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ABSTRACT 

Artificial Neural Networks (ANNs) and evolution are applied 
to the analysis of turbulent signals. In a first instance, a new 
trainable delay based artificial neural network is used to analyze 
Hot Wire Anemometer (HW) signals obtained at different 
positions within the wake of a circular cylinder with Reynolds 
number values ranging from 2000 to 8000. Results show that 
these networks are capable of performing accurate short term 
predictions of the turbulent signal. In addition, the ANNs can be 
set in a long term prediction mode resulting in a sort of non 
linear filter able to extract the features having to do with the 
larger eddies and coherent structures. In a second stage these 
networks are used to reconstruct a regularly sampled signal 
straight from the irregularly sampled one provided by a Laser 
Doppler Anemometer (LDA). The irregular sampling dynamics 
of the LDA signals is governed by the arrival of the seeding 
particles, superimposing the already complex turbulent signal 
characteristics. To cope with this complexity, an evolutionary 
based strategy is used to perform an adaptive and continuous on-
line training of the ANNs. This approach permits obtaining a 
regularly sampled signal not by interpolating the original one, as 
it is often done, but by modeling it. 
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INTRODUCTION 

Artificial Neural Networks emerge as a real tool in the early 
eighties just after the proposal of error back-propagation which 
solved the serious drawbacks of previous perceptron models. 
Very quickly and aided by the fast hardware developments and 
increasing processing capacities of that time, they become very 
popular as a practical tool in various scientific areas. Their use in 
From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
turbulence analysis is not generalized, but some interesting 
applications can be found. For instance the work by Ferre-Gine 
et al. [1] and Giralt et al. [2] where a fuzzy artmap neural 
network is used to detect structures embedded in the far turbulent 
wake behind a circular cylinder and synthetically reproduce the 
sequence of individual classes of relevant events present in the 
wake. Some other examples are the work by Panigrahi et al. [3] 
where artificial neural networks and fuzzy-logic models are used 
to predict the statistical turbulence quantities measured by a hot-
wire anemometer in the wake of a square cylinder, or the one by 
Chattopadhyay et al. [4] where a neural network is used to 
predict the flow intermittency from velocity signals in the 
transition zone of a boundary layer. 

In the present work signals obtained by a HW and by a LDA 
are analyzed; both of these signals are time series, being the 
former sequential while the later is unevenly sampled. ANNs 
have been widely used for time series prediction in processes that 
can be somehow predictable [5, 6, 7]. Generally, the so-called 
feedforward ANNs are the ones most frequently applied to data 
processing; among these are MultiLayer Perceptrons (MLP), 
which are by far the best known and most frequently used of all 
neural networks. MLPs can construct approximations for 
unknown functions by learning from an input-output mapping 
example. This static way of learning makes MLPs quite 
unsuitable for time series prediction of chaotic-like phenomena. 

On this basis, a new type of delay based ANNs was 
developed in our group as an analysis tool to be used in problems 
usually referred to as Dynamic Reconstruction. These types of 
problems involve obtaining some sort of description of a given 
chaotic time series obviating the need for detailed mathematical 
knowledge of the underlying processes that conform its 
dynamics. The network is similar to a standard MLP, but it 
introduces trainable time delays in its synapses in addition to the 
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conventional weighing factors [8]. This particularity makes this 
type of network very suitable to analyze complex time dependent 
phenomena. 

These networks have been used to analyze HW signals 
obtained in different points within the wake of a cylinder as well 
as in a free jet of air. Results show that the implemented trainable 
delay based artificial neural network is able to autonomously 
obtain the embedding dimension as well as the normalized 
embedding delay and permits performing short and long term 
predictions. The short term predictions are extremely accurate 
while the long term ones result in a sort of non linear filter able 
to extract the signal features having to do with the larger eddies 
and coherent structures [9]. 

A second application concerns LDA signal analysis, where 
the temporal irregularity in the sampling introduces strong 
difficulties. The fact of being unevenly sampled makes this 
temporal series unsuitable to be analyzed directly by the ANNs 
developed. Additionally, the superimposition of the timing 
dynamics inherent to the turbulent signal with the one 
concerning the sampling leads to a very complex non sequential 
time series. For this type of signals a method was implemented 
for adaptively and continuously training the ANNs on line on the 
irregularly sampled real data by using an evolutionary based 
strategy. Dynamic variable size memory buffers are employed 
allowing the networks to model the signal and thus to produce a 
regularly sampled signal straight from the irregular one. It is 
important to note that the signal is modelled, and not just 
interpolated; thus improving the spectra generated and the 
general knowledge of its features [11].  

EXPERIMENTAL APPARATUS 
The HW experiments in a cylinder wake have been carried 

out in the Low Turbulence Subsonic Open Jet Wind Tunnel 
(LTOJ-1) of the Fluid Mechanics Laboratory of the Centro de 
Investigaciones Tecnológicas of the Universidade da Coruña. 
This is a low speed low turbulence wind tunnel specially 
designed and built in house for air speed calibration and basic 
research purposes. It produces a 300 mm wide open free jet with 
a velocity uniformity of better than 1% and turbulence level of 
less than 1%. It is driven by a centrifugal blower provided with 
an 11 kW asynchronous AC motor coupled with an electronic 
inverter and able to provide a variable air speed from 0 to 45 m/s. 
A software package constituting a virtual instrument was 
specially developed in house to perform data acquisition and 
control of both the hot wire anemometer processor trough an 
RS232 line and the wind tunnel through the inverter control line. 
A set of sensors are arranged to measure the different physical 
magnitudes required within this virtual instrument to control the 
wind tunnel motor by means of a PID controller embedded in the 
software package. Specifically, a differential pressure transducer 
connected to a Pitot-static Prandtl type pressure probe, a 
barometric pressure sensor, and an ambient temperature sensor. A 
circular cylinder with a diameter of 8 mm is placed vertically in 
the test section at the open jet exit. The Reynolds number is used 
as the main control parameter. The virtual instrument has been 
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developed to be able to calculate the Reynolds number in real 
time and to adjust the wind tunnel speed through the embedded 
PID controller to stabilize its value within 1%. Specific details of 
this experimental set-up can be found in [9]. 

An air free jet was used to make a second set of HW 
experiments. The air jet under analysis has a diameter of 16.5 
mm and is coming out of a standard HW calibrator by TSI. This 
device takes air from the pressurized air supply of the lab. The 
density of the air in the jet is calculated by applying the perfect 
gas equation for air using the values of the temperature in the 
settling chamber and the ambient pressure. In order to be able of 
measuring these magnitudes, a barometric pressure sensor and a 
temperature sensor (a thermocouple) are used. This 
thermocouple is also used by the hot-wire anemometer to 
perform corrections in the velocity measurements by jet 
temperature fluctuations. The value of air density obtained under 
current test conditions is then applied to calculate the value the 
exit jet speed from the discharge equation of the settling chamber 
contraction and after measuring the difference in pressure 
between the settling chamber and the atmosphere by means of a 
differential pressure transducer. More details of this experimental 
set-up can be found in [10]. 

Turbulent velocity measurements are taken by means of a 
TSI Flowpoint HW anemometer. Values for the Reynolds 
number ranging from 2000 to 8000 are considered for the wake 
and of 5000 to 10000 for de jet. In these HW experiments we are 
particularly interested in extracting the signal features of the 
main structures under the extremely noisy conditions induced by 
the rest of the turbulent scales.  

Concerning the LDV experimental data used in the present 
investigation, they were obtained in the Boundary Layer Wind 
Tunnel (BLWT) of the Fluid Mechanics Laboratory of the 
Escuela Politecnica Superior of the Universidade da Coruña. 
This is an aspirating open type wind tunnel having an 11:1 
entrance contraction followed by a 1 x 0.3 x 0.25 (m) transparent 
test section, a diffuser, and a centrifugal blower driven by a 2.2 
kW  AC motor governed by an electronic inverter. The cylinder 
used to generate the wake under study is a rod with a diameter of 
8 mm placed horizontally at mid height of the test section and 
spanning its whole width. LDV measurements were performed at 
two main stream velocities of 3.7 and 11.3 m/s, resulting in data 
for Reynolds numbers of 2000 and 6000 respectively, matching 
some of the conditions of the hot wire experiments. Data were 
taken at 10 and 20 diameters downstream of the cylinder at a 
mean sampling rate ranging from 900 to 3000 samplings per 
second. Specific details of this experimental set-up can be found 
in [11]. 

These measurements were performed using a fiber optic 
LDA system by DANTEC driven by a 500 mW Ar-ion laser 
source by ILT. Initially a DANTEC FVA 58N20 processor had 
been used but it was replaced by a DANTEC BSA F60 
processor; measurements taken by both processors are presented 
here. In these experiments, the optical probe has been positioned 
by a traversing mechanism along a lateral wall of the test section. 
The probe was provided with a 400 mm focal length lens 
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allowing it to measure in any position in the test section. The 
seeding system used was made in house based on the 
condensation of propylene glycol and provides an average drop 
size of one micrometer; it was replaced during the experimental 
campaign by a TSI model 9306 atomizer. 

ANN-BASED APPROACHES 
The artificial neural network (ANN) we consider consists of 

several layers of neurons connected as a Multiple Layer 
Perceptron (MLP) with trainable delay terms in addition to the 
classical weight terms [8]. As a consequence, the synaptic 
connections between neurons are described by a pair of values, 
(W, τ), where W is the weight, representing the ability of the 
synapse to transmit information, and τ is a delay, which in a 
certain sense provides an indication of the length of the synapses. 
The longer it is it will take more time for information to traverse 
it and reach the target neuron. This capability of managing 
temporal information is basic in this work. 

The delay-based ANN is applied both in the case of hot-wire 
anemometer turbulent signals and in the irregularly sampled 
LDA signals, but using different learning methods. In the first 
case, we have used a variation of a gradient descent algorithm 
and in the second case, we have used and online learning 
procedure based on evolution and on the Multilevel Darwinist 
Brain system [13] developed in our group.  

HOT-WIRE ANEMOMETER TURBULENT SIGNALS 
 In this case, the delay-based ANN presented before includes 

an additional difference with respect to the typical MLP 
configurations, as some of the nodes implement a product 
combination function instead of the traditional sum. Fig. 1 shows 
a schematic representation of the ANN. 

As a consequence, to train the parameters of the ANN, we 
have developed an extension of the backpropagation algorithm, 
and have called it Pi Discrete Time Backpropagation (Π-DTB) 
[12]. This algorithm permits training the network through 
variations of synaptic delays and weights, in effect changing the 
length of the synapses and their transmission capacity in order to 
adapt to the problem in hand.  

In addition, through the appropriate determination of the 
delay terms in the synapses the Π-DTB algorithm performs an 
automatic selection of the signal points to be correlated. 
Consequently, when speaking in the language of the dynamic 
reconstruction of signals, the network automatically obtains the 
embedding delay and embedding dimension. 

If we take into account the description of the network in 
terms of synaptic weights and synaptic delays, the main 
assumption during training is that each neuron in a given layer 
can choose which of the previous outputs of the neurons in the 
previous layer it wishes to input in a given instant of time. Time 
is discretized into instants, each one of which corresponds to the 
period of time between an input to the network and the next 
input. During this instant of time, each of the neurons of the 
network computes an output, working its way from the first to 
the last layer.  
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Further details on the backpropagation algorithm used in 
these networks and on its training process for this particular 
application can be found in [10]. 

 
Fig. 1 The network used. 

LASER DOPPLER VELOCIMETRY SIGNALS 
Its processing is based on the Multilevel Darwinist Brain 

(MDB), which is extensively explained in [13]. This is an 
evolution-based control architecture originally designed for 
autonomous robots that permits a computational agent to learn 
from the interaction with its environment. To this end several 
concepts like Strategies, World Models, Internal Models and 
Action-Perception Pairs were considered. The problem 
confronted in this work does not require of the whole potential of 
the MDB as the system is going to be a simple spectator of the 
signals it is going to model without performing any actions over 
them. Consequently, the MDB provides only the basic procedure 
for learning a model on-line using evolutionary algorithms. This 
procedure requires three main elements: 
• Models: encoded into delay-based MLP as commented 

before but, in this case, they don’t include the product terms 
in the nodes. This kind of temporal ANN allows for the 
models to be able to predict time related phenomena without 
having to define a particular window or sampling regime. 

• Short Term Memory (STM): small storage space that 
preserves a certain number of samples of the original data 
points. The STM is updated each time a new point is 
acquired. In this case, the replacement strategy of the points 
is simply a FIFO due to the highly local temporal 
information of the signals. The samples that are stored in the 
STM contain the velocity in instant t, the time until the next 
measurement and the velocity in instant t+1. 

• Evolutionary Algorithm: the models are adjusted through a 
genetic algorithm that uses a set of models (population) to 
explore the search space.  
The learning process in this case is as follows: when the 

STM is initially filled up, the evolutionary process starts from a 
population of delay-based ANNs that are initially random. After a 
fixed number of evolution steps (generations), the model 
(individual) that better predicts the sample points stored in the 
initial STM is selected as the current model and is applied for the 
on line prediction of the signal. 

The procedure followed to evaluate the models in each 
generation of the evolutionary process consists in running them 
3 Copyright © 2007 by ASME 
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in a synchronous mode (as opposed to the random particle arrival 
time) for the time period corresponding to the sample points of 
the STM. When, for a given instant of time, there is a measured 
point in the STM, this point is used as input to the networks, and 
when there is no real point in the STM, the network uses its own 
previous output (its own prediction) as input in order to obtain a 
new prediction in a multi-step fashion until it finds a new real 
point. The predictions for real points present in the STM provide 
an error in terms of MSE whose inverse is used as fitness for the 
particular model. 

When a new sample appears, it is stored in the STM and the 
evolutionary process starts again, but now the models are not 
randomly generated, instead they are the result of the previous 
evolution. This way, the learning process is accelerated and the 
creation of general models is promoted. 

It is important to notice that the evolutionary process only 
runs for two to four generations between updates of the STM, 
this way, a generally good model of the signal can be achieved 
and not one that could over-fit the contents of the current STM. 

This basic cycle of updating the STM, evolving the models, 
executing the current model and updating the STM is repeated 
and, as time progresses, the models become better adapted to the 
real signal and the predictions improve leading to networks that 
provide an evenly sampled signal with the same spectral 
characteristics as the original unevenly sampled one. 

EXPERIMENTAL HW RESULTS 
ANNs have been applied to analyze HW signals in two very 

different ways. As a first approach, they were applied to predict a 
few time steps in advance of the measured signals in both the 
wake and the jet cases. Our results show that the predictions 
obtained by the networks for all cases tested appear to be very 
good. An example of this multi-step prediction can be seen in 
Figure 2 representing the signal obtained by the HW in the 
cylinder wake at a position 20 diameters downstream of the 
cylinder when the Reynolds number value is 2000. Figure 3 
presents the case of a turbulent jet with a Reynolds number of 
5000 and the probe placed at 5 diameters from the jet exit and 
aligned to its edge. It can be seen that the performance achieved 
by the multi-step prediction process is adequate in both 
examples, the points are superimposed; this has been always like 
this in all test cases. 

When the ANN is used as a signal generator, that is, as an 
analysis tool, the behavior can be different in both types of flows. 
In the wake case it is able to detect a main peak of the signal in 
conditions where a standard FFT is incapable of doing it. For 
instance, figure 4 presents the power spectra of the signal 
presented in figure 2 and of the signal generated by the ANN 
during a time of 0.2 s starting 0,1 s after the real signal input has 
been shut off. The spectrum of the real signal presents a 
maximum at a frequency of 96 Hz and so does the generated 
signal spectrum. However, the latter has lost a lot of the details. If 
the FFT is calculated with a later time window, everything but the 
main peak will vanish.  
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Figure 2. Measured (solid line) and predicted (dotted 

line) signal in a cylinder wake at 20 diameters 
downstream of the cylinder and with Re=2000. 

Figure 3. Measured (solid line) and predicted (dotted 
line) signal in an air jet at 5 diameters downstream of 

the jet exit and with Re=5000. 

 
Figure 4. Power spectra of the measured (solid line) 
and self-generated (dotted line) signal in a cylinder 

wake at 20 diameters downstream of the cylinder and 
with Re=2000. 

The analysis of the jet signals by this system have proven to 
be more difficult that the wake ones as in this type of flows the 
self-generated signal decays much more rapidly than in the other 
case and it always goes to a flat signal. Still, if a maximum exists, 
its decay is always slower than the rest of the spectrum. In many 
cases the system can also detect a maximum where no peak is 
perceptible in the real signal spectrum. Therefore, this analysis 
mode of the network appears to be a useful tool for detecting 
organized structures within the turbulent flow by looking 
exclusively at the signal generated in a single point and without 
having any other spatial information of the flow-field. 
4 Copyright © 2007 by ASME 
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EXPERIMENTAL LDA RESULTS 
Results obtained from turbulent signals measured with a 

LDA in the wake of a round cylinder and their subsequent 
analyses by the MDB model are presented. Two of the different 
test cases considered are presented here corresponding to 
Reynolds numbers of 2000 and 6000. In both cases, LDA signals 
were taken at a position 10 diameters downstream of the cylinder 
at an average sampling rate of 3000 samples per second. In both 
cases the Strouhal number should take a value close to 0.21. 
Thus, the first case must present a fundamental frequency close 
to 100 Hz while in the second one it should be about 300 Hz. 

As for LDA the sampling of the signal is non-uniform then 
the Shannon theorem doesn’t hold and thus it is possible to 
extract information in the frequency domain at values larger than 
half of the average sampling frequency. To check the ability of 
the MDB model for taking advantage of this characteristic, some 
reconstructions of the signals at synchronous time intervals 
shorter than the average sampling interval of the original LDA 
signal were performed. As an example, figure 5 displays the 
results of a test where the time interval used in the synchronous 
mode equals twice the average time interval of the LDA signal, 
resulting in an evenly sampled signal equivalent to the non-
uniformly sampled original one.  

Figure 5. Synchronously sampled signal model 
obtained by the MDB (lines) for a Reynolds 2000 type 
signal (dots) using two times the average sampling 

rate of the original signal. 
 
The figure shows that the signal reconstruction is very good 

while the non linear interpolation obtained from the MDB 
attempts to recover the chaotic character of the signal. It should 
be mentioned that in this 2x case, less than 10% percent of the 
synchronous time intervals have an actual signal point to correct 
the prediction. To obtain this result, the MDB-based procedure 
was applied with a delay-based ANN of 1 input node, two hidden 
layers of 6 neurons each and 1 output node. We used a genetic 
algorithm with a population of 1000 individuals, a STM of size 
10 and a maximum delay of 8.  

When the signals become more chaotic, as is the case of 
Reynolds 6000, these results still hold even at a 4x sampling 
pace. It is important to point out that, according to the 
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considerations made in the next section; it does not make much 
sense to further increase the synchronous sampling rate –for 
instance to 8x- as the highest frequencies present are limited by 
the turbulence dynamics as well as by the LDV system. 

POST PROCESING LDA RESULTS 
Although the signal reconstruction presented in figure 5 

shows a good performance, some discrepancies appear between 
the measured data and the predicted signals. Thus, it seems clear 
that the results can be improved by merging the measured data 
into the prediction. For this purpose some considerations need to 
be made; firstly, in the signal shown, the reconstruction of the 
target does not pass through all the measured points, even though 
it does capture the signal trends. Taking this into account, in our 
post processing scheme when two consecutive measured points 
are separated by a short time interval, the corresponding piece of 
reconstructed signal is shifted until the origin of the piece 
matches the first measured point. After this, the amplitude of all 
other points in the segment is varied by an amount proportional 
to its time distance to the first point with the condition that the 
last point of the segment must match the second measured point. 
In cases when two consecutive measured points are far apart, 
their corresponding predicted ones are shifted so as to coincide 
with them and a linear correction is applied to their three closest 
neighbours, leaving the rest of the predicted signal interval 
unaltered. Figure 6 displays the reconstructed signal presented in 
figure 5 after being corrected using the merging procedure with 
the real data. The small discrepancies found in the former figure 
have now disappeared after applying the proposed post 
processing scheme.  

Figure 6. Signal reconstructed by applying the post 
processor 

CONCLUSIONS 
This paper presents some applications of ANN and 

evolutionary methods for the analysis of turbulent signals 
measured as time series at a single point for both HW and LDA. 
A new type of ANNs with trainable delay terms in their synapses 
is applied for the dynamic reconstruction of HW signals. Two 
different turbulent flows have been used as test cases; the wake 
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of a cylinder and a free jet. The new network has been able to 
make a multi-step prediction of the signal in every case tested. 
The ANN is then used in an analysis mode in which, and after 
some time of predicting, the input signal is shut off and the 
network generates the learned signal by using as inputs its own 
predicted outputs. In many cases this signal presents during its 
decay clear peaks in its spectrum corresponding to the main 
characteristic frequencies of the original signal, even in cases 
where these peaks cannot be seen in the original power spectrum.  

In the case of the LDA signals these ANNs are used within 
an evolutionary based method. It achieves its purpose by 
modelling and predicting the signals prior to re-sampling them at 
a regular pace. The strategy is based on the use of these delay 
based ANNs as models of the signals and an adaptation 
procedure inspired in the Multilevel Darwinist Brain which 
permits an agent to adapt to changing signals in real time through 
the production of adequate general non linear models of the 
processes involved.  Analysis of real turbulent signals taken by an 
LDV system in the wake of a circular cylinder proves the ability 
of this model to correctly predict and non-linearly interpolate 
these signals. The model is able to generate an equivalent equally 
spaced sampled signal at several times the mean rate of the 
original one. As a final stage, a proposed post processing method 
shows that the small discrepancies between the reconstructed 
signals and the real data can be greatly diminished by applying a 
simple merging scheme. 
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