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Abstract 

At present, large-eddy simulations (LES) of 
turbulent flames with multi-species finite-rate kinetics 
is computationally infeasible due to the enormous cost 
associated with computation of reaction kinetics in 3D 
flows. In a recent study, In-Situ Adaptive Tabulation 
(ISAT) and Artificial Neural Network (ANN) 
methodologies were developed for computing finite-
rate kinetics in a cost effective manner. Although ISAT 
reduces the cost of direct integration considerably, the 
ISAT tables require significant on-line storage in 
memory and can continue to grow over multiple flow-
through times (an essential feature in LES). Hence, 
direct use of ISAT in LES may not be practical, 
especially in parallel solvers. In this study, a storage-
efficient Artificial Neural Network (ANN) is 
investigated for LES application. Preliminary studies 
using ANN to predict freely propagating turbulent 
premixed flames over a range of operational 
parameters are described and issues regarding the 
implementation of such ANNs for engineering LES are 
discussed. 
 
1 INTRODUCTION 

The potentially more stringent emission 
regulations that are expected in the near future have 
focused the need to develop more efficient, low-NOx 
gas turbine systems. However, accurate prediction of 
mixing and combustion processes requires a 
comprehensive numerical model that can predict not 
only the flame structure and propagation 
characteristics but also is capable of predicting 
pollutant formation, and ignition/extinction 
phenomena. All these phenomena are unsteady 
features and therefore, steady state RANS methods 
cannot be employed. On the other hand, direct 
numerical simulations are not practical, since 
resolution and computational requirements far exceed 
even future computational capabilities. 

Although LES has become popular in recent 
years to study unsteady turbulent processes, its use to 
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predict reacting flows is still not well established. 
Since combustion process occurs at the small-scales, 
ad hoc models used at the resolved LES scale cannot 
provide an accurate estimation of the physical 
processes that are not even modeled. To address this 
limitation, recently, a method that combines 
conventional LES for the momentum transport with a 
subgrid reaction-diffusion simulation model was 
developed and demonstrated [1, 2]. In particular, the 
key feature of this subgrid model (called the linear-
eddy mixing (LEM) model) is that both reaction 
kinetics and molecular diffusion processes are 
implemented within the subgrid domain as a direct 
simulation (and thus, requires no closure). In addition, 
since advection of the subgrid fields across LES cells 
is carried out using a Lagrangian transport model (see 
cited references) it allows both co- and counter-
gradient diffusion processes to occur naturally at the 
resolved scales. This ability is particularly important in 
complex flows where large-scale coherent structures 
(that can cause counter-gradient diffusion) transport 
the chemical species into small-scale mixing regions 
(where gradient diffusion transport can dominate). 

However, even in this approach, detailed 
reactions kinetics is computationally prohibitive for 
engineering level simulations. Simplifications based on 
the mixture fraction (for non-premixed) or the G-
equation (for premixed) formulations (that have been 
employed in many recent studies), are limited by the 
inherent assumptions in these formulations. For 
example, mixture fraction formulation assumes equal 
diffusivity and a two-feed system. However, in a real 
gas turbine engine these assumptions are severe 
approximations since there are usually pilot and 
secondary flame zones resulting in the formation of 
multiple premixed, partially premixed and non-
premixed zones. In premixed systems, although the G-
equation approach can provide reliable prediction on 
flame-turbulence interactions and combustion 
dynamics, emission prediction is impossible since no 
chemical species are being tracked. Thus, LES of 
Copyright © 2002 by ASME 
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multi-species kinetics in realistic combustors will 
require a new approach that is not only 
computationally efficient but also accurate. 

In recent studies, we have been focusing on 
issues regarding implementation of finite-rate kinetics 
within the subgrid reaction-diffusion model. Finite-rate 
chemistry (using a 19-species, 15-reaction methane-air 
mechanism) was recently implemented using ISAT to 
study freely propagating premixed flames in the thin-
reaction-zone and wrinkled flamelet regimes [3] (see 
Fig. 1). In this study, the LEM model was 
implemented in a stand-alone mode to simulate the 
premixed flame. Results showed that the flames in 
these regimes can be predicted quite accurately using 
this model. However, in a parallel implementation, 
ISAT required significant memory storage (e.g., 
around 100+MB per processor) that quickly becomes a 
bottleneck. Therefore, recently [4], an alternate method 
based on ANN was investigated as a memory and cost-
effective alternative to the ISAT model. 

The use of ANN is widespread in the 
engineering community, but is relatively novel in 
combustion related CFD applications. Past studies [5, 
6, 7, 8] have addressed the ability of ANN to 
accurately map the composition space. Recently [4], 
the ANN approach was used to simulate a turbulent 
premixed flame with a 19-species, 15-step methane-air 
mechanism [9]. In the present study, some new 
observations of this ANN model development are 
discussed along with a demonstration of how multiple 
ANNs for different flames can be combined to predict 
a new flame. The extension of this procedure for 
integration into LES model for engineering studies is 
also discussed. 
 

 
 

Figure 1. Diagram of turbulent premixed combustion 
regimes. 

 
2 MODEL FORMULATION 

The details of the LEM model have been 
given elsewhere [1, 3, 10, 11] and therefore, are only 
briefly summarized here. LEM is a stochastic model 
that treats reaction-diffusion and turbulent convection 
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separately but concurrently.  Reaction-diffusion 
processes evolve on a one-dimensional (1D) domain in 
which all the characteristic length scales in the 
turbulent field (from the integral scale L to the 
Kolmogorov η) are fully resolved (6 cells are used to 
resolve η). The orientation of the 1D domain is in the 
direction of the scalar gradient [10] (and thus, for 
premixed flame, is in the flame normal direction), and 
within this domain, the equations governing constant 
pressure, adiabatic flame propagation are 
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temperature, P is the thermodynamic pressure, uR  is 
the universal gas constant and ρ is the mass density. 
Also, kkkkpkk VhCWY ,,,,, , ω& and 0

,kfh∆  are 
respectively, mass fraction, molecular weight, specific 
heat at constant pressure, mass reaction rate, enthalpy, 
diffusion velocity and standard heat of formation (at 
standard temperature, To) of the k-th species. The 
mixture-averaged specific heat at constant pressure and 
thermal conductivity are respectively, pC and κ . The 
diffusion velocity is given by the Fick's law: 
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k −= , where Dk is the mixture-averaged 

diffusivity of the k-th species. 
Since turbulent convection is implemented 

explicitly, the convective terms u∂Yk/∂x and u∂T/∂x in 
the species and energy equations are symbolically 
represented as Fkstir and FTstir, respectively. These terms 
are implemented using stochastic re-arrangement 
events called triplet maps, each of which represents the 
action of a turbulent eddy on the scalar fields. It has 
been shown [10] that this mapping can capture 
correctly the physical increase in scalar gradient 
(without affecting the mean scalar concentration) due 
to eddy motion. Three parameters are needed to 
implement these turbulent stirring events: the typical 
eddy size l, the eddy location within the 1D domain 
and the stirring frequency (event rate) λ. The eddy size 
in the range L to η is determined randomly from an 
eddy size distribution f(l) which is obtained using 
inertial range scaling in three-dimensional turbulence 
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[10]: f(l) = (5/3) l-8/3 / (η -5/3 -  L-5/3).  Here, η is 
determined from inertial range scaling law η=NηLRe-3/4 
where Nη is an empirical constant. This constant 
reduces the effective range of scales between L and η 
but does not change the turbulent diffusivity, as 
described earlier [11]. 

The event location is randomly chosen from a 
uniform distribution and the event rate (frequency per 
unit length) is determined by [10] 
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The time interval between events is then given as ∆tstir 
= 1/(λXLEM) where XLEM is the length of the 1D 
domain. 

The unique feature of the LEM model is that 
although the scalar evolution is simulated in 1D, the 
effect of turbulence on the scalar fields is modeled 
using 3D scaling laws. As a result, flame wrinkling 
occurs at spatial and temporal scales that mimic effects 
of realistic 3D turbulent eddies on the laminar 
flamelets. The ability of LEM to capture realistic 
flames in the flamelet regime is now well documented 
[11]. 

The above formulation has two constants: Cλ 
and Nη both of which arise from the use of scaling 
laws. In the earlier studies [11], these parameters were 
obtained by comparing LEM predictions to 
experimental data [12] in the flamelet regime. The 
present study uses these same values (Cλ = 15 and Nη = 
4) in order to determine if the LEM model validated in 
the flamelet regime can be applied to flames in the 
thin-reaction-zones regime without any adjustments. 

The implementation of this LEM model 
within the LES framework has also been accomplished 
in recent years [1, 2]. In this approach, the LEM model 
is simulated locally within each LES cell to simulate 
the local reaction-diffusion and turbulent mixing 
processes, as noted in the cited literature. 
 
3  NUMERICAL IMPLEMENTATION 

Methane-air flames similar to those in the 
experiments are studied here. Two mechanisms, a one-
step global mechanism (with five species) has been 
used to evaluate ANN integration issues and a more 
detailed 15-step, 19-species skeletal mechanism is 
employed for more realistic applications. This 
mechanism (which included NOx kinetics) has been 
shown to be quite accurate over a wide range of 
equivalence ratios and is capable of predicting 
extinction and re-ignition. 

The numerical method is the same as in the 
earlier study [3, 4] and therefore, only briefly 
summarized. To simulate a stationary flame, a moving 
observation window is used that translates with the 
flame brush to maintain approximately the same 
 33 
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relative position between flame center and observation 
window (even though the flame propagates freely into 
the reactants).  All statistics are obtained relative to the 
flame center. The computational domain is chosen 
large enough to fully capture this flame brush 
(typically 6L). For this purpose a 1D domain length of 
0.014355 m is chosen with 352 grid points. 

Earlier studies [11] and the present study 
show that statistically, stationary flames can be 
simulated using this approach.  

All spatial derivatives are computed using 
second-order accurate central scheme and a fractional 
operator splitting scheme is used to evolve the 
chemical state. The chemical source term is obtained 
either using ISAT or ANN depending upon the 
situation. 
 
3.1 In-Situ Adaptive Tabulation 

In ISAT, only the accessed region of the 
composition space which is a subset of the whole 
realizable region (i.e., the set of all possible 
combinations of compositions for a given number of 
species) is tabulated. This tabulation is done as a part 
of the simulation and when the same composition re-
occurs, the table is searched and the stored information 
is retrieved using fast binary tree search algorithm. 
Since only the accessible region is stored, the overall 
time required to build, retrieve and store information 
reduces significantly. Further details of the ISAT 
algorithm is given elsewhere [13] and therefore, 
avoided here for brevity. 

Here, a parallel (using MPI directives) 
implementation of LEM model (with ISAT) is used. 
Since, for the chemistry point problem no 
communication is needed, each processor builds a 
local table for the composition that occurs inside its 
domain. This localizes the ISAT table to each 
processor and reduces the overall load (including 
search and retrieve time) for each processor (as 
opposed to building a single table for all the 
composition that occurs over the whole of the domain). 

Computational efficiency of ISAT is 
significant, as reported earlier [13]. The size of the 
table and cost depend upon the error tolerance (which 
determines the allowable error in each of the scalar for 
a given initial state). For higher accuracy, this 
parameter should be low, leading to an increase in the 
total simulation time and storage. In general, we have 
observed a speed-up of around 50 by using ISAT. This 
is consistent with the speedup reported earlier [13]. 
Additional speed up can be achieved by using a more 
extensive ISAT table setup. 
 
3.2 Artificial Neural Network 

An ANN structure consists of large 
interconnected non-linear processing elements, which 
Copyright © 2002 by ASME 
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by definition, mimics the functioning of biological 
neurons possessed with the ability to learn from the set 
of input-output parameter space it is subjected to, and 
then, predict the outcome for any new input set with a 
sufficient level of accuracy. The information for the 
network is stored in the form of weights and biases, 
which are computed iteratively in the learning phase of 
the network training. 

Figure 2 shows the structure of a basic three 
layer neural network that has been used for most of the 
current work. The basic steps for obtaining an ANN 
structure are (i) the generation of an initial data set for 
training the network, (ii) the training of the network 
using a suitable neural net algorithm, (iii) the 
generation of a validation data set to check the 
accuracy of the final ANN for sample points not used 
in the training, and (iv) the incorporation of the ANN 
in a real turbulent flame simulation. 

ANNs are constructed to predict the temporal 
evolution of the reactive scalars and temperature in the 
1D LEM domain. The aim is to predict the species 
mass fractions and the temperature after a given time 
step, and for a given input species composition and 
temperature. The time step for the calculation of the 
chemical evolution is kept constant in the current 
simulations. 

Initially, individual ANNs, as shown in Fig. 2, 
are constructed for each of the target 19 species mass 
fractions and temperature. Each of the ANN, however, 
takes all the 20 scalars as an input. Each ANN is a 
three-layer scaled conjugate gradient (SCG) back-
propagation network [14], with 20 neurons in each of 
the hidden layers. The choice of the number of layers 
and number of neurons in each layer is an open 
question, and has to be optimized iteratively. Tan-
sigmoid activation functions are used for the hidden 
layers, and a purely linear activation function for the 
output layer is employed. The most challenging task in 
the creation of a neural network for a chemical system 
is the generation of the training set, which should 
represent the accessed composition domain faithfully. 
The present study uses the aforementioned ISAT table 
as a training dataset. However, it is still not clear if this 
is the optimal solution. On the other hand, use of the 
ISAT data reduces the cost of on-line evaluation of the 
chemical composition. 

Subsequent analysis of the ANN predictions 
and comparison with ISAT predictions demonstrated 
that a single ANN for each species is not optimal to 
cover the entire operational regime. For example, it 
was observed that large changes occur within a small 
region, whereas there are locations ahead and behind 
the flame where very little changes are occurring. 
Furthermore, detailed analysis [4] showed that 
prediction of some of the key radicals (e.g. H, HO2, 
etc.) using a single ANN for each species was 
 44 
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problematic. More recent ANNs employ 27 ANNs for 
one species (instead of 1 ANN) where the composition 
domain is (in term of the temperature field) subdivided 
into sub domains and ANNs trained on each of these 
sub domains. 

 
Figure 2. Artificial Neural Network trained on multi-

species kinetics. 
 
4 RESULTS AND DISCUSSION 

The ANN structure is obtained after training 
is substituted for the calculation of the chemistry part. 
It is observed that the SCG training algorithm provides 
excellent agreement with the ISAT predictions. 
However, the key issue for LES is the incorporation of 
these off-line trained ANN into real flame simulations 
where other un-specified parameters/effects (e.g., flow, 
turbulent stirring, etc.) are also prevalent. We discuss 
this issue in the following discussion. 
 
4.1 Prediction of Turbulent Flames using Global 
Kinetics 

To demonstrate the application of ANN to 
simulate a multiple of flames, the present effort has 
employed a one-step global mechanism [15] for 5 
species (CH4, O2, N2, CO2 and H2O). Two flames, 
Flames F1 and F3 are simulated using the same code 
and chemistry. Both these flames are in the thin-
reaction-zone but encounter different turbulence 
intensity in the incoming flow. Two ANNs are trained 
independently on each of these flames and the ANN 
predictions are compared with ISAT (with Direct 
Integration when needed) prediction. Figures 3 and 4 
show respectively, the instantaneous and time-
averaged profiles of the key species and temperature 
for these flames. It can be seen that there is excellent 
agreement between the ISAT and ANN predictions 
(even in the instantaneous profiles). 
Copyright © 2002 by ASME 
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(a) F1 Flame 

 
(b) F1 Flame 

 
(c)  F3 Flame 

 
(d) F3 Flame 

Figure 3. Instantaneous profiles for the F1 and F3 
flames. 
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(a) F1 Flame 

 
(b) F1 Flame 

 
(c) F3 Flame 

 
(d) F3 Flame 

Figure 4. Time-averaged profiles for the F1 and F3 
flames. 
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Subsequent to these studies, another 

simulation was carried for conditions corresponding to 
the Flame F2 (see Fig. 1). This flame lies between the 
Flames F1 and F3. Instead of training a new ANN for 
this flame, the ANNs developed for Flames F1 and F3 
were combined (i.e., a weighted interpolation of the 
prediction from F1 and F3 flames is used) to predict 
this new flame. Figure 5 shows that combining 
multiple ANNs to predict a new flame is possible. 
However, more development (some are noted below) 
is still needed before this methodology can be utilized 
for LES applications. 
  
4.2 Prediction of Turbulent Flames using Detailed 
Kinetics 

The 15-step, 19-species mechanism is also 
employed in some studies of these flames. Most of 
these results were reported earlier [4] and therefore, are 
only summarized here for completeness. 

Figures 6 and 7 compare the ISAT and ANN 
predictions for some minor and pollutant species for 
the F1 flame. Clearly, the more complicated reaction 
mechanism can also be reasonably approximated using 
ANNs. There are, however, some key issues that have 
to be addressed in this case. In particular, the 
prediction of radicals that form in very low 
concentration in the flame zone is computationally 
very difficult and will require additional research. The 
impact of errors in key radicals on the pollutant 
formation also needs to be addressed. In particular, the 
use of multiple ANNs for each species (tailored based 
on their formation within the flame zone) is being 
evaluated to address this issue. Results from this study 
will be reported in the near future. 
 
4.3 Application of ANN in Engineering LES 

An extension of the LEM+ANN approach is 
also being developed to simulate turbulent flames 
within LES. In this approach, an additional ANN that 
contains turbulence parameters such as the subgrid 
intensity and range of turbulent eddies in the flame 
zone (f(l)) is being developed. For example, the F1-F3, 
and B1 flames all have different u' and f(l). Therefore, 
by combining the thermo-chemical ANNs for these 
flames with the fluid mechanical ANN for u' and f(l), it 
will be possible to directly obtain the filtered reaction 
rates. Here, we consider the filtered reaction rate as an 
average over all the turbulent eddies that have 
perturbed the chemical state. Thus, mathematically this 
can be written as: >=< mm ωω &&  where mω& is the 

LES filtered reaction rate and >< mω&  indicates the 
reaction rate averaged over the local eddies. The latter 
term can be approximated from the LEM approach as:  
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(a) Instantaneous Profiles 

 
(b) Instantaneous Profiles 

 
(c) Time-averaged Profiles 

 
(d) Time-averaged Profiles 

Figure 5. Instantaneous and time-averaged profiles for 
F2 Flame 
Copyright © 2002 by ASME 
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(a) H Profile 

 
(b) T Profile 

Figure 6. Averaged profiles for minor specie H and 
temperature. 

 
 

∫>=< )()()( ldlflmm ωω && . This approach allows 

the inclusion of detailed kinetics into LES solvers 
without the associated (enormous) increase in 
computational effort since the term >< mω& can be 
determined and stored in the ANN. This approach is 
denoted Turbulent ANN (TANN) and is briefly 
described below. 

To implement TANN, it is necessary to 
combine thermo-chemical and fluid-mechanical effects 
within a single formulation. To use it within the 
context of LEM, the Fstir terms in Equations (1) and (2) 
are not implemented which means that the reaction 
diffusion equations are identical to the laminar case. In 
order to capture the effect of turbulent eddies on the 
flame, eddies are sampled from the eddy size pdf, f(l) 
at the local time scale (as before), and the eddy event 
rate and event location are determined as in the 
original LEM approach, except that, now the reaction 
rates in these eddy locations are implemented in an 
averaged sense. Figure 8 shows some preliminary 
results of the TANN prediction. The results when 
compared to the direct integration result show that 
there are regions where the local structure is getting 
smoothed by this averaging procedure. This is 
expected since in the TANN implementation, detailed   
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(a) CO Profile 

 
(b) NO Profile 

 
Figure 7. Averaged profiles for pollutant species in the 

F1 Flame. 
  
 
sub-structure of the flame (i.e., structure within eddies 
of size l) are not captured and only the integrated effect 
is included. In spite of some errors due to the implicit 
smoothing of the flame structure, the �filtered� profile 
shows the gradual temperature rise in the pre-heat zone 
(which is characteristic of a thin-reaction-zone flame). 
Further improvements of this TANN approach to 
obtain more accurate prediction are still underway. 

Although the above study appears unrelated 
to LES, note that, we are attempting to estimate the 
�filtered� reaction rate by TANN. So far, only the eddy 
size distribution f(l) for a single flame F1 has been 
incorporated. However, once other relevant 
parameters, such as turbulence intensity u', 
equivalence ratio, and inlet temperature are included 
(by using the LEM model simulations), TANN will 
essentially predict the filtered reaction rate as a 
function of these parameters. In other words, TANN 
will contain the joint pdf of thermo-chemical and fluid 
mechanical variables. To mathematically explain this 
approach, consider the filtered scalar equations that are 
typically solved in a conventional LES. [Note we are 
not considering the subgrid simulation model [2] here 
since this approach is considered too expensive for 
engineering-level LES.]: 
Copyright © 2002 by ASME 
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for m =1,N species. In this equation, the subgrid scalar 
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reaction rate term, mω& require closure. In engineering 

LES, a gradient approximation: 
m
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where Scm is a turbulent Schmidt number (assumed to 
be unity), can be employed for the subgrid scalar flux. 
This approach is acceptable since the large-scale 
motion is resolved in the LES, and therefore, any 
large-scale counter-gradient processes (if they occur) 
are resolved (even when a gradient closure is 
employed for sgs

mi,θ ). 

The closure for mω&  is the key problem in 
LES. For example, the most popular approach is the 
assumed pdf approach in the mixture fraction space but 
this approach is not considered appropriate when 
complex kinetics and pollutant formation have to be 
predicted. The subgrid LEM model [1, 2] avoids this 
assumed pdf approach by simulating the actual local 
evolution of the joint-scalar pdf and therefore, provides 
an elegant closure for the scalar field. However, this 
approach is too expensive for engineering application. 
In the new TANN approach, the joint pdf for the 
thermo-chemical and fluid mechanical processes will 
be stored and accessed on-line to directly obtain mω& . 

As noted earlier, this results in >< mω&  which is 
stored in the TANN. 

There is another subtle advantage of TANN. 
Since it is built using Equations (1) and (2), it contains 
within it molecular diffusion (and differential 
diffusion) process (the term sgs

mi,Φ  in the above 
equation). Since molecular process occurs in the small-
scales, it cannot (and should not) be modeled at the 
LES scale. The TANN data base contains within it 
molecular diffusion (in effect simulates sgs

mi,Φ  and 
therefore, does not have to be modeled. Furthermore, 

the diffusion term in the above equation, 
i

m
m x

YD
∂
∂ ~

ρ  is 

a special term in the TANN approach since it 
incorporates diffusion across LES cell faces only under 
special circumstances (e.g., molecular diffusion when 
there is no flow). However, in high-Re turbulent flows 
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(where sgs
mi,θ  is likely to dominate at the resolved 

scales), this term could be neglected. 
Further development of TANN is still 

underway in order to make this approach robust and 
applicable to a wide range of problems within the LES 
context. An approach we are now exploring is to 
implement the subgrid LEM model within each LES 
cell as a surrogate to obtain information on the eddies 
and their consequence on stirring. In this approach, the 
scalar fields are still solved on the LES grid (as done 
for the earlier TANN) but the subgrid field is 
interrogated between each LES time-step to determine 
how many eddies from the distribution f(l) contribute 
to turbulent mixing. The chemical ANN is then 
evolved within each local eddy of size l in-between the 
LES time-step and the final states are ensemble-
averaged to obtain >< mω& in each LES cell. This 
filtered reaction rate term carries the subgrid scale 
information of turbulent stirring and reaction, to the 
coarser LES grid. Since the frequency and number of 
stirrings are still decided based on the 3D scaling laws 
of LEM, this approach will capture the effects of 
turbulent mixing on the filtered reaction rate without 
significantly increasing the computational cost. This 
approach combines the strengths of TANN and on-line 
LEM and may be general enough for wide 
applications. We hope to report on these studies very 
soon. 
 
4.4 Computational Cost of TANN in a LES 

The primary reason to use TANN is to reduce 
the computational cost (memory and runtime). As our 
recent studies have shown, ANN drastically reduces 
the memory requirement by an order of magnitude or 
more [4]. For example, a 150 MB ISAT table for 19-
species mechanism reduces to less than 2 MB for 
ANN. Also, the computation time for ANN retrievals 
can be orders of magnitude less than that for ISAT, 
especially for more complicated mechanisms, like the 
15-step, 19-species mechanism discussed before. 
Furthermore, since the ANN can be built using 
different time-interval beforehand, the cost for direct 
integration is completely eliminated. It is expected that 
once the TANN approach has been fully developed 
and integrated into a LES methodology, an engineering 
level LES with detailed kinetics will become feasible 
since the cost of obtaining the filtered reaction rate has 
been reduced to just the TANN access cost. 
 
5 CONCLUSIONS 

ISAT and ANN are both feasible and 
economical approaches for the simulation of scalar 
evolutions in a chemically reacting mixture. From 
memory and storage point of view, ANN may be a 
better alternative when implementing LES on 
Copyright © 2002 by ASME 
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massively parallel PC clusters. The accuracy and 
ability of the network depends significantly on the 
choice of the ANN parameters used and the quality of 
the input-output sets used for the network training. The 
present predictions for the species and temperature 
variations using ANN compare well with those 
obtained with ISAT for the various flames considered. 
 

 
(a) CH4 Profile                                    

 
(b) T Profile 

Figure 8. Instantaneous profiles for F1 flame using 
TANN 

 
The next step is to implement the TANN 

approach in a LES model. This will obviate the need to 
have an �on-line� LEM simulation model and will 
allow prediction of the turbulent reaction rates using a 
simple lookup model. Some preliminary results are 
reported here using this new TANN approach. Once 
this approach is fully validated it is likely to prove a 
major development for reacting flow LES studies. 
Undoubtedly, this will involve more complicated 
ANNs than being used at present. However, 
preliminary studies show that this can be 
accomplished. 
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