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Abstract

The goal of the present note is to study intermittency properties for the
solution to the fractional heat equation

∂u

∂t
(t, x) = −(−∆)β/2u(t, x) + u(t, x)Ẇ (t, x), t > 0, x ∈ Rd

with initial condition bounded above and below, where β ∈ (0, 2] and
the noise W behaves in time like a fractional Brownian motion of index
H > 1/2, and has a spatial covariance given by the Riesz kernel of index
α ∈ (0, d). As a by-product, we obtain that the necessary and sufficient
condition for the existence of the solution is α < β.
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1 Introduction

In this article we consider the fractional heat equation
∂u

∂t
(t, x) = −(−∆)β/2u(t, x) + u(t, x)Ẇ (t, x), t > 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd.
(1)

where β ∈ (0, 2], (−∆)β/2 denotes the fractional power of the Laplacian, and u0
is a deterministic function such that

a ≤ u0(x) ≤ b for all x ∈ Rd (2)
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for some constants b ≥ a > 0. We let W = {W (ϕ);ϕ ∈ H} be a zero-mean
Gaussian process with covariance

E(W (ϕ)W (ψ)) = 〈ϕ,ψ〉H.

Here H is a Hilbert space defined as the completion of the space C∞0 (R+ ×Rd)
of infinitely differentiable functions with compact support on R+ × Rd, with
respect to the inner product 〈·, ·〉H defined by:

〈ϕ,ψ〉H = αH

∫
(R+×Rd)2

ϕ(t, x)ψ(s, y)|t− s|2H−2|x− y|−αdt dx ds dy, (3)

where αH = H(2H − 1), H ∈ (1/2, 1) and α ∈ (0, d). We denote by Ẇ the
formal derivative of W . The noise W is spatially homogeneous with spatial
covariance given by the Riesz kernel f(x) = |x|−α and behaves in time like a
fractional Brownian motion of index H. We refer to [2, 3, 5] for more details.

Let G(t, x) be the fundamental solution of ∂u
∂t + (−∆)β/2u = 0 and

w(t, x) =

∫
Rd
u0(y)G(t, x− y)dy

be the solution of the equation ∂u
∂t + (−∆)β/2u = 0 with initial condition

u(0, x) = u0(x). Note that

G(t, ·) is the density of Xt (4)

where X = (Xt)t≥0 is a symmetric Lévy process with values in Rd. If β = 2,
then X coincides with a Brownian motion B = (Bt)t≥0 in Rd with variance 2.
If β < 2, then X is a β-stable Lévy process given by Xt = BSt , where (St)t≥0
is a (β/2)-stable subordinator with Lévy measure

ν(dx) =
β/2

Γ(1− β/2)
x−β/2−11{x>0}dx.

(See for instance the explanation on page 62 of [19] on how to construct a
new Lévy process from a Wiener process using subordination, and in particular
Example 4.38 of [19]). Due to (2) and (4), it follows that for all t > 0 and
x ∈ Rd,

a ≤ w(t, x) ≤ b. (5)

There is a rich literature dedicated to the case H = 1/2, when the noise W is
white in time. We refer to [10, 13] for some general properties, and to [12, 9, 7]
for intermittency properties of the solution to the heat equation with this type
of noise. Different methods have to be used for H > 1/2, since in this case the
noise is not a semi-martingale in time. The stochastic heat equation driven by
a fractional noise in time with index H ∈ ( 1

4 ,
1
2 ) was studied in [15], assuming

that the noise has a γ-continuous spatial covariance function.
In the present article, we follow the approach of [16, 5] for defining the

concept of solution. We say that a process u = {u(t, x); t ≥ 0, x ∈ Rd} defined
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on a probability space (Ω,F , P ) is a mild solution of (1) if it is square-integrable,
adapted with respect to the filtration induced by W , and satisfies:

u(t, x) = w(t, x) +

∫ t

0

∫
Rd
G(t− s, x− y)u(s, y)W (δs, δy),

where the stochastic integral is interpreted as the divergence operator of W
(see ([18]). Using Malliavin calculus techniques, it can be shown that the mild
solution (if it exists) is unique and has the Wiener chaos decomposition:

u(t, x) =
∑
n≥0

In(fn(·, t, x)) (6)

where In denotes the multiple Wiener integral (with respect to W ) of order n,
and the kernel fn(·, t, x) is given by:

fn(t1, x1, . . . , tn, xn, t, x) =

G(t− tn, x− xn) . . . G(t2 − t1, x2 − x1)w(t1, x1)1{0<t1<...<tn<t}

(see page 303 of [16]). By convention, f0(t, x) = w(t, x) and I0 is the identity
map on R.

The necessary and sufficient condition for the existence of the mild solution
is that the series in (6) converges in L2(Ω), i.e.

S(t, x) :=
∑
n≥0

1

n!
αn(t, x) <∞, (7)

where
αn(t, x) = n!E|In(fn(·, t, x))|2 = (n!)2‖f̃n(·, t, x)‖2H⊗n

and f̃n(·, t, x) is the symmetrization of fn(·, t, x) in the n variables (t1, x1), . . . ,
(tn, xn). If the solution u exists, then E|u(t, x)|2 = S(t, x). We refer to Section
4.1 of [16] and Section 2 of [5] for the details. Note that if u0(x) = u0 for all
x ∈ Rd, then the law of u(t, x) does not depend on x, and hence αn(t, x) = αn(t).

The goal of the present work is to give an upper bound for the p-th moment
of the solution of (1) (for p ≥ 2), and a lower bound for its second moment. In
particular, this will show that, if u0(x) does not depend on x, then the solution
u of (1) is weakly ρ-intermittent, in a sense which has been recently introduced
in [4], i.e. γρ(2) > 0 and γρ(p) <∞ for all p ≥ 2, where

γρ(p) = lim sup
t→∞

1

tρ
logE|u(t, x)|p

is a modified Lyapunov exponent (which does not depend on x), and

ρ =
2Hβ − α
β − α

. (8)
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As a by-product, we obtain that the necessary and sufficient condition for
the existence of the solution is α < β. Note that this condition is equivalent to

Iβ(µ) :=

∫
Rd

(
1

1 + |ξ|2

)β/2
µ(dξ) <∞ (9)

with µ(dξ) = cα,d|ξ|−d+αdξ, which is encountered in the study of equations with
white noise in time. When β = 2, (9) is called Dalang’s condition (see [10]). (If
β/2 = k was a positive integer, (9) would coincide with condition (3.3) of [11].)

In the case β = 2, a lower bound for the p-the moment of the solution has
been obtained in the recent preprint [14], for the equation interpreted in the
Skorohod sense (as in the present paper), and also in the Stratonovich sense.
The method of [14] is based on a Feynman-Kac (FK) type representation for
the moments of the solution. A similar approach may work in the case β < 2, as
this type of FK representations might still hold for the solution of the fractional
heat equation, under some additional constraints on the parameters H and α of
the noise. (This problem was considered in [8] for a noise with spatial covariance
f(x) =

∏n
i=1 |xi|2Hi−2 with Hi ∈ ( 1

2 , 1).) We do not investigate this problem
here.

2 The result

The goal of the present article is to prove the following result.

Theorem 2.1. The necessary and sufficient condition for equation (1) to have
a mild solution is α < β. If the solution u = {u(t, x); t ≥ 0, x ∈ Rd} exists, then
for any p ≥ 2, for any x ∈ Rd and for any t > 0 such that pt2H−α/β > t1

E|u(t, x)|p ≤ bp exp(C1p
(2β−α)/(β−α)tρ)

and for any x ∈ Rd and for any t > t2,

E|u(t, x)|2 ≥ a2 exp(C2t
ρ),

where ρ is given by (8), a, b are the constants given by (2), and t1, t2, C1, C2 are
some positive constants depending on d, α, β and H.

We suspect that the inequalities given by Theorem 2.1 cannot be improved,
except for possibly different constants C1 and C2. This problem is not investi-
gated in the present article.

Before giving the proof, we recall from [5] that

αn(t, x) = αnH

∫
[0,t]2n

n∏
j=1

|tj − sj |2H−2ψn(t, s)dtds (10)

where

ψn(t, s) =

∫
R2nd

n∏
j=1

|xj−yj |−αf̃n(t1, x1, . . . , tn, xn, t, x)f̃n(s1, y1, . . . , sn, yn, t, x)dxdy
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and we denote t = (t1, . . . , tn), s = (s1, . . . , sn) with ti, si ∈ [0, t] and x =
(x1, . . . , xn), y = (y1, . . . , yn) with xi, yi ∈ Rd.

Note that the Fourier transform of G(t, ·) is given by:

FG(t, ·)(ξ) :=

∫
Rd
e−iξ·xG(t, x)dx = exp(−t|ξ|β), ξ ∈ Rd (11)

where | · | denotes the Euclidean norm in Rd. Recall that for any ϕ,ψ ∈ L1(Rd),∫
Rd

∫
Rd
ϕ(x)ψ(y)|x− y|−αdxdy = cα,d

∫
Rd
Fϕ(ξ)Fψ(ξ)|ξ|−d+αdξ (12)

where Fϕ is the Fourier transform of ϕ, cα,d = (2π)−dCα,d and Cα,d is the
constant given by (21) (see Appendix A). This identity can be extended to
functions ϕ,ψ ∈ L1(Rnd):∫

Rnd

∫
Rnd

ϕ(x)ψ(y)

n∏
j=1

|xj − yj |−αdxdy = (13)

cnα,d

∫
Rnd
Fϕ(ξ1, . . . , ξn)Fψ(ξ1, . . . , ξn)

n∏
j=1

|ξj |−d+αdξ1 . . . ξn.

We will use the following elementary inequality.

Lemma 2.2. For any t > 0 and η ∈ Rd∫
Rd
e−t|ξ|

β

|ξ − η|−d+αdξ ≤ Kd,α,βt
−α/β

where

Kd,α,β := sup
η∈Rd

∫
Rd

1

1 + |ξ − η|β
|ξ|−d+αdξ.

Proof: Using the change of variable z = t1/β(η − ξ), we have:∫
Rd
e−t|ξ|

β

|ξ − η|−d+αdξ = t−α/β
∫
Rd
e−|z−t

1/βη|β |z|−d+αdz.

The result follows using the inequality e−x ≤ 1/(1 + x) for x > 0. �

Proof of Theorem 2.1: Step 1. (Sufficiency and upper bound for the second
moment) Suppose that α < β. We will prove that the series (7) converges, by
providing upper bounds for ψn(t, s) and αn(t, x).

By the Cauchy-Schwarz inequality, ψn(t, s) ≤ ψn(t, t)1/2ψn(s, s)1/2. So it
is enough to consider the case t = s. Let uj = tσ(j+1) − tσ(j) where σ is a
permutation of {1, . . . , n} such that tσ(1) < . . . < tσ(n) and tσ(n+1) = t. Using
(5), (11) and (13), and arguing as in the proof of Lemma 3.2 of [3], we obtain:

ψn(t, t) ≤ b2cnα,d
∫
Rd
dη1 exp(−u1|η1|β)|η1|−d+α

∫
Rd
dη2 exp(−u2|η2|β)|η2−η1|−d+α
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. . .

∫
Rd
dηn exp(−un|ηn|β)|ηn − ηn−1|−d+α.

(Since Lemma 3.2 of [3] refers to the wave equation, the argument has to be
adjusted by replacing the Fourier transform FGw(t, ·)(ξ) = sin(t|ξ|)/|ξ| of the
fundamental solution Gw of the wave equation by (11).) By Lemma 2.2, it
follows that:

ψn(t, t) ≤ b2cnα,dKn
d,α,β(u1 . . . un)−α/β .

By inequality (26) (Appendix A), Kd,α,β ≤ Id,α,β , where

Id,α,β :=

∫
Rd

(
1

1 + |ξ|2

)β/2
|ξ|−d+αdξ =

(2π)dcdΓ((β − α)/2)Γ(α/2)

2Γ(β/2)

(see relation (24) and Remark A.3, Appendix A). Hence,

ψn(t, s) ≤ b2Cnd,α,β [β(t)β(s)]−α/(2β)

where β(t) = u1 . . . un, β(s) is defined similarly, and Cd,α,β > 0 is a constant
depending on d, α, β. Similarly to the proof of Proposition 3.6 of [5], we have:

αn(t, x) ≤ b2Cnd,α,β,H(n!)α/βtn(2H−α/β), (14)

where Cd,α,β,H > 0 is a constant depending on d, α, β,H. (The only change
compared to the proof mentioned above is the fact that 2β was equal to 4 in [5].
These authors worked with a different parametrization: their d − α is denoted
here by α.)

Since α < β, it follows that the series (7) converges and

E|u(t, x)|2 =
∑
n≥0

1

n!
αn(t, x) ≤ b2

∑
n≥0

Cnd,α,β,H
(n!)1−α/β

tn(2H−α/β) ≤ b2 exp(C0t
ρ),

for all t > t0, where C0 > 0 and t0 > 0 are constants depending in d, α, β,H.
We used the fact that for any a > 0 and x > 0,∑

n≥0

xn

(n!)a
≤ exp(c0x

1/a) for all x > x0, (15)

where x0 > 0 and c0 > 0 are some constants depending on a (see e.g. Lemma
A.1 of [4]).

Step 2. (Upper bound for the p-th moment) Note that u(t, x) =
∑
n≥0 Jn(t, x)

in L2(Ω), where Jn(t, x) lies in the n-th order Wiener chaos Hn associated to
the Gaussian process W (see [18]). Hence,

E|u(t, x)|2 =
∑
n≥0

E|Jn(t, x)|2 =
∑
n≥0

1

n!
αn(t, x).
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We denote by ‖ · ‖p the Lp(Ω)-norm. We use the fact that for a fixed Wiener
chaos Hn, the ‖ · ‖p are equivalent, for all p ≥ 2 (see the last line of page 62 of
[18] with q = p and p = 2). Hence,

‖Jn(t, x)‖p ≤ (p− 1)n/2‖Jn(t, x)‖2 = (p− 1)n/2
(

1

n!
αn(t, x)

)1/2

≤ b[(p− 1)Cd,α,β,H ]n/2
1

(n!)(β−α)/(2β)
tn(2Hβ−α)/(2β)

using (14) for the last inequality. Using Minkowski’s inequality for integrals (see
Appendix A.1 of [20]) and inequality (15), we obtain that:

‖u(t, x)‖p ≤
∑
n≥0

‖Jn(t, x)‖p ≤ b exp(C1(p− 1)β/(β−α)tρ)

if pt2H−α/β > t1, where the constants C1 > 0 and t1 > 0 depend on d, α, β,H.

Step 3. (Necessity and lower bound for the second moment) Suppose that
equation (1) has a mild solution u, i.e. the series (7) converges. In particular,

∞ > α1(t, x) ≥ a2αH

∫
[0,t]2

∫
R2d

|r − s|2H−s|y − z|−αG(s, y)G(r, z)dydzdrds

= a2αHcα,d

∫
Rd

(∫ t

0

∫ t

0

|r − s|2H−2e−(r+s)|ξ|
β

drds

)
|ξ|−d+αdξ

≥ a2αHcα,dcH

∫
Rd

(
1

1/t+ |ξ|β

)2H

|ξ|−d+αdξ,

where we used (12) for the equality and Theorem 3.1 of [2] for the last inequality.
From here, we infer that

α < 2Hβ. (16)

(In particular, this implies that α < 2β since H < 1.)
Note that one can replace ψn(t, s) by ψn(te− t, te− s) in the definition (10)

of αn(t, x), where e = (1, . . . , 1) ∈ Rn. By Lemma 2.2 of [1], we have:

ψn(te−t, te−s) = E

w(t− t∗, x+X1
t∗)w(t− s∗, x+X2

s∗)

n∏
j=1

|X1
tj −X

2
sj |
−α

 ,
where t∗ = max{t1, . . . , tn}, s∗ = max{s1, . . . , sn} and X1, X2 are two indepen-
dent copies of the Lévy process X = (Xt)t≥0 mentioned in the Introduction.
(Lemma 2.2 of [1] was proved for β = 2. The same proof is valid for β < 2,
the only change required for this case being to replace the fundamental solution
pt(x) = (2πt)−d/2 exp(−|x|2/(2t)) of the heat equation by G(t, x) given by (4).)

Due to (5), it follows that

a2Mn(t) ≤ αn(t, x) ≤ b2Mn(t) (17)
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where

Mn(t) := E

αnH ∫
[0,t]2n

n∏
j=1

|tj − sj |2H−2
n∏
j=1

|X1
tj −X

2
sj |
−αdtds

 = E(L(t)n)

and L(t) is a random variable defined by:

L(t) := αH

∫ t

0

∫ t

0

|r − s|2H−2|X1
r −X2

s |−αdrds.

To prove that L(t) is finite a.s., we show that its mean is finite. Note that

X1
r −X2

s
d
= Xr+s

d
= (r + s)1/βX1, and hence

E[L(t)] = αHCd,α,β

∫ t

0

∫ t

0

|r − s|2H−2(r + s)−α/βdrds,

where

Cd,α,β := E|X1|−α =
cdCα,d
β

Γ(α/β).

(see (28), Appendix A). Due to (16), it follows that E[L(t)] <∞.
By (17), we have:

a2E(eL(t)) ≤ E|u(t, x)|2 =
∑
n≥0

1

n!
αn(t, x) ≤ b2E(eL(t)). (18)

We consider also the random variable

ζ(t) :=

∫ t

0

∫ t

0

|X1
r −X2

s |−αdrds.

Since |r − s|2H−2 ≥ (2t)2H−2 for any r, s ∈ [0, t], L(t) ≥ βHt
2H−2ζ(t), where

βH = αH22H−2. Hence ζ(t) is finite a.s.
By the self-similarity (of index 1/β) of the processes X1 and X2, it follows

that for any t > 0 and c > 0,

ζ(t)
d
= c(2β−α)/βζ(t/c).

In particular, for c = t−(2H−2)β/(2β−α), we obtain that

t2H−2ζ(t)
d
= ζ(tδ), with δ =

2Hβ − α
2β − α

and for c = t, we obtain that ζ(t)
d
= t(2β−α)/βζ(1). Hence,

E(eL(t)) ≥ E(eβHt
2H−2ζ(t)) = E(eβHζ(t

δ)). (19)
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The asymptotic behavior of the moments of ζ(t) was investigated in [6],
under the condition α < 2β. More precisely, under this condition, by relation
(2.3) of [6], we know that:

lim
n→∞

1

n
log

{
1

(n!)α/β
E[ζ(1)n]

}
= log

(
2β

2β − α

)(2β−α)/β

+ log γ,

where γ > 0 is a constant depending on d, α, β. Hence, there exists some n1 ≥ 1
such that for all n ≥ n1, E[ζ(1)n] ≥ cn(n!)α/β , where c > 0 is a constant
depending on d, α, β. Consequently, for any t > 0,

E[ζ(t)n] ≥ cntn(2β−α)/β(n!)α/β for all n ≥ n1.

Hence, for any θ > 0,

E(eθζ(t)) =
∑
n≥0

1

n!
θnE[ζ(t)n] ≥

∑
n≥n1

1

(n!)1−α/β
θncntn(2β−α)/β . (20)

Using (18), (19) and (20), we obtain that:

∞ > E|u(t, x)|2 ≥ a2E(eL(t)) ≥ a2E
(
eβHζ(t

δ)
)
≥ a2

∑
n≥n1

βnHc
ntn(2Hβ−α)/β

(n!)1−α/β
.

This implies that α < β. For any x > 0 and h ∈ (0, 1), we note that

Eh(x) :=
∑
n≥0

xn

(n!)h
≥

∑
n≥0

(x1/h)n

n!

h

= exp(hx1/h).

We denote xt = θct(2β−α)/β and h = 1 − α/β. Writing the last sum in (20) as
the sum for all terms n ≥ 0, minus the sum St with terms n ≤ n1, we see that
for all θ > 0, and for all t ≥ t0,

E(eθζ(t)) ≥ Eh(xt)− St ≥ exp(hx
1/h
t )− St ≥

1

2
exp(hx

1/h
t )

≥ exp(c0θ
β/(β−α)t(2β−α)/(β−α)),

where c0 = hc1/h and t0 > 0 is a constant depending on θ, α, β. Using this last
inequality with θ = βH and tδ instead of t, we obtain that:

E|u(t, x)|2 ≥ a2E
(
eβHζ(t

δ)
)
≥ a2 exp(C2t

ρ),

where C2 = c0β
β/(β−α)
H depends on d, α, β,H. �
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A Some useful identities

In this section, we give a result which was used in the proof of Theorem 2.1 for
finding an upper bound for ψn(t, t). This result may be known, but we were
not able to find a reference. We state it in a general context.

Following Definition 5.1 of [17], we say that a function f : Rd → [0,∞]
is a kernel of positive type if it is locally integrable and its Fourier transform
in S ′(Rd) is a function g which is non-negative almost everywhere. Here we
denote by S ′(Rd) the dual of the space S(Rd) of rapidly decreasing, infinitely
differentiable functions on Rd.

The Riesz kernel defined by f(x) = |x|−α for x ∈ Rd\{0} and f(0) = ∞
(with α ∈ (0, d)), is a kernel of positive type. Its Fourier transform in S ′(Rd) is
given by g(ξ) = Cα,d|ξ|−(d−α) where

Cα,d = π−d/22−α
Γ((d− α)/2)

Γ(α/2)
(21)

(see Lemma 1, page 117 of [20]).
Let f be a continuous symmetric kernel of positive type such that f(x) <∞

if and only if x 6= 0. By Lemma 5.6 of [17], for any Borel probability measures
µ and ν on Rd, we have:∫

Rd

∫
Rd
f(x− y)µ(dx)ν(dy) =

1

(2π)d

∫
Rd
Fµ(ξ)Fν(ξ)g(ξ)dξ,

where Fµ,Fν denote the Fourier transforms of µ, ν. In particular, if µ(dx) =
ϕ(x)dx and ν(dy) = ψ(y)dy for some density functions ϕ,ψ in Rd, then∫

Rd

∫
Rd
f(x− y)ϕ(x)ψ(y)dxdy =

1

(2π)d

∫
Rd
Fϕ(ξ)Fψ(ξ)g(ξ)dξ. (22)

This relation holds for arbitrary non-negative functions ϕ,ψ ∈ L1(Rd). (To see
this, we consider the normalized functions ϕ/‖ϕ‖1 and ψ/‖ψ‖1, where ‖ · ‖1
denotes the L1(Rd)-norm.) Using the decomposition ϕ = ϕ+ − ϕ− with non-
negative functions ϕ+, ϕ−, we see that (22) holds for any functions ϕ,ψ ∈
L1(Rd). In fact, (22) holds for any functions ϕ,ψ ∈ L1

C(Rd), replacing ψ(y) by

its conjugate ψ(y) on the left-hand side. (To see this, we write ϕ = ϕ1 + iϕ2

where ϕ1, ϕ2 are the real and imaginary parts of ϕ.)
We consider the Bessel kernel (in Rd) of order β > 0:

Gd,β(x) =
1

Γ(β/2)

∫ ∞
0

uβ/2−1e−u
1

(4πu)d/2
e−|x|

2/(4u)du.

Note that Gd,β is a density function (see Remark A.3 below) and

FGd,β(ξ) =

(
1

1 + |ξ|2

)β/2
, ξ ∈ Rd. (23)

Moreover, Gd,α ∗Gd,β = Gd,α+β for any α, β > 0 (see pages 130-135 of [20]).
The following result is an extension of relations (3.4) and (3.5) of [11] to the

case of arbitrary β > 0.
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Lemma A.1. Let f be a continuous symmetric kernel of positive type such that
f(x) < ∞ if and only if x 6= 0. Let µ(dξ) = (2π)−dg(ξ)dξ, where g is the
Fourier transform of f in S ′(Rd). Let β > 0 be arbitrary. Then∫

Rd
Gd,β(x)f(x)dx =

∫
Rd

(
1

1 + |ξ|2

)β/2
µ(dξ) := Iβ(µ). (24)

If Iβ(µ) <∞, then, for any a ∈ Rd,∫
Rd
eia·xGd,β(x)f(x)dx =

∫
Rd

(
1

1 + |ξ − a|2

)β/2
µ(dξ). (25)

Proof: Relation (24) follows from (22) with ϕ = ψ = Gd,β/2. On the left-hand
side (LHS), we use the fact that Gd,β/2 ∗Gd,β/2 = Gd,β . On the right-hand side
(RHS), we use (23) (with β/2 instead of β).

To prove (25), we apply (22) to the complex-valued functions:

ϕ(x) = ψ(x) = eia·xGd,β/2(x).

The term on the LHS is∫
Rd

∫
Rd
eia·(x−y)Gd,β/2(x)Gd,β/2(y)f(x− y)dxdy =

∫
Rd
eia·xf(x)Gd,β(x)dx,

using Fubini’s theorem. The application of Fubini’s theorem is justified since∫
Rd

∫
Rd
|eia·(x−y)Gd,β/2(x)Gd,β/2(y)f(x− y)|dxdy =

∫
Rd
Gd,β(x)f(x)dx <∞.

For the term on the RHS, we use the fact that

Fϕ(ξ) =

∫
Rd
e−i(ξ−a)·xGd,β/2(x)dx = FGd,β/2(ξ − a) =

(
1

1 + |ξ − a|2

)β/4
.

�

Corollary A.2. Let (f, µ) be as in Lemma A.1 and β > 0 be arbitrary. Assume
that Iβ(µ) <∞. Then

sup
a∈Rd

∫
Rd

(
1

1 + |ξ − a|2

)β/2
µ(dξ) = Iβ(µ).

Consequently,

sup
a∈Rd

∫
Rd

1

1 + |ξ − a|β
µ(dξ) ≤ Iβ(µ). (26)

Proof: The fact that Iβ(µ) is smaller than the supremum is obvious. To prove
the other inequality, we take absolute values on both sides of (25) and we use
the fact that |

∫
· · · | ≤

∫
| · · · |. For the last statement, we use the fact that

(1 + |ξ − a|2)β/2 ≤ 1 + |ξ − a|β , since β/2 ∈ (0, 1] and the following inequality
holds: (a+ b)p ≤ ap + bp for any a, b > 0 and p ∈ (0, 1]. �
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Remark A.3. The Bessel kernel Gd,β(x) arises in statistics as the density of
the random vector X given by the following hierarchical model:

X|U = u ∼ Nd(0, 2uI) U ∼ Gamma(β/2, 1)

where Nd(0, 2uI) denotes the d-dimensional normal distribution with covariance
matrix 2uI, I being the identity matrix. Hence, the term on the LHS of (24) is∫

Rd
Gd,β(x)f(x)dx = E[f(X)] =

1

Γ(β/2)

∫ ∞
0

uβ/2−1e−uE[f(X)|U = u]du.

This can be computed explicitly if f(x) = |x|−α with α ∈ (0, d). First, note
that if Z ∼ Nd(0, 2tI), then its negative moment of order −α is:

E(|Z|−α) =
1

2
Cα,dcdΓ(α/2)t−α/2 (27)

where cd = 2πd/2/Γ(d/2) is the surface area of the unit sphere in Rd. To see
this, we use the fact that Ff(ξ) = Cα,d|ξ|−d+αdξ in S ′(Rd). Hence,

E(|Z|−α) =

∫
Rd
|x|−α 1

(4πt)d/2
e−|x|

2/(4t)dx = Cα,d

∫
Rd
|ξ|−d+αe−t|ξ|

2

dξ

and (27) follows by passing to the polar coordinates. We obtain that∫
Rd
Gd,β |x|−αdx =

cα,dcdΓ(α/2)

2Γ(β/2)

∫ ∞
0

u(β−α)/2−1e−udu =
Cα,dcdΓ((β − α)/2)Γ(α/2)

2Γ(β/2)
.

(Note that the integral is finite if and only if α < β.)

Remark A.4. A relation similar to (27) for stable random variables was used
in the proof of Theorem 2.1 (Step 3). More precisely, if X is a d-dimensional
random variable with a symmetric stable distribution with index β ∈ (0, 2) (i.e.

E(e−iξ·X) = e−|ξ|
β

for all ξ ∈ Rd), then

E(|X|−α) =
1

β
Cα,dcdΓ(α/β). (28)

We include the proof of (28) for the sake of completeness. We denote by
fX the density of X. Recall that Ff(ξ) = Cα,d|ξ|−d+αdξ in S ′(Rd) i.e. for any
ϕ ∈ S(Rd), ∫

Rd
|x|−αϕ(x)dx = Cα,d

∫
Rd
|ξ|−d+αFϕ(ξ)dξ.

Using a regularization technique, one can show that the previous relation also
holds for ϕ = fX , since FfX(ξ)→ 0 rapidly as |ξ| → ∞ and fX is bounded and
infinitely differentiable (see page 13 of [21]). Hence,

E(|X|−α) =

∫
Rd
|x|−(d−α)fX(x)dx = Cα,d

∫
Rd
|ξ|−d+αe−|ξ|

β

dξ.

12



We now pass to the polar coordinates ξ = rz with r > 0 and z ∈ Sd, where Sd
is the unit sphere in Rd. Let cd be the area of Sd. We have

E(|X|−α) = Cα,dcd

∫ ∞
0

r−d+αe−r
β

rd−1dr

and relation (28) follows using the change of variable s = rβ .
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