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Abstract

The Pareto distribution, or power-law distribution, has long been used to

model phenomena in many fields, including wildfire sizes, earthquake seismic

moments and stock price changes. Recent observations have brought the fit

of the Pareto into question, however, particularly in the upper tail where it

often overestimates the frequency of the largest events. This paper proposes

a graphical self-similarity test specifically designed to assess whether a Pareto

distribution fits better than a tapered Pareto or another alternative. Unlike

some model selection methods, this graphical test provides the advantage of

highlighting where the model fits well and where it breaks down. Specifically,

for data that seem to be better modeled by the tapered Pareto or other alter-

natives, the test assesses the degree of local self-similarity at each value where

the test is computed. The basic properties of the graphical test and its imple-

mentation are discussed, and applications of the test to seismological, wildfire,

and financial data are considered.

Keywords: Goodness-of-fit testing, Pareto distribution, power-law, self-similarity,

tapered Pareto distribution.
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1 Introduction

1.1 Characterizing distributions of variables exhibiting seem-

ingly power-law behavior

Many phenomena observed in a wide variety of scientific disciplines tend to exhibit

heavy tails and are commonly modeled using power-law distributions such as the

Pareto (see e.g. ch.9 of Johnson et al. 2005 for a review). However, recent work in

several fields has shown that alternative distributions may be more appropriate, as in

many cases the Pareto tends to overestimate the density in the upper tail. In seismol-

ogy, for instance, earthquake sizes are typically measured in terms of scalar seismic

moments, which have been commonly modeled to follow the Pareto distribution; this

corresponds to the exponential Gutenberg-Richter law in terms of earthquake magni-

tudes (Vere-Jones 1992, Kagan 1994, Utsu 1999). However, several studies have shown

that for many local and global catalogs, the tapered Pareto distribution provides sig-

nificantly improved fit to the seismic moment distribution (Kagan 1993, Jackson and

Kagan 1999, Kagan and Schoenberg 2001, Vere-Jones et al. 2001). In addition, earth-

quake inter-event times and distances have been conventionally modeled as Pareto

distributed (Ogata 1998, Utsu 1999), but perhaps may also be better described by

the tapered Pareto distribution (Schoenberg et al. 2008). Similarly, wildfire sizes

have been commonly modeled as following the Pareto distribution, but were shown in

Cumming (2001) and Schoenberg et al. (2003) to follow a truncated or tapered Pareto

distribution significantly more closely. In finance, normalized stock returns have long

been posited to exhibit power-law behavior consistent with the Pareto distribution,

but recently Malevergne et al. (2005, 2006) and Pisarenko and Sornette (2006) have

shown that the upper tail of stock returns decay significantly more quickly than the
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power-law would suggest, though more slowly than some other heavy-tailed distri-

butions such as the stretched exponential. In this paper, we investigate whether the

changes in stock prices can also be described using the tapered Pareto distribution.

Because of the extensive range of applications to which this model selection problem

arises, it is of interest to develop a graphical tool designed to examine the fits of these

distributions and to aid in the discrimination between competing models for these

types of heavy-tailed distributions.

In this paper, we propose a graphical test that can be used to characterize whether a

distribution is well described by the Pareto distribution or if it more closely follows an

alternative such as the tapered Pareto distribution. In particular, the test will focus

in detail on a special property of the Pareto distribution and power-law distributions

in general: self-similarity. By examining this property in a graphical fashion, one may

visualize trends in the data in a convenient way, evaluate the level of self-similarity

and fractality in the data, and determine for what ranges a particular heavy-tailed

model fits well and where it breaks down.

1.2 Model Selection

1.2.1 Pareto Distribution

Vilfredo Pareto originally introduced the power-law or Pareto distribution to describe

the differential allocation of wealth (Pareto 1897). Since that time, a host of other

observable phenomena have been characterized as following a Pareto distribution (see

e.g. Mandelbrot 1963, Vere-Jones 1992, Utsu 1999). The key feature of the Pareto

distribution is its extremely heavy tail. Another defining property of power-law dis-
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tributions is that they exhibit self-similarity consistent with certain fractal and diffu-

sion processes. The probability density function of the Pareto distribution is given by

f(x) = βαβ/xβ+1, α ≤ x <∞, where α > 0 is a scale parameter and β > 0 serves as a

shape parameter. The cumulative distribution function is given by F (x) = 1−(α/x)β .

Thus the logarithm of the survival function is a linear function of log(x), with slope β.

The tails of the Pareto distribution are very heavy, and the relatively high frequency of

extremely large events implied by the fitted Pareto distribution is often contradicted

by the data and in some cases by basic physical principles (Knopoff and Kagan 1977;

Sornette and Sornette 1999). To provide a more sensible and better-fitting alternative,

several other distributions with less heavy tails have been suggested, such as the

lognormal, half-normal, exponential, Frechet, truncated Pareto and tapered Pareto,

among others (see e.g. Kagan and Schoenberg 2001). Figure 1(a) shows that for

the sizes of Los Angeles County wildfires, the Pareto distribution (represented by

the dashed line) overestimates the frequency of the largest events. Schoenberg et al.

(2003) have shown that the tapered Pareto distribution (represented by the dotted-

dashed curve) provides a much better fit for these data. Similarly, superior fit appears

to be offered by the tapered Pareto distribution to the inter-event times of Southern

California earthquakes, as shown in Figure 1(b). The wildfire data in Figure 1(a)

are based on fires burning at least 0.405 sq. kilometers (100 acres) in Los Angeles

County from 1950-2000, recorded by the Los Angeles County Department of Public

Works and the Los Angeles County Fire Department. For further details about this

data set as well as images of the centroid locations of these wildfires, see Peng et al.

(2005). The earthquake data in Figure 1(b) were compiled by the Southern California

Earthquake Center (SCEC) and consist of the 6,796 earthquakes of magnitude at least

3.0 occurring between January 1, 1984 and June 17, 2004 in a rectangular area around
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Los Angeles, California, between longitudes -122 and -114 and latitudes 32 and 37

(approximately 733km by 556km).

1.2.2 Tapered Pareto Distribution

The first person to notice the shortcomings of the upper tail of the Pareto distribu-

tion was apparently Vilfredo Pareto himself, who suggested a modified alternative

now known as the tapered Pareto distribution (Pareto 1897). As Figure 1 indicates,

the tapered Pareto behaves similarly to the Pareto in the lower quantiles, but then

decays more quickly (in fact, exponentially) in the upper tail. The probability density

function of the tapered Pareto distribution is given by

f(x) =

(
β

x
+

1

θ

)(α
x

)β
exp

(
α− x
θ

)
, α ≤ x <∞

and the cumulative distribution function is given by

F (x) = 1−
(α
x

)β
exp

(
α− x
θ

)
.

The parameter θ governs the shape of the upper tail. As θ approaches infinity,

the tapered Pareto approaches the Pareto distribution, and as β approaches 0, the

tapered Pareto approaches the exponential distribution. For events following the

tapered Pareto distribution, the survival function plotted on a log-log scale appears

nearly linear for smaller events, but gradually decays in an exponential fashion, as

seen in Figure 1.
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1.2.3 Existing model selection methods

Though there are several methods with which one can distiguish between two distri-

butions (see e.g. Burnham et al. 2002), this research aims to capture elements that

the typical test might not. Since the Pareto distribution is nested within the tapered

Pareto, the likelihood ratio statistic LR = sup{L0}/sup{L1} provides an optimal

and asymptotically efficient method to select the appropriate distribution for a given

set of data (see e.g. Bickel and Doksum 2007). Other common goodness of fit meth-

ods include Akaike’s information criterion or AIC (Akaike 1974) and the Bayesian

information criterion or BIC (Schwarz 1978) which measure the tradeoff between bias

and variance when fitting a model by imposing penalties for additional parameters.

These are given by AIC = −2 ln(L) + 2k and BIC = −2 ln(L) + k ln(n), where

each statistic aims to prevent overfitting by penalizing the model for fitting more free

parameters. Residual analyses such as comparing mean squared errors or sums of

squared residuals and cross-validation techniques (see e.g. Stone 1977, Geisser 1993)

are other common model selection methods that may be used to distinguish between

the Pareto and tapered Pareto, but like likelihood statistics, their utility in practice

may be limited by the fact that they offer only a single numerical summary of the

overall fit.

A goal of this paper is to explore graphical tests that allow one to compare features

of the empirical distribution of the data to those of a model such as the Pareto dis-

tribution, and also offer a means to assess for what parts of the distribution the

Pareto model might fit well and where it might break down. In particular, the pro-

posed graphical representation examines the property of self-similarity, which is a

characteristic of the Pareto distribution, in detail.
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1.3 Self-similarity of Pareto distribution

Mandelbrot (1967) very simply described self-similarity as an instance where “each

portion can be considered a reduced-scale image of the whole.” The self-similarity or

fractal property of the Pareto distribution lies in the fact that the survival function,

as exhibited in Figure 1, is linear when plotted on log-log scale. As a result, the shape

of the density function (on log-log scale) looks essentially the same at all scales. In

other words, the density at any value x, relative to the density at any other value y,

only depends on the ratio of x to y and not the values themselves. The slope of the log

survival function is the shape parameter β, which is often called the fractal dimension

of the data. The test statistic constructed in this paper will focus extensively on this

self-similarity property of the Pareto distribution.

2 Graphical self-similarity test

2.1 Test statistic for local self-similarity

2.1.1 Ratio of densities under the Pareto null hypothesis

The self-similarity of the Pareto distribution stems from the fact that the ratio of the

Pareto density for any two given values of x is given by

f(x)

f(kx)
= kβ+1, ∀x, k > 0,
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which is independent of the value of x. One may thus standardize this ratio, for any

x and any k, yielding

gk(x) :=
1

k

(
f(x)

f(kx)

) 1
β+1

= 1, ∀x, k > 0.

This suggests estimating gk(x) given data and comparing the result with unity as a

means of obtaining a representation of the self-similarity of the data for each value of

x and k. That is, for a given data set of independent observations {x1, x2, ..., xn}, we

estimate gk(xi) for each xi, k > 0 (i = 1, . . . , n) and interpret the result, in relation

to unity, as a measure of the local self-similarity of the data.

2.1.2 Ratio of densities under the tapered Pareto null hypothesis

If instead one seeks to test data against a tapered Pareto null hypothesis, it is clear

that the corresponding ratio of tapered Pareto densities will be dependent on x be-

cause of the lack of self-similarity of this distribution:

f(x)

f(kx)
= kβ+1

(
βθ + x

βθ + kx

)
exp

(
x(k − 1)

θ

)
, ∀x, k > 0.

Therefore, the corresponding value of gk(x), for tapered Pareto distributed random

variables, is given by

gk(x) =
1

k

(
f(x)

f(kx)

) 1
β+1

=

(
βθ + x

βθ + kx

) 1
β+1

exp

(
x(k − 1)

θ(β + 1)

)
, ∀x, k > 0,

and because of the exponential component of the tapered Pareto distribution, gk(x)

depends on both x and k. This suggests estimating the local self-similarity gk(x)

using independent observations {x1, x2, ..., xn}, and assessing its agreement with the
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local self-similarity for the tapered Pareto distribution.

2.2 Estimating local self-similarity

A natural estimate of gk(x) is given by

ĝk(x) =
1

k

(
f̂(x)

f̂(kx)

) 1

β̂+1

, ∀x, k > 0,

where f̂ is a non-parametric density estimate, and β̂ is an estimate of the parameter

β. For instance, one may obtain non-parametric density estimate f̂(x) using kernel

density estimation and estimate β̂ by maximum likelihood, as described briefly below,

in order to obtain a local self-similarity test statistic ĝk(x) for any positive values of

x and k.

2.2.1 Density estimation

The list of useful non-parametric density estimators is extensive (see e.g. Silverman,

1986). The standard kernel density estimator takes the form

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

where n is the sample size of the data, h is the bandwidth, K is a kernel function and

{x1, . . . , xn} are the observations. A particularly important determination in kernel

density estimation is the choice of bandwidth. Because a fixed (or global) bandwidth

may result in undersmoothing areas where data are sparse and oversmoothing areas

where data are concentrated, variable bandwidth methods may be especially appro-

priate for the purpose of estimating a heavy tailed distribution, to account for the
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high degree of irregularity in the data in terms of the distance between sequential

ordered observations (see e.g. Silverman, 1986).

In particular, one could apply the commonly used two-stage adaptive kernel method

(see e.g. Abramson 1982, Silverman 1986, Fox 1990, Salgado-Ugarte et al. 1993),

where the bandwidth varies with each observation in the data. The first stage in this

method is to estimate a pilot density f̂(xi) for each observation in the data using,

for instance, a kernel estimator with fixed bandwidth. To select an appropriate pi-

lot bandwidth, one could use Silverman’s rule of thumb (Silverman 1986) or Scott’s

variation of Silverman’s rule (Scott 1992). A host of other alternatives such as the

Sheather-Jones direct plug-in approach (Sheather and Jones, 1991) are also appropri-

ate. Using these pilot density estimates f̂(xi), bandwidth adjustment factors λi can

be calculated for each observation in the data as follows:

λi =

(
G

f̂(xi)

)0.5

,

where G is the geometric mean of the initial fixed bandwidth density estimates f̂(xi),

i = 1, . . . , n. In the second stage of the estimation, the variable bandwidths and

resulting kernel density estimates can be calculated as follows:

f̂A(x) =
1

nh

n∑
i=1

1

λi
K

(
x− xi
λih

)
,

where h is the fixed bandwidth used in the first stage of the density estimation. The

variance of this particular density estimate is given by

V
(
f̂A(x)

)
=

f(x)

nhλ(x)

∫ ∞
−∞

[K(s)]2,
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where K(s) represents the kernel function (see e.g. Scott 1992).

Note that the choice of kernel function (Gaussian, Epanechnikov, etc.) may also be

influential in determining the quality and variability of the density estimates. Fur-

ther, because data modeled by the Pareto distribution generally achieve a maximum

density at some minimum boundary of the data, one may consider using reflection

across this lower boundary (see e.g. Silverman 1986). For heavy-tailed distributions

with sparse data in the upper tail, the variance of the density estimates generally

increases with the value of x (as the concentration of data decreases). Thus, obtain-

ing a density estimate with low variance is particularly important for heavy-tailed

distributions.

2.2.2 Maximum likelihood estimation

The fractal dimension parameter, β, used in the local self-similarity test statistic

may be estimated using maximum likelihood. Under a Pareto null hypothesis, the

maximum likelihood estimate of the shape parameter or fractal exponent β has a

closed form solution given by

β̂ =
n∑n

i=1 log(xi/α̂)
,

where n is the sample size of the data and α̂ = mini xi is the maximum likelihood

estimate of the scale parameter α. The variance of β̂ also has a closed form solution

(see e.g. Johnson et al. 1994) :

V (β̂) =
n2β2

(n− 2)2(n− 3)
.
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For a tapered Pareto null hypothesis, for example, the estimate of β has no closed

form solution and must be solved by optimizing the following log-likelihood function

with respect to both β̂ and θ̂:

−
n∑
i=1

(
log

(
β̂

xi
+

1

θ̂

))
− β̂n log(α̂) + β̂

n∑
i=1

log(xi)−
α̂n

θ̂
+

1

θ̂

n∑
i=1

xi,

where n is the sample size and α̂ = mini xi is the maximum likelihood estimate of

the scale parameter α. As usual, the variance of tapered Pareto maximum likelihood

estimates can be obtained from the diagonal elements of the inverse Hessian matrix

from the above likelihood function. For other null distributions, parameter estimates

can be calculated in a similar fashion.

2.3 Simulation studies

The performance of the self-similarity test can be assessed graphically using simula-

tions.

Figure 2 illustrates empirical histograms and survival functions along with theoretical

densities and survival functions fit by maximum likelihood for Pareto and tapered

Pareto simulations. The Pareto and tapered Pareto random variables are generated

using inverse transform sampling, using sample sizes of n = 1000 and the parameters

α = 1 and β = 2, as well as θ = 3 for the tapered Pareto simulation. Note that the

difference between the two distributions is extremely difficult to distinguish from the

histograms alone. However, the log survival plots in Figure 2 show some differences

between the two distributions in the upper tail. As expected, the empirical survival

of the Pareto simulation appears rather linear, and thus self-similar, throughout the
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entire range of its survival plot, while the empirical survival of the tapered Pareto

simulation shows some noticeable curvature in the upper tail.

2.3.1 Graphical representation of self-similarity

One may inspect the statistic ĝk(x) for various choices of k and x in order to assess

the degree of self-similarity for a given simulated or real data set. As an illustration,

consider the two Pareto and tapered Pareto simulations shown in Figure 2, and imag-

ine testing them against a Pareto null hypothesis. For each simulated data set, one

may choose equally spaced grid values over the range of x and estimate the density

of each simulation by implementing the two-stage adaptive kernel density estimation

with reflection using a Gaussian kernel and Scott’s rule to estimate the pilot band-

width as described in Section 2.2.

The resulting test statistic ĝk(x) for the Pareto simulation is shown in Figure 3(a).

Most of the values are close to unity, as expected. On the other hand, the test statistic

for the tapered Pareto simulation, represented by Figure 3(b), seems fairly consistent

with the null Pareto distribution up to approximately x = 6, for most values of k.

However, the self-similarity apparently breaks down in the upper tail, for x > 6. This

is to be expected since the values in the tapered Pareto simulation are independently

drawn from a tapered Pareto distribution with θ = 3, and in general the tapering of

the tail in the tapered Pareto distribution becomes especially pronounced for values

larger than θ.
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2.3.2 Inference

In order to evaluate the distribution and power of the test statistic gk(x) under a

given null hypothesis, one may construct m simulated data sets each of n iid random

variables drawn from the desired null distribution. Note that the null distribution

will generally be the Pareto distribution, but as mentioned in Section 2.1, one may

also investigate the same test statistic under the assumption of another null distri-

bution, e.g. the tapered Pareto, Frechet, etc. For each set of simulated data, ĝk(x) is

calculated over the same grid used for the data. For each pixel in the grid of values

for which the test statistic is calculated (i.e. for each x and k), the statistical signifi-

cance of that pixel for the data is determined using the quantile method, simply by

comparing the value of ĝk(x) for the data with those for the simulations.

As an illustration, Figures 4(a) and 4(b) depict the one-sided p-values corresponding

to the local non-self-similarity test ĝ for the Pareto and tapered Pareto simulations

used in Figures 3(a) and 3(b), respectively. A p-value of 0.03, for instance, means

that, for the particular values of x and k in question, gk(x)-ĝk(x) for the simulated

data set is greater than the 97th percentile of gk(x)-ĝk(x) for the m (in this case, 100)

simulations generated from the null Pareto distribution.

As seen in Figure 4(a), the simulation drawn from the Pareto distribution shows few

significant departures from self-similarity, as expected. The tapered Pareto simulation

in Figure 4(b) consists of draws from a tapered Pareto distribution with θ = 3 and

shows significant deviation from the Pareto generally beyond x = 3 for most values

of k as one might expect. Also of note in Figure 4(b) are the nonsignificant values of

ĝk(x) for the largest values of x and for large k. These may be due to the relatively low
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power of the graphical test in the upper tail where very few observations are recorded.

Thus the sample size and choice of method used for density estimation, particularly

the bandwidth, has great influence on the power of the test statistic ĝk(x).

2.4 Comparison to empirical survival function with confi-

dence bounds

An alternative, commonly used method for assessing goodness-of-fit is to compare the

empirical survival function with the proposed (e.g. Pareto) distribution. Confidence

bounds, as depicted in Figures 1 and 2, can be constructed using the binomial distri-

bution, since the empirical cumulative distribution function F̂ (x) can be represented

by A/n, where A is the number of observations less than or equal to x, n is the sample

size, and A ∼ Binomial(n, p = F (x)).

The survival function has an advantage over ĝk(x) in that accurate density estimation

is not necessary for the estimation of the survival function. However, because the sur-

vival function is an aggregate measure, it has comparatively low power at discerning

local departures from self similarity. On the other hand, the test statistic ĝk(x) may

be more powerful at detecting lack of fit locally, i.e. for values of x in a particular

range. An illustration is given below.

As an illustration, Figure 5 shows the empirical survival function and the graphical

test gk(x) applied to a simulated data set consisting of draws from the Pareto dis-

tribution, but with an increased density for 4 ≤ x ≤ 4.5 and a density of zero for

5 ≤ x ≤ 5.5. Note that the survival function, along with 95% confidence bounds,
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does not show any significant lack of fit to the Pareto distribution. The proposed lo-

cal self-similarity test, gk(x), rejects the Pareto distribution in the appropriate range,

particularly for large values of k. The test may thus be useful in detecting local lack

of self-similarity for a particular data set.

Although values of the test statistic ĝk(x) are correlated, the correlations for various

values of x are actually much smaller than the corresponding correlations between

survival function estimates. Table 1 shows the correlations between the test statistic

ĝk(xi) and ĝk(xj) for 100 Pareto simulations generated using the parameters α = 1,

β = 2 and sample size n = 1000, where k = 0.8 and the x values are ten equally-

spaced points between 3 and 12. Meanwhile, Table 2 represents the correlations of

the estimated survival function at the same ten equally spaced values of x for the

same 100 Pareto simulations. Similar results are obtained using other values of fixed

k for the test statistic.

Note that, for the local self-similarity test gk(x), different choices of k result in a

test of differential power depending on the alternative hypothesis in question. If, for

instance, the alternative is that the distribution of a given data set is Pareto except

very locally near a given x, as in the simulated example in Figure 5, then k close to

1 will have optimal power, whereas smaller values of k may yield a more powerful

test in the case where the data in question deviate from self-similarity over a slightly

broader range.

Because one may choose to examine different k for a given value of x, it is important

to bear in mind that for a given x, the test statistic ĝk(x) may be highly correlated
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for various values of k, especially for values of k close to one another. For the 100

Pareto simulations used in Tables 1 and 2, the correlations between ĝki(x) and ĝkj(x),

where x = 5 and each i, j is in the sequence of ten values of k between 0.50 and 0.95,

are given in Table 3. Results are similar for other values of x.

3 Application of graphical self-similarity test

3.1 Application to wildfire sizes and earthquake inter-event

times

Section 1 introduced two data sets, the sizes of Los Angeles County wildfires burn-

ing at least 100 acres (0.405 sq. kilometers) from 1950-2000, and inter-event times

between earthquakes of magnitude at least 3.0 occurring between January 1, 1984

and June 17, 2004 in Southern California, which have traditionally been thought to

be self-similar in nature, but which have more recently been shown to follow a ta-

pered Pareto distribution more closely (see Schoenberg et al. 2003 and Schoenberg

et al. 2008). We can apply the graphical self-similarity test against a Pareto null

hypothesis (using the two-stage adaptive kernel method with reflection, a Gaussian

kernel and Scott’s rule to estimate the pilot bandwidth for the density estimates and

maximum likelihood estimates as the parameters for the null distribution) in order

to determine which ranges of these data sets are indeed self-similar and which ranges

are not. Figure 6 shows the p-values for local non-self-similarity for both data sets.

The survival plot in Figure 1(a) shows that the wildfire size data appears to conform

rather closely to the Pareto distribution for burn areas under approximately 75 sq.

17



kilometers. However, Figure 6(a) shows that the non-self-similarity is significant for

values of x between approximately 30 and 50 sq. kilometers at a significance level of

0.05. This is also not depicted by the 95% confidence bounds around the empirical

survival and indicates a lack of local self-similarity in this range. Additionally, while

Figure 1(a) shows that the self-similarity of the data appears to subside for wildfires

burning greater than 75 sq. kilometers or so, the significance region using the test in

Figure 6(a) does not reappear until after 150 sq. kilometers. The lack of statistical

significance at large wildfire sizes appears to be attributable to the relatively small

sample size (n = 594) and the scarcity of data in the extreme upper tail, as there

were only 15 wildfire records larger than 75 sq. kilometers in the data set, and the

power of the test is relatively low in such situations. A physical explanation for the

deviation from the Pareto for large events may be the effect of human efforts to sup-

press wildfires that have spread to larger sizes.

The survival plot in Figure 1(b) shows that the earthquake inter-event time data

do not appear to be self-similar for essentially the entire range of the data. The p-

values in Figure 5(b) show that the local non-self-similarity appears to be statistically

significant (using a significance level of 0.05) for inter-event times greater than five

days. On the other hand, though the survival plot does not seem consistent with the

Pareto distribution for inter-event times smaller than five days, the graphical test ĝk

does not show significant departures from self-similarity for this range of the data. The

tapered Pareto maximum likelihood estimate of β for this data is only 0.0393, so that

the fitted tapered Pareto distribution is similar to an exponential distribution, but the

apparent lack of non-self-similarity in the lower tail of the data seems consistent with

the general properties of a tapered Pareto distribution. However, when dealing with

estimates of β this small, Pareto simulations used for inference can generate random
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variables spread across extremely large ranges, which can make density estimation

quite difficult. Thus, for small values of x, the non-significant p-values may indicate

consistency with self-similarity or may be a result of unstable density estimates in

this range.

3.2 Application to normalized stock returns

Modeling the distribution of stock price returns is a key piece in any risk analysis for a

publicly traded company. Stock price returns have often been modeled as following a

power-law distribution (see e.g. Mandelbrot 1963, Cont 2001, Barari and Mitra 2008,

Plerou and Stanley 2008, Gu and Zhou 2009), though several authors have noted

recently that the upper tail of the distribution is typically not well described by a

power-law (Malevergne et al. 2005, Malevergne et al. 2006, Pisarenko and Sornette

2006). As with the natural processes observed earlier, we propose the tapered Pareto

may also provide a suitable fit to these stock price returns and will examine the self-

similarity of the data (or lack thereof) using the test statistic ĝk(x) and corresponding

graphics outlined in the previous Section.

3.2.1 Stock price data

Consider an examination of the historical split and dividend-adjusted daily closing

prices of Google, Inc., from the date of its initial public offering on August 19, 2004

through April 30, 2010. Following Kaizoji (2004), we will consider modeling the

absolute values of the logarithmic returns (1,433 observations), in order to capture

the full volatility in the market.
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3.2.2 Applying the self-similarity test under the Pareto null hypothe-

sis

Figure 7 shows the results of the graphical self-similarity test to determine whether a

Pareto distribution, fit by maximum likelihood to the data, provides a reasonable ap-

proximation to the data. Figure 7(a) displays the test statistic ĝk(x) for the Google

return data and Figure 7(b) illustrates the p-values of the pixels compared to 100

simulations of the Pareto null hypothesis fit to the data by maximum likelihood. The

density estimates used to calculate the test statistic are calculated, once again, us-

ing the two-stage adaptive method using a Gaussian kernel and Scott’s rule (Scott,

1992) to determine the pilot bandwidth along with reflection. The test clearly indi-

cates significant departures between the Pareto distribution and the Google returns.

Specifically, the data set displays significant non-self-similarity for returns greater

than 5% in absolute value, using a significance level of 0.05. The tapered Pareto

maximum likelihood estimate of θ is θ̂tap = 1.61% and we can see that mainly re-

turns beyond this level tend to deviate significantly from self-similarity. As with the

earthquake inter-event times, the tapered Pareto maximum likelihood estimate for β

is close to zero (β̂tap = 8.74 ∗ 10−9), indicating a nearly exponential distribution, but

the test fails to reject self-similarity for much of the lower tail of the data, suggesting

that a tapered Pareto may be more appropriate. Like in the previous example, an

alternative explanation could be unstable density estimates due to the small β. It

should be noted that the results of the local self-similarity test using other methods

of obtaining density estimates were slightly different. The general departure from

self-similarity is still apparent for the same range of x seen in Figure 7 using the

other methods, but for some values of k and x the significance levels differ.
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3.2.3 Applying the self-similarity test under the tapered Pareto null hy-

pothesis

We can also use the local self-similarity test statistic ĝk(x) to test data against the

tapered Pareto distribution. Figure 8(a) represents the expected value of gk(x) for the

tapered Pareto distribution, and is seen to approximate the test statistic ĝk(x) for the

Google data, shown in Figure 7(a), better than the Pareto. Figure 8(b) illustrates

the p-value for ĝk(x) for each pixel versus 100 simulations of the tapered Pareto

distribution fitted to the Google data by maximum likelihood. In this case, there are

only a few significant departures from the tapered Pareto around absolute returns of

4% to 5% using a significance level of 0.05. It is plausible that these could be due

to chance. Note that since many tests are performed simultaneously, by chance one

might expect some Type 1 errors. In practice one may use a Bonferroni correction to

account for this, if such errors are to be avoided. Thus, the tapered Pareto seems to

provide a reasonable fit to the majority of the data.

3.2.4 Discussion

The application of our test statistic ĝk(x) on Google’s normalized stock returns points

out significant departures from self-similarity and suggests that these returns are not

well described by the Pareto distribution for a large range of the data. However, it

should be noted that these results do not preclude the possibility that small subinter-

vals of the data, when inspected separately, may individually exhibit self-similarity.

Note also that since Google is a relatively young stock, the recent market volatility

should be expected to contribute more to the upper tail than one would anticipate for

an older stock with thousands of observations. Our investigations using alternative

data sets, including other stocks that have been traded for many decades, as well as

21



mutual funds and indexes, seem to suggest that Google is not at all unusual; returns

of most other public securities appear to be significantly non-self-similar for the bulk

of the range of the data, and tend to be far better described by the tapered Pareto

instead of the Pareto distribution.

4 Summary

The graphical test presented in this paper is a convenient way to examine local self-

similarity, particularly in data thought to exhibit power-law behavior. Not only can

the test confirm departures of data from a theoretical Pareto distribution as seen in

a survival plot, but it can also detect pockets of non-self-similarity where obvious

departures in the survival plot are not evident. On the other hand, the test may

also identify areas in the data where non-self-similarity cannot be confirmed, even if

the survival plot does not show a close fit of the data to the theoretical Pareto. In

the lower tail, this latter result could be due to either chance or the fact that even a

tapered Pareto distribution is roughly Pareto in the lower tail where the bulk of the

data resides. Even if the data appears to fit a tapered Pareto distribution with small

values of β and θ and the survival plot suggests a nearly exponential fit throughout

the range of the data rather than a Pareto fit in the lower quantiles, the test seems

to be quite powerful in the lower quantiles of the data provided that the density

estimates are stable. In the upper tail, however, where data are far more sparse,

conventional density estimates are typically highly variable.

The main shortcoming of the proposed test seems to be that the choice of density

estimation technique greatly influences the test statistic ĝk(x). This choice is often
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rather arbitrary, and while objective and adaptive methods are available, especially

for estimating bandwidths in smoothing procedures, it is important to bear in mind

that the particular choice of density estimation method may have a large impact on

the test statistic. This particularly comes into play in the upper quantiles where data

can be quite sparse or in cases where density needs to be estimated over an extremely

large range of data. Thus the test statistic may lack power in the upper tail, espe-

cially for relatively small data sets.

The results and methods used in this paper can extend to many other applications.

For instance, the self-similarity of several other phenomena, such as earthquake seis-

mic moments and distances between main shocks and aftershocks, among other nat-

ural occurrences can be further examined using the graphical test. In finance, in

addition to exploring the distributions of various individual stocks, which may vary

depending on the age of the stock and corresponding market conditions, one can apply

the test to overall market indicators such as exchange-traded funds and stock indexes.

An important direction for future work is the investigation of the power of the test

against various specific alternatives such as the exponential, Frechet and lognormal

distributions, for example, or mixtures or sums of Pareto distributions with different

parameters, particularly in the upper tail where the power is relatively low. This also

involves looking for the most powerful choice of k for a particular alternative hypoth-

esis. In addition, the investigation of means of mitigating the covariance between

two values of the test statistic ĝk(x), for different values of k and x, especially in the

context of constructing appropriate individual and simultaneous confidence bounds,

are important subjects for future research.
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Genève, Droz, v. II.

Peng, R.D., Schoenberg, F.P., Woods, J.A. (2005), “A space-time conditional in-
tensity model for evaluating a wildfire hazard index,” Journal of the American
Statistical Association, 100(469), 26-35.

Pisarenko, V.F. and Sornette, D. (2006), “New statistic for financial return distribu-
tions: power-law or exponential?,” Physica A, 366, 387-400.

Plerou, V., and Stanley, H.E. (2008), “Stock return distributions: Tests of scaling
and universality from three distinct stock markets,” Physical Review, E77(3),
037101-037104.
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9 -0.025 -0.019 -0.191 -0.290 -0.041 0.615 1.000 0.649 0.135 -0.252

10 0.092 -0.014 -0.200 -0.170 -0.258 -0.042 0.649 1.000 0.770 0.178
11 0.116 0.026 -0.081 -0.141 -0.323 -0.357 0.135 0.770 1.000 0.700
12 0.072 0.042 0.084 -0.147 -0.333 -0.368 -0.252 0.178 0.700 1.000

Table 1: Correlations between test statistic ĝ0.8(xi) and ĝ0.8(xj) for 100 Pareto simu-
lations generated using α = 1, β = 2 and sample size n = 1000, where each i, j is in
the sequence of ten equally spaced values of x between 3 and 12.

38



x 3 4 5 6 7 8 9 10 11 12
3 1.000 0.676 0.580 0.417 0.366 0.322 0.293 0.278 0.246 0.249
4 0.676 1.000 0.838 0.687 0.638 0.502 0.440 0.445 0.386 0.373
5 0.580 0.838 1.000 0.836 0.774 0.631 0.543 0.537 0.458 0.412
6 0.417 0.687 0.836 1.000 0.879 0.784 0.672 0.650 0.507 0.480
7 0.366 0.638 0.774 0.879 1.000 0.871 0.759 0.740 0.620 0.585
8 0.322 0.502 0.631 0.784 0.871 1.000 0.880 0.821 0.695 0.644
9 0.293 0.440 0.543 0.672 0.759 0.880 1.000 0.926 0.825 0.784

10 0.278 0.445 0.537 0.650 0.740 0.821 0.926 1.000 0.917 0.857
11 0.246 0.386 0.458 0.507 0.620 0.695 0.825 0.917 1.000 0.918
12 0.249 0.373 0.412 0.480 0.585 0.644 0.784 0.857 0.918 1.000

Table 2: Correlations between estimated survival Ŝ(xi) and Ŝ(xj) for 100 Pareto
simulations generated using α = 1, β = 2 and sample size n = 1000, where each i, j
is in the sequence of ten equally spaced values of x between 3 and 12.
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k 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.50 1.000 0.946 0.822 0.715 0.656 0.617 0.566 0.488 0.389 0.283
0.55 0.946 1.000 0.933 0.803 0.694 0.617 0.544 0.458 0.360 0.259
0.60 0.822 0.933 1.000 0.947 0.840 0.726 0.603 0.469 0.336 0.214
0.65 0.715 0.803 0.947 1.000 0.958 0.857 0.709 0.533 0.358 0.205
0.70 0.656 0.694 0.840 0.958 1.000 0.960 0.840 0.662 0.468 0.288
0.75 0.617 0.617 0.726 0.857 0.960 1.000 0.953 0.821 0.642 0.456
0.80 0.566 0.544 0.603 0.709 0.840 0.953 1.000 0.952 0.827 0.664
0.85 0.488 0.458 0.469 0.533 0.662 0.821 0.952 1.000 0.957 0.848
0.90 0.389 0.360 0.336 0.358 0.468 0.642 0.827 0.957 1.000 0.963
0.95 0.283 0.259 0.214 0.205 0.288 0.456 0.664 0.848 0.963 1.000

Table 3: Correlations between gki(5) and gkj(5) for 100 Pareto simulations generated
using α = 1, β = 2 and sample size n = 1000, where each i, j is in the sequence of
ten values of k between 0.50 and 0.95.
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