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Abstract - The fundamental difficulties that arise in numerically modeling the behav- 
ior of flames are due both to the number and complexity of the contributing physical 
processes and the availability of accurate enough input data. Both of these issues must 
be addressed to obtain calculations accurate enough to give quantitatively correct pre- 
dictions. This paper describes our current status of detailed time-dependent numerical 
models of laminar flames by describing some of the numerical algorithms represent- 
ing the relevant physical processes and some of the types of systems that have been 
modeled. Examples are taken from simulations of premixed hydrogen-oxygen flames, 
ranging in complexity from one-dimensional laminar flames to two-dimensional unsta- 
ble transitional flames. Future directions of the development and application of these 
models are discussed. 

INTRODUCTION 

A model of a flame requires combining representations of a number of physical and chemical processes. At 
the simplest level of flame modeling, accurate algorithms are required to represent convection, molecular 
diffusion, thermal conduction, and chemical reactions with subsequent heat release. Such a model, with 
appropriate terms to describe heat loss to the surroundings, might suffice to describe a near-stoichiometric 
laminar hydrogen-oxygen flame. In more complicated cases, algorithms for thermal diffusion, radiation trans- 
port, and multiphase flow processes must also be included. In some regimes of the flame, certain of these 
processes are not important and can therefore be ignored. However, sometimes the importance of a specific 
process is not understood a priori and it can be misleading to omit it in the calculation. In some cases, re- 
solving one particular process can be a formidable task Consider, for example, the futility of trying to resolve 
all of the time and space scales of a high-speed turbulent flow, or the cost of including all of the chemical 
reactions in a nonequilibrium hydrocarbon oxidation process. 

The approach we have taken to simulating flames has been to use the best or most appropriate numerical 
algorithm we can find or invent to describe each type of physical process, and then to couple these by timestep- 
splitting techniques. This provides the flexibility of being able to change the level of accuracy or detail of a 
particular submodel. Thus the model for a low-gravity laminar flame can have the same general structure 
as that for a ramjet engine. However, the level of description of a key physical process might be different, or 
a representation of an additional process may be added to or removed from the model in an  orderly way. 

“his paper first describes the current status of detailed numerical simulations of time-dependent gas-phase 
laminar and transitional flames. Selected algorithms are described briefly or referenced, and then selected 
examples of flame calculations are shown from simulations performed at  the Naval Research Laboratory. 
These examples range in complexity from extremely detailed descriptions of laminar premixed flames to 
complex multidimensional flame structures in a raw*et engine. Future extensions of this work and new 
directions are described in terms of the quickly evolving computational technology that is becoming available. 
Much of the work described in this paper is described more fully and with a more complete set of reference 
inref. 1. 

GOVERNING EQUATIONS 

The equations used to model neutral gas-phase reactive flows are the continuum time-dependent equations 
for conservation of mass density p, individual chemical species number densities, {ni}, momentum density 
pv, and total energy E ,  

(1) 

(2) 

- -  2 - -V.(pv), 

Bni - = -v * (niv) - v * (nivdi) + Qi - Lini, at i = 1, ... N 8 ,  

a77 



a78 E. S. ORAN 

and 

_ -  - -V * (pvv) - v * P t p;a;, 
i 

at (3) 

The first term on the right hand side of each of these equations describes the convective fluid dynamics effects. 
The remaining terms contain the source, sink, coupling, external force, and diffusive transport terms that 
drive the fluid dynamics. Pressure is a tensor, 

P I P(N,T)I  t p - K (V *v)I  - ~ [ ( V V )  t ( V V ) ~ ]  , ( 5 )  (: ) 
where p and K are the shear and bulk viscosity coefficients and the superscript T means matrix transpose. 
The heat flux, q,  total number density, N ,  and internal energy density, t, can be found from 

N I E n ; ,  
i 

1 
2 

and 
E I - P V . V $ P ~ .  

(7) 

Here KT is the thermal diffusion coefficient of species i, A, is the mixture thermal conductivity, vd; is the 
diffusion velocity for species i ,  q ,  is the heat flux due to radiation, and hi is the specific enthalpy. For the 
flames we are discussing, the external force is gravity, so that the accelerations are the same for the individual 
species present, a; = g. In addition, we need equations of states which for a gas at  normal temperature and 
pressUres we usually take as 

P = NkBT = p R T ,  (9) 

Table 1. 

g = T P t S  

g = vv2p 

g = -V * (pv) 

Terms in the Reactive Flow Equations 

Local Processes: Source, Sink, Coupling, Chemical Reactions 

DiEusive Processes: Molecular Diffusion, Thermal Conduction, 
Thermal Diffusion 
Convective Processes: Advection, Compression, Rotation 

Waves and Oscillations: Sound Waves, Gravity Waves, Oscillations = c% Vzp 

where hi, and cpi are the heat of formation and specific heat of species i. Note that a great deal of information 
has been hidden in the chemical production terms and loss rates, {Qi} and {Li}, which can be complicated 
functions of of temperature, pressure, and the other species densities. 
The set of species diffusion velocities {vdi} are found by inverting the matrix equation 

where the source terms {Wi} in Eq. (11) are defined as 

The &ion velocities are subject to the constraint 
Cp ;Vdi  = 0. 

i 

This is an extremely rich set of equations. Combined with appropriate initial and boundary conditions, these 
equations describe, for example, flames, detonations, or turbulence. There are basically four types of physical 
processes in this set of equations, and these are summarized in a b l e  1. The first two, chemical reactions and 
diffusive transport, originate in the atomic and molecular nature of matter. The third and fourth, convection 
and wavelike properties, are collective phenomena. 
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Chemical reactions (or chemical kinetics), represented by the production and loss terms, & i  and Lini in 
Eq. (2), are an example of %cal” phenomena which do not depend on spatial gradients. Other examples of 
local phenomena are phase changes, external source terms such as laser or spark heating, and sinks such as 
optically thin radiation loss. The macroscopic models of these processes used in the continuum equations arise 
from averages over microscopic effects. Diffusion (or diffusive transport), has the general form V . Y where 
Y may be nivdi, pVv, or q. The last two terms in Eq. (5) describe the diffusive effects of viscosity. The last 
terms in Eq. (6) describe the change in energy due to molecular diffusion, chemical reactions, and radiation 
transport. The third equation in Table 1 is a continuity equation describing convection. Convection effects 
are represented in the equations by fluxes of conserved quantities through volumes, e.g., V . VX where X is 
p, ni, E ,  pv or P. Convection is a continuum concept, which assumes that quantities such as density, velocity, 
and energy are smoothly varying functions of position. The fluid variables are defined as averages over the 
actual particle distributions, so only a few degrees of freedom are necessary to describe the local state of the 
material. Wavelike and oscillatory behavior are described implicitly in the reactive flow equations by coupled 
continuity equations. The important point about wave motion is that energy can be carried throughout the 
system without convective fluid or particle motions. It is transferred from one element of the fluid to others by 
waves that can travel much faster than the fluid. The main type of waves considered are shock waves, which 
move as discontinuities through the system, and sound waves, in which there are alternating compressions 
and rarefactions in density and pressure of the fluid. Other types of waves included in these reactive flow 
equations are gravity waves and chemical reaction waves. 

The complete set of reactive flow equations is 80 difficult to solve that entire disciplines and scientific com- 
munities flourish solving subsets of these equations for particular applications. As complicated as this set 
of equations looks, it becomes even more complicated for high-temperature ionized flows and for multiphase 
flows. Several things make it difficult to solve the equations: lack of knowledge of the input parameters 
such as chemical reaction rates, physical diffusion coefficients, or boundary conditions; inadequate numerical 
methods to resolve the physical phenomena; and inadequate computer time and memory. 

NUMERICAL METHODS 
We have experimented with various different approaches for solving the coupled set of continuity equations 
representing fluid convection. These include both Eulerian and Lagrangian methods, implicit and explicit 
methods, with various types of adapting and moving computational grids. Here we describe our experience 
in terms of simulating flames. 

For high-speed flows, that is, for Mach numbers greater than 0.5, we commonly use the latest versions of 
the Flux-Corrected Transport (FCT) algorithm (ref. 2,3). This is an explicit, nonlinear, monotone, Eulerian 
algorithm accurate to fourth-order in phase and second-order in time. FCT has been shown to provide 
highly accurate solutions for both subsonic and supersonic flows and effectively acts as a high-frequency 
filter for structures less than a few computational cells in size. It is a choice algorithm to use when sound 
waves must be resolved. There is a basic one-dimensional algorithm that can be extended by timestep- 
splitting and direction-splitting techniques to multidimensions, and there are also fully two-dimensional, 
three-dimensional, or finite-element versions (ref. 4,5). However, for very subsonic flames, we cannot afford 
either the computational expense of resolving sound waves or the potential loss of accuracy of an inordinately 
long calculation, and so an implicit method is needed. FCT, however, is essentially explicit and meanst to 
describe compressible flows. 

Initially we thought that the fluid dynamics equations should be solved in a Lagrangian manner to be sure 
that the physical diffusion processes, which are crucial to a description of a flame, are well resolved and not 
washed out by even high-order residual numerical diffusion. It was this concern for accuracy and cost that 
led to the development of the implicit, Lagrangian algorithm, ADINC (ref. 6), and its application in a one- 
dimensional time-dependent flame model (ref. 7). At that time, we were also developing a new approach to 
multidimensional Lagrangian computations, SPLISH (ref. 8). This is a two-dimensional implicit Lagrangian 
algorithm that uses a mesh of dynamically restructuring triangles to avoid grid tangling and maintain high 
accuracy at  interfaces. This algorithm was applied to a number of purely fluid-dynamic problems in wave 
propagation and droplet breakup (ref. 91, but due to its inherent complexity, has not yet been extended to 
flame computations. In particular, we found that there are inherently unstable properties associated with 
Lagrangian methods that make them less robust and therefore less generally useful than Eulerian methods. 

The problem of what algorithm to use in multidimensions was solved with the conception and development 
of the Barely Implicit Correction to FCT, called BIC-FCT developed by Patnaik (ref. 11). BIC-FCT removes 
the timestep limit imposed by the sound speed by adding one implicit elliptic equation. The method is based 
on an analysis by Casulli and Greenspan that shows that it is not necessary to treat all terms in the fluid 
dynamic equations implicitly to use longer timesteps than allowed by explicit stability limits. Only the two 
terms which force the numerical stability limit need to be coupled and solved implicitly. 

The BIC-FCT method solves the compressible, gas dynamic conservation equations for density p, momentum 
density pv, and total energy density E, by a two-stage algorithm. The first stage is an explicit predictor 
method that determines the estimated new values ij, C. The second step is an implicit correction step which 
produces &P, the additional pressure required to accelerate the fluid momentum from the explicit predictor 
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values, FG, to the 5 a l  implicitly corrected values, pnvn. Because this correction deals with the sound waves 
(which were improperly computed by the explicit monotone predictor step in this algorithm) and not with the 
convection, there is no interference caused by the FCT algorithm. Only one elliptic equation must be solved 
to make the fluid equations implicit. 
One particularly surprising aspect of this method is its relatively low cost: one implicit timestep using BIC- 
FCT takes about the same CPU time as one explicit FCT timestep, as measured on a CRAYXMP. Normally we 
would have expected the implicit method to cost five to ten times more per timestep. This unexpected gains is 
partially primarily due to the fact that standard explicit implementation of FCT uses requires both a half-step 
prediction and a whole-step cofiection procedure each timestep. BIC-FCT does not split the timestep, but 
instead requires solving one finite-difference elliptic equation. The choice of a very fast multigrid method 
(ref. 12) to solve the elliptic equation is crucial to obtaining the computational speed. Testa of BIC-FCT in 
flame computations have shown that this algorithm is accurate enough to use in a flame model that also must 
resolve species' diffusion. Besides being a reasonable alternate to ADINC in one dimension, it generalizes 
in same straight-forward way FCT does to multidimensions and to any geometry used for the computational 
grid. 
The specific algorithm we use to solve complex, stiff sets of ordering differential equations that represent 
the chemical reactions is CHEMEQ (ref. 13). CHEMEQ is a hybrid integrator that attempts to sort the 
s t 8  equations from the regular equations, and then apply a different solution method to each. For the s t 8  
equations, an asymptotic method is used. For the regular equations, an explicit Euler method may be used. 
A great deal of effort has gone into optimizing this algorithm for vector and parallel computers has resulted 
in the VSAIM and TBA versions. 
The solution of diffusion velocities for the individual species are obtained in several ways. Originally an 
arbitrarily accurate iterative algorithm was developed (ref. 14) and used. Recently a less expensive approach 
was taken that uses a Fickian term plus a correction (ref. 15). More details on the algorithms mentioned 
above and on algorithms for the solution of thermal conduction, thermal diffusion, and radiation terms can 
be found in refs. 1, 7, and 16. 
Several generic approaches have evolved for solving sets of equations such as Eqs. (1) - (10) in which a 
number of different physical processes, represented by different types of mathematical terms, interact. The 
major methods are the global-implicit method, also called the block-implicit method and the fractional-step 
method, also called timestep splitting, and the various approaches are oRen combined into "hybrid' algo- 
rithms (ref. 1). Our method of choice has been timestep splitting because of its relatively straightforward 
applicability and its flexibility in incorporating the best available numerical algorithm for each particular 
physical process described in Table 1. In this approach, the individual processes are solved independently 
and the changes resulting from the separate partial calculations are coupled (added) together. The processes 
and the interactions among them may be treated by analytic, asymptotic, implicit, explicit, or other methods. 
Advantages of this approach are that it avoids many costly matrix operations and allows the best method to 
be used for each type of term. 
Consider, for example, writing the coupled partial differential equations describing a flame as 

where pis a vector, each component of which is a function of the time t and the vector position x. Now rewrite 
this as 

(15) 
d 
;itp(x,t) = G I  t Gz t G3 + + G M  

where G has been broken into its constituent processes. Each of the functions {Gi }  contributes a part of the 
overall change in p during the numerical timestep. Thus 

For example, GY-' might be the chemical kinetics terms, GT-' the diffusion terms, G;-' the thermal conduc- 
tion terms, and so on. The solution for the new values pn is found by summing all of the partial contributions, 

M 

If each of the processes is simulated individually, Eq. (17) gives a simple prescription for combining the 
results. 
From our experiences developing and using computer programs for reactive flow problems, we have learned 
the type of coupling that must be used for problems in which the convective transport is implicit, such as 
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this case, or explicit, such as used for detomtion problems, is somewhat Werent. This difference is based 
on Werent requirements of accuracy and stability. In computations with implicit convection, the changes in 
pressure (ref. 7) or internal energy (ref. 16) resulting from the individual processes are not incorporated into 
the solution as 8oon as they are computed, but instead are accumulated over the timestep. The entire change 
in internal energy is then added to the energy equation in the fluid convection step. 

The algorithms used to solve the parta of the equations representing various physical processes in the compu- 
tation each have their own timestep criterion for stability and accuracy. In flame calculations, the convection 
timestep as required by BIC-FCT is not the smallest. The actual overall timestep that is used is determined 
by the diffiive transport processes, which reduce the value of the timestep determined by the fluid velocity 
by at least a factor of five. ‘RI some extent, the effects of diffusive transport can be subcycled within the 
timestep, but if any variable changes more than about 15% during a timestep, the timestep must be reduced. 

RESULTS OF FLAME SIMULATIONS 

Importance of contributing processes 
With so many processes contributing to the description of a flame, it is importapt to understand their relative 
importance under dSerent circumstances. Here we summerize the work in ref.18, which is a systematic study 
of the relative importance of various &ive transport processes to the burning velocity in rich, lean, and 
stoichiometric hydrogen-air mixtures. These computations were performed with the one-dimensional flame 
model, FLAMElD (ref. 7), that uses the ADINC algorithm with a specially designed Lagrangian adaptive 
rezoning method, a detailed 25-step hydrogen-oxygen chemical reaction scheme, describing interactions of 
H2,02, HzO, H, 0, OH, HO2 and H202 (ref. 19) the fill iterative solution of the species’ diffusion equations, 
and algorithms for thermal conduction and thermal diffusion. 

In the calculations described now, the model was configured with an open boundary at  one end to simulate 
an unconfined system. All of the calclations were performed in a planar (Cartesian) geometry. The initial 
temperature and pressure of the mixture were 298 K and 1 atm, respectively. The flame was initiated by 
superimposing a Gaussian temperature profile with the central temperature and width chosen so that the 
added initial energy was above the minimum ignition energy for the flame to evolve into a steady profile. 

For either thin or planar flames, the instantaneous normal burning velocity can be calculated &om the flame 
velocity if we know the velocity of the unburned gases ahead of the flame. As shown in Fig. 1, for planar 
flames, the velocity of the unburned gases ahead of the flame is constant. Hence the burning velocity can be 
unambiguously determined as the difference between the flame velocity and the flow velocity ahead of the 
flame, 

Vburn = vfle.me - Vfuid * 

The three diffusive transport processes considered were thermal conduction, molecular (ordinary) diffusion, 
and thermal diffusion. Calculations were performed with various combinations of these turned on or off 
for three mixtures of Hz, 02, and N2 which are fuel-lean 0.65:1:3.76, stoichiometric 2:1:3.76, and fuel-rich 
16:1:3.76. 

(18) 

POSITION h m )  
Figure 1. Velocity and temperature in a planar flame propagating in an &:02&/2:1:4 mixture. 
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Table 2. Burning Velocities of Hz-Air Mixtures 

Case Processes On Lean Stoichiometric Rich 
~~~ 

(a) All 36 cm/s 185 c d s  44 cm/s 

(b) Thermal Conduction 40 195 48 

(c) Thermal Conduction 25 85 0 
(d) Ordinary Diffusion 0 115 38 

Ordinary Diffusion 

Thermal Diffusion 

Table 2, which summarizes these results for four cases, shows that the relative importance of thermal diffusion 
does not change from lean to rich mixtures. Cases (a) and (b) shows that the effect of thermal diffusion is to 
lower burning velocities 6-11%. Hydrogen moves fast and its behavior dominates the difision properties of 
the system. It diffuses from the flame into the cold material by molecular diffusion. Thermal diffusion diffuses 
hydrogen from the lower-temperature region to the higher-temperature region. Thus, the two processes have 
an opposite effect. Thermal diffusion inhibits hydrogen movement into unreacted material and therefore when 
there is no thermal diffusion, the burning velocity increases. In stoichiometric mixtures, thermal conduction 
and molecular difbion have about equal importance in determining the flame velocity. This is not true in 
lean or rich mixtures. In the lean mixture, thermal conduction is much more important, without it no steady 
burning velocity is reached. In the rich mixture, molecular diffusion is more important and without it, the 
flame does not propagate. 

Evolution to cellular flame structure 
Flames are subject to a number of different instabilities that originate in the competing effects of the con- 
trolling physical processes. Thermo-diffusive, Landau, and Rayleigh-Taylor instabilties lead, for example, to 
phenomena such as cellular structures at  the flame front, differences in the shape and behavior of upward- 
propagating and downward-propagating flames, and the evolution of laminar to turbulent flames. These 
instabilities themselves are usually analyzed by a linear stability analysis of simplified sets of equations 
describing the balance between selected processes. However, the nonlinear effects are those which govern 

TEMPERATURE 
5 ms 30 rns 40 rns 50 ms 

t 2cm -+ 

OH CONCENTRATION 

Figure 2. Temperature and OH number density contours for a flame propagating in a mixture 
of H2:OZ:Nz in the ratio 1.5:1:10, at the burning velocity of 12 c d s ,  in the reference fram of the 
flame. The hot burned material (high temperature, high OH densities) are on the left, and the 
cold, unburned material (low temperature, low Oh density) are on the right. The initial perturbed 
flamefront develops progressively more structure. 

the behavior after the initial onset of the instability, and sometimes the combined effects of a number of the 
controlling processes cannot be separated from each other in any simple way. In addition, sound waves in the 
system can act as both a means of propagating information and as a trigger of instabilities in the reacting 
flow. 
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Figure 3. Comparison of OH number density contours in flames ain a hydrogen-oxygen-nitrogen 
mixture in the v t io  1 : l : lO .  

Recent detailed two-dimensional time-dependent simulations of hydrogen-oxygen flames have started the 
process of isolating and studying the importance of various physical and chemical processes in determining 
the structure and stability of a multidimensional flame. These calculations use the FLIC2D model (ref. 16), 
which uses BIC-FCT, the full 25-step chemcial reaction mechanism, and includes molecular diffusion, thermal 
conduction, and gravity. The computations to date were performed in a reference frame moving at  the one- 
dimensional laminar burning velocity. This burning velocity, and the initial unperturbed conditions of the 
flamefront, are determined from analogous one-dimensional calculations. 

Figure 2, taken from the work by Patnaik et al. (ref. 20), shows the evolution of a lean zero-gravity hydrogen 
flame with the perturbation in the center, as shown in the first frame. In time, the structure at  the front 
grows and forms into a cellular shape very similar to those seen experimentally. By the end of the computa- 
tion, the cellular structure appears to be splitting again, but the computation had to be terminated because 
the flame was moving out of the finely gridded region and coming too close to the upper and lower walls. 
Simular computations in a rich hydrogen flame show that the instability is damped. Further simulations 
in the lean mixture with the hydrogen diffusion coefficient set equal to the oxygen Musion coefficient show 
that the instability dies; but when the oxygen coefficient is set equal to the hydrogen coefficient, the insta- 
bility persists. The results of the calculations support the idea that the diffusional-thermal instability is an 
important controlling mechamism in producing cellular structure in flames. This mechanism assumes that 
the process is controlled by the deficient component: for lean hydrogen mixtures, hydrogen is the limiting 
reactant and its mass diffusivity is greater than the thermal dfisivity of the mixture. 

It is known from flammability studies that a flame propagating upward in a tube propagates in a wider range 
of mixture stoichiometries and dilutions than a flame propagating downward. This suggests a dependence on 
gravity that can be investigated with the detailed flame model described above. Figure 3 shows the evolution 
of a flame propagatiig upward, downward, and in zero gravity for the same lean mixture of hydrogen, oxygen, 
and nitrogen. The differences here are dramatic: the zero-gravity case shows a cellular structure forming; 
the upward-propagating flame becomes more and more curved until a buble is formed and seems to continue 
to grow; and the downward-propagating flame oscillates from concave to convex. These results have been 
explained based on combinations of the thermo-diffusive mechanism and a Rayleigh-Taylor instability (ref. 21). 

An unstable, high-speed confined reacting flow 
An extensive series of numerical simulations performed by Kailasanath (e.g., refs. 22 and 23) have shown 
that acoustic interactions in confined flows are crucial in determining the generation and merging of large- 
scale structures in the flow. These simulations use two-dimensional planar and axisymmetric versions of the 
explicit FCT algorithm. Selected calculations have been carried over hundreds of thousands of timesteps to 
obtain fluctuation spectra of selected variables. In a calculation over such a large physical domain with such 
a complex and changing fluid structure, it becomes prohibitive to resolve the structure of the flame. In this 
case, we have used a model of energy release based on the hydrogen-oxygen reaction mechanism to consider 
the effects of energy release on the flow. 
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Figure 4 shows a complicated axisymmetric flow in which a gas flows out of a long cylindrical inlet into a 
chamber of larger diameter. The exit condition from this larger chamber is choked flow so that the flow 
becomes sonic at the exit nozzle. The top portion of the figure shows a schematic of the chamber and the 
bottom portion shows a series of instantantwus streamlines of the flow in the cross-hatched region. Lines 
originating at the centers of vortices have been drawn between the streamlines to show the evolution of the 
vortex structures. 
This calculations describes a subsonic high-speed slightly preheated mixture of hydrogen and air entering 
into a combustor. The mixture evolves into a quasi-periodic pattern as vortices were shed, merged, and exited 
through the nozzle. Temperature conburs before ignition are essentially uniform, but showed the effects of 
compressibility. There is a strong coupling between the vortex structures formed in the shear layer and the 
acoustics in a ramjet combustion chamber. For example, the flowfield has an overall repetition cycle of 6000 
steps, corresponding to a low-fbquency mode of k: 150 Hz. In addition, the first vortex rollup appears with a 
frequency of k: 450 Hz. The low-frequency mode, corresponding to the quarter wave mode of the inlet, controls 
the overall merging pattern in the chamber. The higher frequency mode corresponds to the first longitudinal 
acoustic mode of the chamber. 
Figure 5 is a continuation of a calculation similar to that in Figure 4, but after a time the mixture was 
“ignited” in a small region around the inlet (ref. 24). Chemical reactions and heat release are allowed to 
occur according to an induction parameter model. The instantaneous streamlines and temperature contours 
show the flame h n t  moving down the chamber and a quasi-steady pattern is eventually set up. The flame 
h n t  is located on the temperatue contours both by the the high temperatures and the dark lines caused by 
closely spaced contours. In time, the roll-up in the shear layer causes the reaction front to curve downward 
and engulf the cold mixture which subsequently bums. As the reaction moves downstream, a new vortex 
forms near the step between timesteps 175,000 and 180,000. This mixes the burned gases with the incoming 
mixture and acts as an ignition source. The flow field undergoes a cycle of roughly 25,000 timesteps, or 
3.463 ms. The low-frequency mode persists in the reacting flow, but its amplitude is higher. 

FUTURE DIRECTIONS 

Two very different types of models have been described: the detailed models of the multispecies premixed 
gas-phase flames and the fluid model of a complex flow containing a flame. In the detailed model, a number 
of the contributing processes are modeled in as much detail as possible. In the fluid model, the processes not 
described by the fluid equations alone are approximated by a simple energy-release model. The differences 
in the levels of the models of the fluid dynamics, chemistry, and diffusive transport processes are necessary 
because of current and, no doubt, future limitations in the computer memory and speed available. 

There are many ways to extend these calculations to describe, for example, more complex flows or to include 
more detailed or complex physical processes. For the purposes of this discussion, however, we consider only 
gas-phase problems that can be solved by adding more complex or additional physical processes or by using 
more efficient numerical software and hardware. 
One major new direction this work can take is to simulate diffusion flames. As it is, the detailed model is 
ideally suited to simulate the time-dependent behavior of laminar diffusion flames. To date, Laskey (ref. 26) 
and Ellzey (ref. 26) have taken an intermediate approach: they have used the BIC-FCT algorithm as a basis 
for simulating axisymmetric diffusion flames with more complex fluid structures and approximate models of 
reactions and energy release. Time-dependent multidimensional detailed simulations, although now possible, 
have not yet been attempted. However, a very good set of steady-state computations have been done by Smooke 
(ref. 27) with detailed chemical kinetics. 
There have also been a number of two-dimensonal and three-dimensional computations of transitional flows, 
that either have a very low Reynolds number or only attempt to resolve the large-scale structures in the 
flow. The purpose of these calculations is to determine the dynamics of the large structures and measure 
the mixing that occurs in the structures (e.g., refs. 28, 29). Some of these models have allowed energy to be 
released when a specified mixing level has been reached (e.g., refs. 29, 30). 

Other extensions of these calculations are to more complex flows or more complex representation of the phys- 
ical or chemical processes. This codd apply to either premixed or diffusion flames. As the flow becomes 
more and more complex, the chemical reactions involve more species or more reaction pathways, or complex 
radiation or diffusive transport processes become important, the computations require more and more com- 
puter time and memoq. At this stage, we need either more efficient algorithms to represent the processes 
or design faster or more clever computers. Dynamically adapting computational grids (e.g., refs. 5, 33) are 
one approach to reducing computer expense for the fluid portion of the calculation. More optimal timestep 
control on the integrators for stiff ordinary differential equations would reduce the time of chemical kinetics 
computations. 

But a truly major breakthrough now will only come &om use of new types of computers with radically new 
architectures. Consider, for example, the Connection Machine, a computer with thousands of interconnected 
processors connected in a hypercube configuration. With this computer, it is straightforward to have all of 
the processors working simultaneously, in parallel, on similar types of operations. Thus, for example, if each 
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STEP 

01000 

32000 

33000 

34000 

55000 

38000 

37000 

38000 

3woo 

4a)o 

41000 

4ZooQ 

43000 

Figure 4. Top: Schematic of an axisymmetxic flow with the line of symmetry through the center. 
Bottom: Calculated instantaneous velocity streamlines in the hatched region of the schematic. 
Lines through the streamlines connect the centers of vortex structures (refs. 22,23) 

TIME h d  TEMPERATURE STREAMLINES 
STEP 

38.079 
18oooo 
38.828 
186000 
37.693 
17oooO 
38.348 
176000 
39.106 
18ooOo 
39.843 
186000 
40.668 
1 Soooo 
41.283 
1 96000 
42.002 
200000 
42.721 
206000 
43.407 
21oooo 
44 088 

44.778 
22ooOo 
46.486 
226000 
48.148 
23oooO 

216oO0, 

Figure 5. Instantaneous streamlines and temperature contours from a calculation of a reacting 
flow initiated in a cold flow similar to that shown in Fig. 4 (refs. 22,23). 
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processor represents a fluid element, the flow at each element at the next timestep can be found at  every 
fluid element at the same cost in computer time it would take to process the answer for one particular fluid 
element. Alternately, each processor could be integrating the chemical reaction equations in a given fluid 
element (ref. 33). Or another approach might be to use a heterogeneous computer system, which would use 
an entirely different computer, or a computer whose configuration can be altered, so that the best configuration 
of processors is used for the particular type of equation being solved. Adopting the simulations models to 
these architectures will make major breakthroughs in what we can calculate. 
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