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1.Abstract

This presentation discusses an FMM for isotropic and anisotropic periodic boundary value
problems for Maxwell’s equations in 3D. The periodic Green function and its derivatives, which
are essential to the present method, are derived with Fourier analysis. We then apply the pro-
posed method to scattering problems for two dimensional array of spheres and silicon woodpile
structures, which are standard models in the field of photonic crystals. For the silicon woodpile
structures, we compare the obtained energy transmittances with those in the previous studies.
We observe good agreements.

2. Introduction

New optical structures in which periodicity plays a significant role are being developed these
days. One of most remarkable examples of such structures is the photonic crystal. Photonic
crystals are composed of periodic dielectric or metallic structures. By designing the periodic
structure properly, we can make band gaps in photonic crystals: we can prohibit propagation of
light within certain ranges of frequencies called band gaps. In addition, defects in the periodicity
can cause localised modes in the vicinity of defects, which may lead to a pass band in a band
gap. Photonic crystals thus enable us to control light freely since we can guide or store light
using these phenomena. Nowadays many researchers make great efforts to fabricate new optical
devices using photonic crystals: such devices include zero-threshold lasers, large scale optical
integrated circuits etc.

Considering such applications, it is concluded very important to develop designing tools
for periodic structures, especially in dynamics. Indeed, large scale analyses are required in
the design of optical devices such as photonic crystals, since shapes of actual optic devices
are very complicated. FM-BIEMs (Fast Multipole Boundary Integral Equation Methods) [1]
are good candidates as fast solvers of large scale wave problems since FM-BIEMs require only
O(N(log N)α) operations in problems with N boundary elements. The FM-BIEM was first
introduced in Laplace’s equation [2] and then was applied to many equations which are important
in various fields of engineering. In the field of electromagnetics, Chew’s group developed the fast
multipole solver called MLFMA (Multilevel Fast Multipole Algorithm) [3], which is nowadays
one of most standard tools for EM simulations.

However, we can find few researches on large scale periodic scattering problems other than
the works of the present author’s group [4]. In view of these backgrounds, we develop an FMM for
periodic problems for scattering problems in electromagnetics in the present study. The target
problems are doubly periodic problems in Maxwell’s equations in 3D in frequency domain.
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3.Formulations

In this section we express the formulation of periodic scattering problems for three-dimensional
Maxwell’s equations. Let D be the domain defined by D = (−∞,∞) ⊗ (−L2/2, L2/2) ⊗
(−L3/2, L3/2), where Li is the periodic length in the direction of xi (i = 2, 3) and we as-
sume L2 ≥ L3. D is further subdivided into N subdomains D = D1 ∪ D2 ∪ · · · ∪ DN (Fig. 1).
In each of the subdomains Di we assume that the following Maxwell’s equations are satisfied:

∇× E = iωµiH , ∇× H = −iωǫiE in Di,

where ω is the frequency (with the e−iωt time dependence), ǫi and µi are the dielectric constant
and the magnetic permeability for the material occupying Di. In the subdomain which extends
to x1 → −∞, we consider the incident plane wave. On interfaces between different subdomains
we impose the continuity conditions on the tangential components of E and H . On the periodic
boundaries given by Sp = {x| x ∈ ∂D, |x2| = L2/2 or |x3| = L3/2} we require the following
periodic boundary conditions:

E(x1, L2/2, x3) = eiβ2E(x1,−L2/2, x3), E(x1, x2, L3/2) = eiβ3E(x1, x2,−L3/2),

H(x1, L2/2, x3) = eiβ2H(x1,−L2/2, x3), H(x1, x2, L3/2) = eiβ3H(x1, x2,−L3/2),

where βi is the phase difference of the incident wave at xi = −Li/2 and xi = Li/2, expressed by
βi = Lik

inc
i (i = 2, 3), and kinc

i is the wave number vector of the incident wave.

4.Periodic Green Function

The periodic Green function is one of essential ingredients in our formulation. Because of
space limitations, we present just formulae related to the periodic Green function in this paper.
Other details will be covered in the presentation.

The periodic Green function for Maxwell’s equations is denoted by ΓP
ip. The function ΓP

ip

satisfies the governing equation:

eijkeklmΓP
mp,lj(x − y) − k2ΓP

ip(x − y) = δipδ(x − y),

with periodic boundary conditions. The function ΓP
ip is easily seen to be expressed in terms of

the following lattice sums:

ΓP
ip(x − y) =

∑

ω∈L
Γip(x − y − ω)eiβ·ω, (1)

where L stands for the lattice points defined by L = {(0, ω2, ω3)| ω2 = pL2, ω3 = qL3, p, q ∈ Z}.
From the lattice sum expression for ΓP

ip in (1) we see that the periodic boundary value
problems can be interpreted as an ordinary problem in an infinite domain with an infinite
repetition of the replicas of the unit cell (Fig. 2 ).



We now take the unit cell as the level 0 cell in FMM, and divide the set of replica cells
into those in the neighbourhood of the unit cell (denoted by CN ) and others (denoted by CF ).
Correspondingly, the sum in ΓP is divided into the contribution from CN , denoted by ΓPN which
includes the contributions from the unit cell itself, and those from CF , denoted by ΓPF. Namely,
we have

ΓP
ij = ΓPF

ij + ΓPN
ij ,

where

ΓPF
ij (x − y) =

∑

ω∈L′

Γij(x − y − ω)eiβ·ω,

ΓPN
ij (x − y) =

∑

ω∈L′′

Γij(x − y − ω)eiβ·ω,

L′ = {(0, ω2, ω3)| ω2 = pL2, ω3 = qL3, p, q ∈ Z,
√

(pL2)2 + (qL3)2 ≥ C
√

2L2
2 + L2

3 and

L′′ = L\L′, where C is a given number and we set C =
√

3
2 in this study.

The evaluation of ΓPN
ij (x − y) can be carried out using the standard FMM, and needs no

further consideration. For the computation of ΓPF
ij (x−y), we expand ΓPF

ij in the following plane
wave expansion:

ΓPF
ij (x − y) = −

ik

(4π)2

∫

|k̂|=1

(

ejpk

∂

∂xp

eix·k
)

×

(
∑

n

∑

m

in(2n + 1)Y m
n (k̂)

(
∑

ω∈L′

Om
n (−ω)eiβ·ω

))

︸ ︷︷ ︸

periodised translation operator

(

ekqi

∂

∂yq

e−iy·k
)

dS
k̂
.

In the above equation, the function Om
n is definded as follows:

Om
n (

−→
Ox) = h(1)

n (k|
−→
Ox|)Y m

n

( −→
Ox

|
−→
Ox|

)

,

where h
(1)
n stands for the spherical Hankel function of the 1st kind and nth order. Also, Y m

n

denotes the spherical harmonics. The factor within the second parentheses on the RHS corre-
sponds to the translation operator in the periodised M2L formula. The contribution from the
non-adjacent replica cells is evaluated with the periodised M2L formula in level 0.

5.Numerical Results

In this study we deal with standard and important models in the field of photonic crystals.
We show examples of the models considered in the present study in Fig. 3, where the left figure
shows a model of slab photonic crystals and the right figure gives a model of woodpile photonic
crystals. In the case of the woodpile crystal, we computed the energy reflectance and compared
the results obtained with the present method with those reported by Gralak et al[5]. We plot
the energy reflectance for various wave numbers in Fig. 4. As seen in Fig. 4, our results agreed
well with the most accurate results, denoted by ‘N = 9 × 9’ (solid line) obtained by Gralak et
al.
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Fig. 3: Examples of models. Left: 2 dimensional array of dielectric spheres, Right: Woodpile
crystal
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Fig. 4: Reflectance of the woodpile crystal (d: distance between the centres of woodpiles in the
x2 or x3 direction, ω: frequency, c: light velocity)
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