the distance of the fetal
heart with respect to the electrodes is unknown. Consequently, also
the signal attenuation/transformation per electrode is not known.
In this paper, a Bayesian method is developed that estimates the
VCG and, to some extent, also the signal attenuation in multi-
channel ECG recordings from either the adult 12-lead ECG or
the maternal abdomen. This is done by determining for which
VCG and signal attenuation the joint probability over both these
variables is maximal given the observed ECG signals. The under-
lying joint probability distribution is determined by assuming the
ECG signals to originate from scaled VCG projections and additive
noise. With this method, a VCG, tailored to each specific patient,
is determined. The method is compared to the inverse Dower ma-
trix method by applying both methods on standard 12-lead ECG
recordings and evaluating the performance in predicting ECG sig-
nals from the determined VCG. In addition, to model nonstan-
dard patients, the 12-lead ECG signals are randomly scaled and,
once more, the performance in predicting ECG signals from the
VCG is compared between both methods. Finally, both methods
are also compared on fetal ECG signals that are obtained from the
maternal abdomen. For patients conforming to the standard, both
methods perform similarly, with the developed method performing
marginally better. For scaled ECG signals and fetal ECG signals,
the developed method significantly outperforms the inverse Dower
matrix method.

Index Terms—Cardiac electrical imaging, fetal electro-
cardiography, fetal monitoring, medical signal processing,
vectorcardiography.
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I. INTRODUCTION

CARDIAC contractions originate from the propagation of
an action potential through the cardiac tissues. The front

of the propagating action potential causes the occurrence of
numerous electrical dipoles. By superimposing these electrical
dipoles at each point in time, the electrical activity of the heart
can be modeled as a single electrical field vector, originating
in the heart, that varies in both amplitude and orientation over
time [1], [2]. The time path of this electrical field vector during
a single cardiac contraction is referred to as the vectorcardio-
gram (VCG). The ECG recorded at the cutaneous surface can
be viewed as the potential caused by this electrical field vec-
tor, and therefore, depends on both the distance between the
recording electrode and the heart and on the conductive prop-
erties of the intermediate tissues. It has to be noted here that in
this dipole model, the electrical field vector (and with that the
VCG) is reported to only describe between 70% and 95% of the
power of the ECG [1], [3], [4]. The remaining 5%–30% of the
ECG originates from insufficiencies in the dipole model such as
the inclusion nondipolar components [5] and movement of the
dipole origin [6].

The problem of improving the dipole model, with the goal of
completely imaging and visualizing the electrical activity of the
heart, has been addressed by researchers in the field of cardiac
electrical imaging [7]–[9]. However, as nearly all the proposed
methods for imaging the electrical activity are based on body
surface potential maps (BSPMs), i.e., lead systems consisting
of a relatively large number of electrodes [10], for reasons of
workability none of these methods has made its way into clinical
practice. Clinicians generally prefer to use the standard 12-
lead ECG for assessing the condition of the heart, in spite of
the diagnostic inferiority of the 12-lead ECG with respect to
BSPM.

With recent improvements in (wireless) data acquisition tech-
nology, the interest in ambulatory ECG monitoring is rapidly in-
creasing. In order to increase patient comfort and reduce band-
width requirements, the use of as few ECG leads as possible
is preferred. However, as mentioned earlier, clinicians are ac-
customed to using the 12-lead ECG, theoretically implying that
all 12 ECG leads need to be recorded and subsequently trans-
mitted. By determining the VCG from fewer than 12 leads and
using this VCG to predict the remaining leads, nevertheless, the
problem of patient discomfort can be overcome. In addition, for
assessing specific cardiac pathologies like right ventricular hy-
pertrophy and myocardial infarcts, direct analysis of the VCG
is considered to be superior with respect to 12-lead electrocar-
diography [11].

0018-9294/$26.00 © 2009 IEEE
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As mentioned previously, the relation between the ECG at the
cutaneous surface and the VCG depends on the distance between
the heart and the electrodes and the conductive properties of the
intermediate tissues. The currently most widely used method to
determine the VCG from a ECG recording, referred to as the
inverse Dower method [12], accounts for both this distance and
conductive properties. It entails a fixed, numerical description of
a matrix that maps the VCG onto the 12-lead ECG. Due to this
fixed numerical description, however, it assumes the same ge-
ometry and conductive properties for all patients. Consequently,
it cannot provide accurate VCGs for patients that do not con-
form to the assumed conduction characteristics, such as patients
that suffer from severe obesity. This category of patients has an
increased risk of cardiac failure [13], and is therefore, in more
need of VCG examination than “standard” patients.

When determining the VCG of the fetus through ECG record-
ings on the maternal abdomen, the problem of patients not con-
forming to the model is even more evident [14]. Not only does
the position of the fetal heart with respect to the abdominal
electrodes vary between patients, but also do, among other vari-
ations, the amount of amniotic fluid, placental position, and ab-
dominal fat differ from one pregnant woman to the other. Hence,
for determining the fetal VCG, the inverse Dower matrix can
only contain information on the electrode positions and not on
the unknown heart–electrode distance and conduction proper-
ties. These conduction properties are unknown as, in contrast
to the regular VCG, few models on the fetal signal propagation
exist and the models that do exist cannot account for all possi-
ble positions of the fetal heart [15]. Even so, determining the
fetal VCG can have significant value in fetal health monitoring.
Changes in orientation of the QRS loop, for instance, can be an
indication of fetal movement [16], while fetal ECG analysis—
which can provide information on fetal oxygenation [17]—is
facilitated by projecting the VCG onto leads that are familiar
to physicians [18]. In addition, early-stage diagnosis of fetal
congenital cardiac disease might in future become treatable and
is facilitated by vectorcardiography, i.e, by projecting the VCG
onto the leads used in standard 12-lead ECG analysis.

The common problem in these VCG applications is the lack
of a way to account for variations in the composition and ge-
ometry of the tissues between the heart and cutaneous surface,
leading to inaccurate VCG estimates for patients that do not
conform to the standard. Naturally, by performing MRI or ultra-
sound analysis prior to the ECG recording, the geometry of the
intermediate tissues can be estimated and accounted for. How-
ever, particularly in case of the fetal VCG, the geometry is not
expected to remain the same throughout the recording. More-
over, for ambulatory applications the use of MRI or ultrasound
is not practical. To nevertheless account for variations in the
composition and geometry of intermediate tissues, in this paper
a method is developed for patient-tailored vectorcardiography
(PTV), i.e., for determination of the VCG from multilead ECG
recordings considering the geometrical and compositional vari-
ations. For quantitative evaluation, the method is applied to both
nonstandard adult ECG and fetal ECG recordings.

The method uses Bayesian probability theory to determine
the joint probability distribution for both the VCG and a scaling

matrix that models the attenuation at each recording site, given
the recorded ECG. This probability distribution is based on a
simplified model of the relation between the VCG and ECG.
This model stipulates that the ECG at each recording site is
generated by the projection of the VCG onto the corresponding
ECG lead vector. To account for attenuation effects, each pro-
jected VCG is scaled by an a priori unknown scaling parameter.
Inaccuracies in the model and noise in the ECG are assumed to
originate from a Gaussian distribution. The optimal VCG esti-
mate, in the sense of the maximum a posteriori (MAP) solution,
is obtained from the joint probability distribution by means of
an approximate inference technique referred to as variational
inference [19].

Besides analysis of the contour and orientation of the QRS
loop, the VCG is mainly used for predicting the shape of ECG
signals that are not physically recorded. This provides a way
for evaluating the developed method, namely, the method can
be evaluated by recording separate reference ECG signals and
comparing these to the prediction of these signals from the VCG.
To quantitatively evaluate the performance of the developed
method on nonstandard adult patients, this evaluation approach
is applied on randomly scaled adult ECG signals.

To recapitulate, the developed method for vectorcardiogra-
phy models the conductive properties of the tissues between
cutaneous electrodes and the heart and estimates the parameters
of this model to obtain a patient-tailored estimate of the VCG.
Applications of this method include improved assessment of
the adult VCG, in particular for nonaverage patients, and as-
sessment of the fetal VCG from noninvasive recordings. As a
basis of reference for the developed method in Section II, the
inverse Dower matrix method is discussed briefly. In Section III,
the developed method is presented. Section IV discusses the ac-
quisition of the data and the evaluation of the method, while in
Section V, the results are presented. Finally, in Section VI, these
results are discussed and conclusions are drawn.

II. INVERSE DOWER MATRIX FOR VECTORCARDIOGRAPHY

The Dower matrix was introduced by Dower et al. [12] and
describes the matrix that maps the VCG onto the 12-lead ECG
signals, taking into account standardized electrode positions and
nonlinear signal attenuation effects. Even though the Dower
matrix does not account for interpatient variability, in practice
the resulting VCG estimate is clinically useful [12].

By defining V as the [N × T ] ECG matrix and D as the
[N × 3] Dower matrix, the relation between these matrices can
be described by

V = DS + H (1)

with S the [3 × T ] VCG matrix and H a [N × T ] noise matrix
with zero-mean Gaussian distribution for each row.

The model of (1) is significantly simplified. In reality, not only
is the noise expected to be non-Gaussian, including nondipo-
lar components of the electrical activity of the heart, but also
do boundary effects and inhomogeneities of the conductive
medium play a significant role. To account for these effects,
the fixed numerical Dower matrix D is defined in such a way
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Fig. 1. Schematic overview of the model describing the relation between the
VCG and the ECG. The VCG is projected onto the matrixD containing electrode
positions and subsequently scaled by the diagonal matrix α to model attenuation
effects. Imperfections in this model and additional noise are described by the
noise matrix H.

that is does not only consider the electrode positions with respect
to one another, but also considers the boundary and conductivity
effects to some extent. More in particular, for an infinite uniform
medium the mapping matrix between the VCG and ECG would
only contain electrode positions. Any difference between the
Dower matrix and electrode positions has, thus, been intended
to account for boundary effects and tissue inhomogeneities.

In this simplified model of (1), the optimal VCG estimate
ŜDower can be assessed as the maximum-likelihood (ML)
solution

ŜDower =
(
DT D

)−1
DT V = D†V (2)

with D† the Moore–Penrose pseudoinverse [20], [21] of the
Dower matrix.

III. BAYESIAN VECTORCARDIOGRAPHY

A. Interpatient ECG Variability

For each patient the position of the heart with respect to the
cutaneous electrodes and the conductive properties of the in-
termediate tissues is different. Because of its fixed numerical
nature, the Dower matrix cannot account for any of these differ-
ences. However, although the matrix that maps the VCG onto
the ECG is expected to vary in a nonlinear way as a function of
interpatient differences in geometry and conductivity, by assum-
ing an individual scaling for each ECG signal, these nonlinear
variations can be approximated to a first order as (see also Fig. 1)

V = αDS + H. (3)

Here, α is an [N × N ] diagonal scaling matrix of which the
diagonal elements αi represent the linear scaling of the ECG
signals �Vi and H is a [N × T ] matrix representing noise in the
ECG signals. The reason that α is taken a diagonal scaling ma-
trix follows directly from the assumption of individual scaling
for each ECG signal. Namely, the ith row of the matrix V repre-
sents the projection of the VCG S onto the ith row of D, scaled
with a constant αi . The matrix representation of this scaling
yields a matrix with αi on the diagonal and zeros elsewhere.
The reason for keeping the matrix multiplications D and α sep-
arated in this model is the fact that the matrix D is assumed
known, i.e., the Dower matrix, while the elements of α are as
yet unknown model parameters.

Since both S, α, and H are unknown, the VCG S cannot be
readily assessed from V. However, by employing a statistical
analysis, the VCG can be estimated, given only the ECG V,
Dower matrix D, and noise variance Σ plus some assumptions

on statistical independencies and noise characteristics, which
are made explicit in Section III-B.

B. Statistical Analysis

Assuming the noise H to have a Gaussian probability distri-
bution with zero mean and variance Σ and using Bayes’ theo-
rem [22], the joint probability distribution of S and α, given V,
D, and Σ obeys

p (S,α |V,D,Σ ) = p (S,α |D,Σ )
p (V |D,S,α,Σ )

p (V |D,Σ )
. (4)

The reason for assuming the noise to have a zero-mean Gaussian
distribution is similar as for (1); boundary effects and tissue
inhomogeneities are taken to be accounted for by the definition
of the Dower matrix D. In addition, interpatient variability in
these boundary effects and inhomogeneities are approximated
by the linear scaling α. The reason for using this simplified
model of the interpatient variability and noise is to yield an
analytical tractable solution for the VCG estimation problem.

Considering the evidence p(V|D,Σ) in (4) a normalization
term, assuming α and S a priori statistically independent, and
assuming no prior knowledge on S, hence taking p(S|D,Σ) to
be a uniform distribution, (4) can be rewritten as

p (S,α |V,D,Σ )∝p (α |D,Σ ) p (V |D,S,α,Σ ) . (5)

The terms on the right-hand side of (5) are referred to as the
prior probability distribution and likelihood, respectively. The
assumption of α and S to be a priori statistically independent
can, intuitively, be explained by the fact that S is affected by
changes in the electrical activity of the heart while α is only
affected by changes in the propagation path between the heart
and the cutaneous surface.

As mentioned previously, α represents a first-order approx-
imation of the variations in the ECG caused by interpatient
differences in boundary effects and tissue inhomogeneities. As
a result, the elements of α are, among other factors, related to
the distance between heart and electrodes. With information on
the distance between the heart and electrode i also providing
information on the distance between the heart and electrode k,
the elements αi are mutually dependent. For reasons of mathe-
matical simplicity, however, the elements of α are assumed to
be statistically independent [23], and thus, the prior probability
distribution can be expressed as

p (α |D,Σ ) =
∏

i

p (αi |D,Σ ) . (6)

The probability distribution for each of the individual scaling
elements, p(αi |D,Σ), can be defined based on available mod-
els of torso geometry and conductivity [24], [25]. This would,
however, lead to a mathematically complex prior distribution.
To simplify the final algorithm, the prior distribution is chosen
uniform yielding no prior information on α

p (α |D,Σ ) = constant. (7)

The impact of these physically unjustified—but mathematically
simplifying—assumptions, i.e., mutual independency of the el-
ements of α and an uniform prior probability distribution for
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p(α|D,Σ), on the performance of the developed PTV method
is discussed later on in Section VI.

As mentioned previously, the noise H is assumed to have a
zero-mean Gaussian distribution with variance Σ. Combining
this with the model of (3) and the assumption that the rows of
both V and H are statistically independent, the likelihood is
given by

p (V |D,S,α,Σ )

=
∏

i

exp
[
− 1

2σi

(
�Vi − αi

�DiS
)(

�Vi − αi
�DiS

)T
]

(8)

where σi is the variance of the ith row of H. Moreover, �Vi is a
time vector describing the ECG signal recorded at position �Di ,
so that �Vi is a [1 × T ] vector and �Di is a [1 × 3] vector.

The statistical independence between the rows of V is justi-
fied by applying d-separation [19] on the likelihood. Intuitively,
this independence can be explained by the fact that for given
D, S, α, and Σ, variations in one ECG signal do not affect any
of the other ECG signals. More precisely, although the ECG
signal changes, none of the variables D, S, α, and Σ change (as
they are given), hence not affecting the other ECG signals. The
assumption on statistical independence between the rows of H
is justified analogously.

Substituting (7) and (8) into (5) yields the joint posterior
probability distribution for S and α

p (S,α |V,D,Σ )

∝
∏

i

exp
[
− 1

2σi
(�Vi − αi

�DiS)(�Vi − αi
�DiS)T

]

= exp

[

−
∑

i

1
2σi

(�Vi − αi
�DiS)(�Vi − αi

�DiS)T

]

. (9)

C. Variational Inference on VCG

Although the MAP solution for the VCG, which, in this case,
is equivalent to the ML solution, can be assessed by integrating
(9) over α and determining for which S the resulting probabil-
ity distribution is maximal, the required integral is impossible
to evaluate analytically. However, by employing variational in-
ference [19], in factorized form also known as mean field the-
ory [26], the MAP solution for the VCG can be approximated.

In variational inference, the posterior probability distribution
p(S,α|V,D,σ) is approximated by the variational distribution
q(S,α)

p (S,α |V,D,σ ) ≈ q (S,α) . (10)

The goal of variational inference is now to restrict the family
of possible distributions q(S,α) sufficiently that it comprises
only tractable solutions, while at the same time allowing it to be
sufficiently rich and flexible to obtain a good approximation to
the true posterior probability distribution.

A way of restricting the family of distributions is by assuming
it to factorize into

q (S,α) = qS (S)
∏

j

qαj
(αj ) . (11)

Substituting the factorized probability distributions from (11)
into a lower bound for the true posterior, provided and discussed
extensively in [19], results in an expression for the optimal
solutions q∗S(S) and q∗α(α) [19]

ln q∗S (S) = Eα [ln p (V,S,α |D,Σ )] + constant (12)

ln q∗α (α) = ES [ln p (V,S,α |D,Σ )] + constant. (13)

Here, Ey [x] denotes the expected value of x with respect to the
probability distribution q(y).

Assuming a Gaussian distribution for qαj
= N (αj |µj , βj )

with mean µj and variance βj , the optimal solution for the
VCG S can be evaluated as

ln q∗S (S) =
∫ ∏

j

N (αj |µj , βj ) ln p (S,α |V,D,Σ ) dαj

+ constant

= −
∑

i

{
1

2σi
( �DiS)( �DiS)T (βi + µ2

i )

− �DiSσ−1
i

�V T
i µi

}
+ constant. (14)

Since the term on the right-hand side of (14) is quadratic
with respect to S, q∗S(S) is a Gaussian distribution. For reasons
of convenience, this distribution is expressed with respect to
�DiS. From (14), it follows that this distribution has mean �νi and
variance Σi given by

�νi =
µi

βi + µ2
i

�Vi and Σi =
σi

βi + µ2
i

. (15)

Substituting this result into (13) gives, analogous to (14)

ln q∗α (α)

= −
∑

i

{
α2

i

2σi

(
Σi + �νi�ν

T
i

)
− αi

σi
�νi

�V T
i

}
+ constant (16)

which reflects a Gaussian distribution for q∗α(α) as well, with
mean µi and variance βi given by

µi =
�νi

�V T
i

Σi + �νi�νT
i

and βi =
σi

Σi + �νi�νT
i

. (17)

Implementing (15) and (17) into an iterative procedure, an
estimate for �DiS can be determined. Convergence of this iter-
ation scheme is ensured by the convexity of (12) and (13) with
respect to q(S) and q(α), respectively. The VCG estimate Ŝ can
subsequently be determined from

ŜPTV = D†U (18)

with D† the Moore–Penrose pseudoinverse of D and U an
[N × T ] matrix with rows �νi .
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Fig. 2. Electrode positions for recording the fetal ECG and VCG from the
maternal abdomen. This figure has been adopted from [31].

IV. DATA ACQUISITION AND EVALUATION

To evaluate both VCG methods, the 12-lead ECG from adult
patients and the fetal ECG are used. The approach used to
evaluate both methods is discussed in more detail shortly (see
Section IV-B).

To model the VCG of nonstandard adult patients, the 12 ECG
signals from the 12-lead ECG are randomly scaled. When deal-
ing with real recordings of such patients this scaling is expected
not to be random. In fact, electrodes close to one another are
expected to exhibit similar scaling parameters. However, with
a random scaling being an even more challenging test, this ap-
proach suffices for evaluation of the PTV and Dower method.
To minimize the effect of the randomized scaling factor gen-
eration, the final results are averaged over all heartbeats. The
scaled 12-lead ECG, the original 12-lead ECG itself, and the
fetal ECG acquisition are discussed in more detail shortly.

A. Data Acquisition

1) Twelve-Lead Adult ECG: The most widely used clinical
ECG system is the 12-lead ECG system, consisting of the leads:
I, II, III, aVR , aVL , aVF , V1 , V2 , V3 , V4 , V5 , and V6 [27].

The 12-lead ECG recordings used in this paper are taken from
the MIT/BIH PTB diagnostic ECG database [28]. Next to the 12-
lead ECG signals, this database also contains the corresponding
Frank XYZ signals. The Frank XYZ lead system is a system
comprising three orthogonal leads that, due to this orthogonality,
fully describe the three dimensions of the VCG [29]. The Frank
XYZ signals can, therefore, be used to evaluate the predicting
performance of both the PTV and Dower methods.

A total of ten recordings is used from the database (patients
104, 105, 116, 117, 121, 122, 235, 242, 263, and 264) with a
total number of 693 heartbeats. All recordings are 60-s-long and
all patients are healthy.

2) Fetal ECG: As mentioned previously, the fetal ECG can
be recorded from the maternal abdomen. In this paper, the fetal
ECG is recorded from a single patient of 24 weeks of gestation,
using the electrode configuration of Fig. 2. The total length of
the signal is over 300 s and it contains more than 800 fetal
heartbeats. For this gestational age of 24 weeks, the fetus is
not yet covered by the isolating vernix caseosa and hence, the

conduction of fetal ECG signals towards the maternal abdominal
surface can be assumed uniform [14], [15].

The signals acquired from the maternal abdomen, at a sam-
pling rate of 1 kHz, contain a mixture of fetal ECG, maternal
ECG, muscular activity and other interferences. The fetal ECG
is extracted from this mixture using filtering and a dynamic
template subtraction method [30]. The electrode positions on
the maternal abdomen with respect to one another are estimated
by positioning the electrodes as accurately as possible in the
configuration of Fig. 2 and estimating the shape/rounding of the
abdomen.

The electrode configuration of Fig. 2 is designed in such a way
that all electrodes are relatively close to the fetal heart. As this
configuration is different from the electrode configuration used
for the 12-lead ECG [5], the numerical description of the Dower
matrix D cannot be used to determine the fetal VCG. Therefore,
for estimation of the fetal VCG, the matrix D only contains the
electrode positions and does not account for boundary effects
and tissue inhomogeneities.

B. Evaluation of Methods

As mentioned previously, both the PTV and Dower methods
are evaluated by assessing the performance of both methods
in predicting ECG signals. This entails the projection of the
VCG onto ECG lead vectors �Dj of which the corresponding
signals �Vj are not included in the estimation of the VCG. These
excluded ECG signals are the signals from the previously men-
tioned Frank XYZ system, but also signals from the 12-lead
ECG that are just not used in the calculation of the VCG and
that are randomly selected. The reason for not using all of the
12-lead ECG signals is to also assess the sensitivity of both VCG
methods to the number of electrodes. It has to be noted here,
that for the estimation of the VCG a minimum number of three
ECG signals is required at all times. Again, the performance of
both methods is described by means of the resemblance between
the ECG signals resulting from projection of the VCG and the
actually recorded ECG signal.

The resemblance between projected and recorded ECG sig-
nals is expressed quantitatively by means of ε, the normalized
MSE between the recorded ECG signal and the VCG projection

εPTV =
1
N

N∑

i=1

(�Vi − α̂i
�DiŜPTV)(�Vi − α̂i

�DiŜPTV)T

�Vi
�V T

i

(19)

εDower =
1
N

N∑

i=1

(�Vi − �DiŜDower)(�Vi − �DiŜDower)T

�Vi
�V T

i

. (20)

As mentioned previously in Section I, on average about 83%
(i.e., approximately the mean between 70 and 95%) of the power
of the ECG signals can be predicted by projection of the VCG.
Consequently, MSE values of about −7.5 dB, i.e., 17%, signify
a relatively accurate VCG, i.e., MSE values larger than about
−7.5 dB indicate that, besides imperfections in the dipole model,
additional inaccuracies in the VCG methods have to be present
as well.
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Fig. 3. Normalized MSE ε between the ECG signals determined from projec-
tion of the VCG and the recorded ECG signals. The MSE ε is determined for
both the PTV method and the Dower method for both scaled and unscaled ECG
signals. (a) VCG projections are compared to the omitted ECG signals. (b) VCG
projections are compared to the Frank XYZ leads. Note that in both graphs, for
the unscaled ECG signals, the values for ε for both methods are practically on
top of one another.

The fetal VCG determined from real fetal ECG signals can-
not be validated with respect to Frank XYZ signals. Therefore,
the performance of both VCG methods is only evaluated by
calculating the fetal VCG with less than the eight electrodes,
as depicted in Fig. 2, and subsequently comparing VCG pro-
jections to the omitted ECG signals. The performance is again
expressed quantitatively by means of ε.

Finally, for both the adult 12-lead ECG and the fetal ECG
recordings, the variance Σ is determined by assessing, for
each individual ECG complex, the variance of the signal that
is obtained by subtracting a template ECG complex from the
recorded ECG complexes. This template ECG complex is gen-
erated by averaging all ECG complexes within each signal.

V. RESULTS

A. Twelve-Lead ECG

In Fig. 3, the MSE ε is depicted for both the PTV method and
the Dower method.

Fig. 3(a) and (b) shows ε for the predictive performance of
the VCG with respect to omitted electrodes and Frank XYZ
leads, respectively. The values of ε are determined as a function
of the number of ECG signals included. As mentioned previ-
ously, the signals that are omitted (i.e., horizontal axis values
larger than zero) are randomly selected and the depicted values
represent the mean values across all the heartbeats for all of the
patients.

From Fig. 3, it can be seen that the performance of both
methods is approximately the same for unscaled ECG signals,
with the developed method performing marginally better. Since
the Dower method has been developed for these recordings, not
much improvement would have been expected here though. It
is, however, striking that even for small numbers of electrodes
included, the VCG determined with the Dower method still is
as accurate as a method that can, to some extent, account for in-
terpatient differences in signal propagation. The most probable
reason for this is that the inaccuracy in the Dower method, also
for few electrodes included, is smaller than the error originating
from nondipolar effects (see Section IV-A). This argumentation
is confirmed by the fact that all values for ε, except the ones for
only three or four electrodes included, are smaller than−7.5 dB,
indicating a relatively accurate VCG estimation. For the scaled
ECG signals, the developed PTV method significantly outper-
forms the Dower method with MSE values below −7.5 dB in
most situations.

From these figures, it can also be seen that the variational
inference only approximates the MAP solution for S in (9),
namely, in case the variational inference method would generate
the true MAP solution, the PTV values for ε between scaled and
unscaled ECG signals would nearly be the same.

In addition, from Fig. 3(a) and (b), it can be seen that, for the
modeled nonstandard patients (and thus, scaled signals), for the
PTV method the number of included electrodes larger than the
minimally required number of three electrodes can be halved
with respect to the Dower method in order to still obtain similar
ε values. This can result in more patient-friendly, comfortable
ECG measurements as fewer electrodes need to be positioned
on the patient’s skin.

Although the difference in performance between the PTV
method and the Dower method for scaled ECG signals appears
to be small in Fig. 3(b), it yields a significant difference in the
VCG estimates of Fig. 4. More precisely, because the Frank
XYZ leads together comprise the VCG, comparing the VCGs
of both methods to one another gives some insight into how this
small difference in MSE ε translates to actual VCG estimates.
Fig. 4 indicates that the nonstandard patients’ VCG estimated by
the PTV method resembles the VCG determined from unscaled
ECG signals significantly better than the VCG estimated by the
Dower method. Here, the unscaled VCG serves as reference for
the VCGs determined from the scaled signals. The significance
in this difference lies in the fact that some ECG applications call
for comparison of two or more vectorcardiographic loops, serial
ECG analysis probably being the most notable [32]. Such com-
parisons can be considerably affected by slight interrecording
changes in the VCG. For instance, a small Q-wave in a pro-
jected ECG complex may completely vanish in the consecutive
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Fig. 4. VCG determined from scaled ECG recordings with the developed
PTV method and with the conventional Dower method. For reference, also the
corresponding VCG from the unscaled ECG recordings is depicted.

Fig. 5. Projections of the VCGs of Fig. 4 onto the normalized lead vector
(0, 0.96, −0.27). In contrast to the ECG determined by the PTV method and
the unscaled reference ECG, in the ECG determined by the Dower method the
Q-wave is absent.

complex. This is illustrated in Fig. 5, in which the VCGs of
Fig. 4 are projected onto a specific lead vector. Notwithstanding
this improved performance of the PTV method with respect to
the Dower method, the PTV method also suffers from inaccu-
racies, as can be seen from the difference between the unscaled
VCG and the VCG estimated by the PTV method in Fig. 4.
These inaccuracies are mostly due to approximations made by
the variational inference and the fact that attenuation effects are
assumed isotropic, i.e., the ratios between elements within each
row of D are kept fixed.

B. Fetal ECG

In Fig. 6, the MSE ε is depicted for the VCG determined from
actually recorded fetal ECG signals.

From Fig. 6, it can be seen that also for ECG signals with a
lower SNR, the developed PTV method outperforms the Dower
method. The difference between both methods is illustrated once
more in Fig. 7 in which the fetal VCG determined with both
methods is depicted.

Fig. 6. Normalized MSE ε between the fetal ECG signals determined from
projection of the fetal VCG and the fetal ECG signals that are omitted from the
calculation of the VCG. The MSE ε is determined for both the PTV method and
the Dower method.

Fig. 7. Fetal VCG determined with both the PTV method and the conventional
method.

The difference between both VCGs can, according to the
model of (3), be explained by the different attenuation effects
on the ECG signals recorded with different electrodes.

VI. DISCUSSION AND CONCLUSION

The presented method outperforms the currently existing
method for VCG determination in all situations, although the
difference between both methods for patients with standard body
composition and geometry is negligible. For patients that do not
conform to the standard, such as fetuses, however, the perfor-
mance of the developed method appears to be significantly better
than the performance of the conventional method.

Notwithstanding this improvement in VCG determination,
the developed method is liable to inaccuracies since the applied
variational inference method only approximates the MAP solu-
tion. By extending this method with other probability distribu-
tions, instead of just the Gaussian, performance of this method
can be improved, however, potentially leading to a computa-
tional higher complexity, e.g., due to required numerical eval-
uation instead of analytical evaluation as is the case with the
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Gaussian distribution. At this moment, for both scaled and un-
scaled ECG recordings, the PTV method requires, on average,
less than five iterations to converge to a stationary solution,
yielding a relatively small computational load.

Other ways of improving the developed method are the in-
clusion of prior information on the scaling parameters α, more
precisely determined electrode positions, and the extension of
the dipole model to enable it to also deal with nondipolar com-
ponents. For the latter, an overview of ways to extend the dipole
model is provided in [33], including the addition of another
dipole and the use of multipoles. More recent extensions of
the dipole model include the use of distributed source models,
as discussed in [34]. Including prior information on α implies
the inclusion of prior information on spatial information, i.e.,
the heart–electrode distances, as well [35]. Following the prin-
ciple of maximum entropy [23] to determine the appropriate
corresponding prior probability distribution and including this
distribution in (9) would result in an analytically unsolvable ex-
pression for the posterior probability distribution. In turn, this
would require the use of computationally more complex numer-
ical approaches to infer the MAP solution. The extension of
the dipole model would also lead to computational more com-
plex numerical approaches. Although all these improvements
are expected to lead to a more accurate VCG estimation, this
increased accuracy is expected to be overshadowed by the in-
accuracies caused by nondipolar contributions in the ECG, as
described in the first paragraph of Section I, with the exception
of improvements in the variational inference and the extension
of the model. Hence, the proposed improvements to the devel-
oped method are expected to cause higher computational com-
plexity (improved variational inference, prior information on α,
and extension of the model) and yield more laborious measure-
ments (more precise electrode positions), while the benefits of
most improvements are negligible. In addition, a higher com-
putational complexity prevents the use of the PTV method in
real-time applications.

For development of the PTV method, several assumptions
have been made, including the Gaussian distribution of the
noise and mutual independence of the scaling parameters α.
The assumption of the noise having a zero-mean Gaussian dis-
tribution is adopted from the inverse Dower matrix method. In
this method, inaccuracies in the dipole model regarding bound-
ary effects, tissue inhomogeneities, and nondipolar components
are assumed to be accounted for by the numerical description of
the Dower matrix. Although this assumption is not completely
valid, resulting in reduced accuracy in VCG estimation, the
method is reported to perform sufficiently well to support clini-
cal decision making [12]. With the PTV method outperforming
the inverse Dower matrix method, the PTV method is expected
to also perform sufficiently well for clinical decision making.
This, however, remains to be demonstrated in clinical practice.
The mathematical benefits of the Gaussian-noise assumption,
yielding the final algorithm analytically solvable, can, there-
fore, be considered of larger interest than the modeling error
it provokes. The assumption of the scaling parameters α being
mutually independent is, in contrast to other statistical indepen-
dencies, not justified by applying d-separation. In fact, both this

assumption of independence and the assumption of a uniform
prior for α are inaccurate and result in decreased performance
of the PTV method. These assumptions are nevertheless needed
for the sake of tractability. However, even with these inaccurate
assumptions, the results in Figs. 3 and 6 show that the PTV
method outperforms the Dower method. Including prior infor-
mation on α is nevertheless expected to lead to substantially
improved performance of the PTV method.

The normalized MSE ε in predicting ECG signals from the
VCG is, for the unscaled ECG recordings, smaller than −10 dB
for VCGs determined from six included electrodes or more.
Although this error can be fully attributed to nondipolar com-
ponents in the precordial ECG leads, part of this error should be
attributed to inaccuracies in the linearization of boundary effects
and tissue inhomogeneities as well. Here, the main inaccuracy is
caused by the assumption of the scaling α being isotropic, and
hence, the assumption of the ratio between the elements within
each row of D being fixed. For scaled ECG signals and the fetal
ECG, besides model inaccuracies also the approximation in the
variational inference and decreased signal to noise ratios (for the
fetal ECG) give rise to increased MSE. Based on the differences
between scaled and unscaled PTV results in Fig. 3 (as discussed
in Section V-A), this increase in ε due to variational inference
can be up to 5 dB.

From Figs. 3 and 6, it can be seen that the PTV method
requires less ECG signals than the Dower method to obtain
similar MSE values in the prediction of reference ECG sig-
nals. Consequently, the use of the PTV method in ambulatory
ECG monitoring is expected to decrease patient discomfort and
reduce bandwidth requirements for wireless data transmission.

Notwithstanding the inaccuracies mentioned previously, the
developed method provides a way for estimating a VCG, tailored
to each specific patient. For patients conforming to the stan-
dard, the improvement with respect to the conventional method
is negligible, but for nonstandard patients the improvement is
significant. On the one hand, the VCG can be determined with
increased accuracy, which for the fetus may result in improved
early-stage diagnosis and perhaps even treatment of congenital
heart diseases, whereas, on the other hand, for adult patients
it can result in a smaller number of required electrodes, im-
proving patient comfort and facilitating ambulatory monitoring
applications.

Additionally, since the method also estimates α in (9), for the
fetal VCG, the method can be used in future to estimate the po-
sition of the fetal heart with respect to the electrodes—requiring
assumptions on tissue homogeneity—and hence, the position of
the fetus inside the uterus. In addition, the estimation of α might
in future be used to estimate distributed electrical activity of the
heart. Furthermore, because of the similar nature of the problem
in fetal magnetocardiography [36], the method may also be ap-
plied on fetal magnetocardiogram (MCG) signals. With regard
to fetal ECG/MCG monitoring, the capability of the method to
predict the morphology of fetal ECG/MCG signals that cannot
be recorded directly can have significant value in clinical prac-
tice, e.g., through determination of the 12-lead ECG/MCG. This
prediction of the 12-lead ECG and its use in clinical practice is,
therefore, a possible subject of further studies as well.
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