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Abstract— Modern embedded applications typically integrate a 
multitude of functionalities with potentially different criticality 
levels into a single system. Without appropriate preconditions, 
the integration of mixed-criticality subsystems can lead to a 
significant and potentially unacceptable increase of 
engineering and certification costs. A promising solution is to 
incorporate mechanisms that establish multiple partitions with 
strict temporal and spatial separation between the individual 
partitions. In this approach, subsystems with different levels of 
criticality can be placed in different partitions and can be 
verified and validated in isolation.  

The MultiPARTES FP7 project aims at supporting mixed-
criticality integration for embedded systems based on 
virtualization techniques for heterogeneous multicore 
processors. A major outcome of the project is the 
MultiPARTES XtratuM, an open source hypervisor designed 
as a generic virtualization layer for heterogeneous multicore. 
MultiPARTES evaluates the developed technology through 
selected use cases from the offshore wind power, space, visual 
surveillance, and automotive domains. The impact of 
MultiPARTES on the targeted domains will be also discussed. 

In a number of ongoing research initiatives (e.g., RECOMP, 
ARAMIS, MultiPARTES, CERTAINTY) mixed-criticality 
integration is considered in multicore processors. Key 
challenges are the combination of software virtualization and 
hardware segregation and the extension of partitioning 
mechanisms to jointly address significant non-functional 
requirements (e.g., time, energy and power budgets, adaptivity, 
reliability, safety, security, volume, weight, etc.) along with 
development and certification methodology. 

I. INTRODUCTION TO MIXED CRITICALITY SYSTEMS 
In many domains such as avionics and industrial control 

there is an increasing trend for mixed-criticality systems, 
where multiple functions with different criticality and 
certification assurance levels are integrated using a shared 
computing platform. Mixed-criticality is the concept of 
allowing applications at different levels of criticality to 
interact and co-exist on the same computational platform. 
Mixed-criticality systems range from lowest assurance 
requirements up to the highest criticality levels (e.g., DAL A 
in RTCA DO-178B or SIL4 in EN ISO/IEC 61508). The 
foundations for this integration are mechanisms for temporal 
and spatial partitioning, which establish fault containment 
and the absence of unintended side-effects between 

functions. Partitions encapsulate resources temporally (e.g., 
latency, jitter, duration of availability during a scheduled 
access, etc) and spatially (e.g., prevent a function from 
altering the code or private data of another partition). 

There is a trend towards the widespread use of Multi-
Processor Systems-on-a-Chip (MPSoCs) in embedded 
systems with estimated deployment of 45% in industrial 
applications by 2015 [Ernst 2010]. It is expected that up to 
95% of these MPSoCs will combine cores of mixed-
criticality levels. In contrast, the latest versions of processors 
in industrial applications employ multiple cores, but typically 
only one core is used nowadays when highly-critical tasks 
are involved [Mollison 2010]. There is a trend towards 
adopting mixed-criticality systems in several domains. 

II. HARDWARE SUPPORT FOR PARTITIONING 
Today several processors provide an Instruction Set 

Architecture (ISA) with virtualization support. Virtualization 
is concerned with supporting a system’s partitioning and 
protecting the execution time and memory space of each 
application. There are a range of hardware properties and 
components with a big influence on virtualization for 
embedded systems. For example, Intel, ARM and Freescale 
introduced special extensions to support virtualization (e.g., 
Intel VT-x, ARM Trustzone). 

In particular, virtualization of multicore processors gains 
increasing importance as these processors become widely 
used. The latest versions of processors in industrial 
applications employ multiple cores, but typically only one 
core is used when involving highly-critical tasks. Multicore 
systems present major problems to their adoption in real time 
systems because of shared resources. Cache, memory 
accesses, bus arbitration policy, IO, etc. are shared by all 
cores and introduce a relevant source of indeterminism. 
Therefore, multicore processors are harder to analyze than 
single-core processors.   

Several processor architectures also support device and 
Input/Output (I/O) virtualization. An I/O memory 
management unit (IOMMU) allows guest partitions to 
directly use peripheral devices through DMA I/O bus and 
interrupt remapping. Some architectures such as Intel (VT-
d), AMD (AMD-Vi) and SPARC V8 (in LEON4 processors) 
have released their own versions of IOMMU. Also, several 
hardware extensions for device virtualization improve 
networking and I/O throughput for virtual machines (e.g., 
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PCI-SIG I/O, network virtualization of Intel VT-c, single-
root I/O virtualization SR-IOV).  However, the integration of 
I/O in an architecture with time and space partitioning 
remaining a research challenge [Shah 2005].  Examples of 
open issues are the impact of I/O activities on CPU and 
memory sharing and the safe and seamless communication 
across different on-chip and off-chip communication 
networks. 

Several virtualization techniques in on-chip and off-chip 
communication networks are available. Time-triggered 
networks use time-division multiplexing (TDM) to establish 
virtual communication links where components cannot 
interfere with each other in the value and time domain. 
TTNoC [Paukovits 2008] and AEtheral [Goossens 2010] are 
examples of time-triggered on-chip networks for time and 
space partitioning. Examples of time-triggered 
communication protocols at the cluster level are TTEthenet 
and FlexRay [Obermaisser 2011].  A major challenge is the 
seamless virtualization of resources at chip and cluster level. 
For example, the access to a remote I/O resource located on 
another chip should be relayed via gateways involving 
different on-chip and off-chip networks (i.e., vertical 
integration) and possibly gateways between different types 
of off-chip networks (i.e., horizontal integration). 

III. SOFTWARE SUPPORT FOR PARTITIONING 
Software-support for partitioning is realized by 

hypervisors. Hypervisors are layers of software that exploit 
the features of the hardware platform to establish 
independent execution environments.  Several virtualization 
solutions can be observed. These are basically full 
virtualization, operating system level virtualization and bare 
metal hypervisors.    
� Full virtualization: Advantages are that guest operating 

systems are not modified. Also, both monocore and 
multicore guest operating systems are supported. 
Disadvantages are the low performance, the absence of 
communication mechanisms between partitions, lack of 
scheduling policies and guarantees for real-time. 
Examples of products include VMWare Server, Virtual 
Box and Qemu. 

� Operating system level: While adequate performance 
is achieved, no simultaneous execution of multiple 
operating systems is possible, real-time is not 
guaranteed and only Linux distributions are supported. 
Linux VServer, Solaris Zones & Containers, FreeVPS 
and openVZ are examples of products. 

� Operating system virtualization support: This 
virtualization technique offers adequate performance 
and several guest operating systems can coexist without 
modification (i.e., full virtualization). An example of 
this virtualization technique is KVM, which is a solution 
for full virtualization using the Linux kernel. In general 
this approach is suitable for soft real-time applications, 
although there are at present no specific scheduling 
policies for real-time. 

� Bare metal hypervisor: A bare metal hypervisor offers 
good performance and strong isolation of virtual 

environments.  Applications of different levels of 
criticality can securely coexist and the guest operating 
systems can be monitored. The small footprint kernel is 
also easier to validate. A drawback is that guest 
operating systems have to be modified. Examples of 
products are Xen, VMWare ESX Server, OKL4 Virtual 
Logix and INTEGRITY Secure Virtualization.   

� Bare metal Hypervisor for embedded systems: These 
real-time oriented hypervisors offer a very low footprint 
and static allocation of resources.  Guest operating 
systems also have to be modified.  Products in this 
category include XtratuM, PikeOS, RTS Hypervisor, 
Wind-River VxWorks Integrity-178B LynxSecure, 
QNX and the Freescale Embedded Hypervisor. 

 

IV. DEVELOPMENT METHODS AND CERTIFICATION 
 

The certification process of safety critical real-time 
applications, by so-called Certification Authorities (CAs) is 
based on very conservative assumptions, which typically 
exceed what is required by the designer’s assurance levels. 
As a consequence, the system designer has to deal with 
mixed-criticality job sets: high criticality applications (jobs), 
which have to be certified by CAs, have two different worst 
case execution times (WCETs): designer’s WCET and a 
more pessimistic (longer) WCET of the CAs.  

The pessimistic assumptions of the CAs have to be 
checked and certified before system start. At the same time, 
design requirements must also be considered and guaranteed. 
Considering low and high criticality jobs with CAs’ 
pessimistic assumptions in one schedule lead to an 
underutilization of the system [Baruah 2010, Rushby 2010]. 

The problem of scheduling such mixed criticality 
applications has been shown to be NP-hard for event 
triggered and time triggered systems [Baruah 2001]. 

Similar considerations apply for networked systems. 
TTEthernet or Flexray are examples for integration of 
messages of various criticality, e.g., time triggered and event 
triggered. As with processing, the key question becomes one 
of protection and resource utilization. Analysis for the two 
mentioned networks so far focused on the critical parts only. 

In order to achieve an independent certification of 
partitions the following aspects should be considered: 
� Partition should be executed under spatial and temporal 

isolation. 
� Partitions should be analyzed in an isolated way. 

Methods for this isolated analysis are required. 
Sufficient independence may be guaranteed. 

� The scheduling of the other partitions should not be 
modified, causing temporal interference.  

� The possible execution interference of multicore 
execution should be modeled following WCET analysis 
techniques. 

These criteria introduce some constraints with respect to the 
hardware and the scheduling policy of the virtualization 
layer. In relation to the hardware, resources shared by the 
processors (cache, memory, bus arbitration, IO, etc.) shall 
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not impact or have a limited impact on the partition 
execution. This could be achieved with specific hardware 
that permits to isolate or allow a partitioning on the 
resources.  
The criteria related to the scheduling policy implemented by 
the hypervisor should prevent the variability of the partition 
execution even preserving its processor bandwidth. A cyclic 
scheduling policy, as proposed in ARINC-653 standard 
[ARINC-653] should fulfill this need. 

The required development process for safety-critical 
systems is defined in domain-independent (e.g. IEC 61508) 
or domain-specific (e.g. ISO 26262, DO-178B) certification 
standards. These standards require appropriate separation 
mechanisms for mixed-criticality systems, but do not specify 
concrete mechanisms or methods to achieve this separation. 
Multicore and mixed-criticality is a hot topic for certification 
bodies. 

In many cases, the V-Model shape is employed since it 
covers the entire development progress including 
requirements engineering, specification, implementation and 
integration as well as validation and verification (e.g., 
testing). Therefore, it eases certification according to the 
mentioned safety standards. However, this needs to be 
adapted to the mixed-criticality realm. 

A plethora of methods are being studied to be applied 
nowadays to engineer mixed criticality systems. More 
prominent are those related to Model-Driven Engineering 
(MDE) and Software Product Lines. There is as well a line 
of work based on Components. 

These techniques promote cross-industry reuse with 
reduced development cost, shorter time-to-market and higher 
reliability of mixed-criticality systems. 

The development process will leverage the reuse of 
software and hardware components, safety case reuse, multi-
vendor tools interoperability and traceability, and prevent 
any side effects of component interaction. 

A key goal of the project is for academia to listen 
industry, and for industry to explain openly its needs. An 
updated roadmap to adoption is expected as an output of the 
discussion. 

Currently a number of related European research projects 
under both FP7 and Artemis programs are working along 
similar lines, namely, ACROSS, MultiPARTES, ARAMIS, 
CERTAINTY, VIRTICAL and RECOMP. They featured 
some works on both the practical and scientific perspectives, 
on topics such as reference architecture, methodology, tools, 
certification issues and industrial application, among others.  

A key point is how to assure that techniques are 
certification ready and certification bodies are well aware of 
the last progress. In this regard, a hot topic is “sufficient” 
independence among involved subsystems. Other relevant 
trends as multicore advent, pressure from consumer 
electronics, and other topics will be covered. 

V. MULTIPARTES PROJECT 
The main objective of MultiPARTES is to provide 

execution environments and tools to support the 
development of mixed criticality applications over 

partitioned embedded platforms based on a multicore open 
source virtualization layer thereby shortening the time-to-
market. This will be done through the definition, 
demonstration and validation of a complete engineering 
framework supporting the design and development of 
partitioned systems. 
Two main results can be identified: 
1. The definition of a methodology to enforce the 

development and production of new applications based 
on partitioned multicore systems. The methodology will 
be supported by a tool that allow the definition of 
activities and its attributes (security level, criticality 
level, real-time constraints, operating system needs, 
hardware dependencies, etc.). Based on these attributes, 
the tool proposes a partitioning scheme to isolate 
activities in partitions, an allocation of partitions to 
cores, and a scheduling scheme to execute the partitions. 
The final result is a set of configuration files that 
statically define the behavior of the virtualization layer. 

2. An execution platform based on XtratuM [Masmano 
2012] hypervisor specifically designed for embedded 
real-time systems. It provides spatial and temporal 
isolation of partitions and permits to execute partitions 
without a specific knowledge of its internals. Partitions 
can contain different execution environment as single 
thread (bare partitions). multi-thread (guest RTOS or 
GPOS) or multicore (multicore guest OS).  

3. Execution environments. In the project several 
execution environment (guestOSs) have been ported: 
MPTAL (MultiPARTES Abstraction Layer) which is a 
simple runtime which offers services close to the 
ARINC-653 P4, ORK+ that provides an Ada 
environment based on Ravenscar profile [Ureña 2007], 
Partikle that is a POSIX RTOS [Peiro 2007] and a 
Linux environment. 

 

VI. MULTIPARTES ARCHITECTURE 
 

XtratuM [Masmano 2010, Crespo 2010] is a hypervisor 
that uses para-virtualisation technique to build a 
virtualisation layer. Para-virtualisation is a technique that 
permits to achieve high performance and low complexity.  
The para-virtualized model offers potential performance 
benefits when a guest operating system or application is 
aware that it is running within a virtualized environment, and 
has been modified to exploit this. One potential downside of 
this approach is that such modified guests cannot ever be 
migrated back to run on physical hardware. 
 

Basically, a hypervisor provides multiple isolated virtual 
machines. Each VM can execute a complete system (OS 
kernel and the application processes). Communication 
between VM’s is done commonly by means of a virtual 
network. From the application layer, a hypervisor system is 
much more than a distributed system: a set of computers, 
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where each computer runs its own operating system and 
applications, and computers are inter-connected with a high 
speed network. The most noticeable difference is the speed 
of the virtual computers, which is only a fraction of the 
native computer. 
 

The main features provided by the MultiPARTES 
virtualization layer are: 
� Spatial isolation: A partition is completely allocated in a 

unique address space (code, data, stack). This address 
space is not accessible by other partitions. The 
hypervisor has to guarantee the spatial isolation of the 
partitions. The system architect can relax this property 
by defining specific shared memory areas between 
partitions.  

� Temporal isolation: A partition is executed under a 
cyclic policy. The execution of a partitions is not 
impacted by others. However, shared resources could 
affect to the execution of a partition. Explicit hardware 
mechanism could reduce it.  Also, the appropriated 
cyclic plan design could avoid this execution 
dependency in the more critical tasks..  

� Predictability: A partition with real-time constraints has 
to execute its code in a predictable way. It can be 
influenced by the underlying layers of software (guest-
OS and hypervisor) and by the hardware. From the 
hypervisor point of view, the predictability applies to the 
provided services, the operations involved in the 
partition execution and the interruption management of 
the partitions. 

� Security: All the information in a system (partitioned 
system) has to be protected against access and 
modification from unauthorized partitions or unplanned 
actions. Security implies the definition of a set of 
elements and mechanisms that permit to establish the 
system security functions.  This property is strongly 
related with the static resource allocation and a fault 
model to identify and confine the vulnerabilities of the 
system.  

� Static resource allocation: The system architect is the 
responsible of the system definition and resource 
allocation. This system definition is detailed in the 
configuration file of the system specifying all system 
resources, namely, number of CPUs, memory layout, 
peripherals, partitions, the execution plan of each CPU, 
etc. Each partition has to specify the memory regions, 
communication ports, temporal requirements and other 
resources that are needed to execute the partition code. 
Static resource allocation is the basis of predictability 
and security of the system. The hypervisor has to 
guarantee that a partition can access to the allocated 
resources and deny the requests to other not allocated 
resources. 

� Fault isolation and management: A fundamental issue in 
critical systems is the fault management. Faults, when 

occur, have to be detected and handled properly in order 
to isolate them and avoid the propagation. A fault model 
to deal with the different types of errors is to be 
designed. The hypervisor has to implement the fault 
management model and permits to the partitions to 
manage those errors that involve the partition execution. 

� Partition support: The execution environments require to 
be adapted to work on a virtual platform. The hypervisor 
has to provide the support to execute partitions and 
inform about how the system is working. 

� Confidentiality: Partitions cannot access to the space of 
other partitions neither to see how the system is 
working. From its point of view, they only can see its 
own partition. This property can be relaxed to some 
specific partitions in order to see the status of other 
partitions or control their execution. 

 
In multi-core platforms, the hypervisor can provide several 
virtual CPUs to the partitions. A partition can be configured 
as mono or multi-core. Different partitions (from the number 
of cores point of view) can coexist in the system. This allows 
taking profit from a multicore platform even if the partitions 
are not multicore. Figure 1 shows an example of this view. It 
shows a multicore platform virtualised by XtratuM which 
offers the possibility to build multi-core or mono-core 
partitions. In the example, two partitions use all the 
virtualised CPUs due to it uses a multi-core OS. The third 
partition is mono-core and only uses a virtual CPU. 
 

 
Figure 1 . XtratuM approach 

 
In order to handle the underlying multi-core hardware 

two software architecture alternatives have been analyzed: 
� Asymmetric Multiprocessing (AMP). In this case, one 

instance of the hypervisor per core executes the 
partitions allocated to it. As many instances of the 
hypervisor as core provides the platform run in parallel. 
Each one of these units executes a different software 
instance and has exclusive access to its hardware 
resources. A logical interconnection mechanism is 
provided in order to communicate/synchronise these 
logical units. AMP architectures do not permit 
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parallelism, so no additional exclusion/synchronisation 
mechanisms are required. 

� Symmetric Multi-Processor (SMP) architecture where a 
single software instance manages all the hardware 
resources. The software defines execution units (e.g. 
thread, process) which are dynamically distributed 
among the hardware processors. SMPs architectures 
ease the implementation of parallel computing but, on 
the other hand, more efficient exclusion mechanisms 
than mutexes must be provided: spin-locks. 

 
In MultiPARTES, the virtualization layer implements a 

SMP architecture. On the other hand, MultiPARTES deals 
with heterogeneous multicore systems. The hardware 
platform consists in two different systems: a dual core x86 
based processor and a FPGA with several LEON3 (Sparc 
V8) synthesized processors. While the x86 subsystem 
provides high computation capabilities, the LEON3 permits 
to reach more predictable computation.  

 
XtratuM has been adapted to both platforms and an 

instance of XtratuM runs in each one. Explicit mechanisms 
to communicate both instances in different hardware 
platforms have been implemented. These mechanisms permit 
to communicate by means of ARINC-653 sampling and 
queuing ports partitions allocated in different processors. 
 
 

VII. MULTIPARTES METHODOLOGY 
 
The development of mixed-criticality virtualized multi-core 
systems poses new challenges that are being subject of active 
research work. There is an additional complexity: it is now 
required to identify a set of partitions, and allocate 
applications to partitions. In this job, a number of issues have 
to be considered, such as the criticality level of the 
application, security and dependability requirements, 
operating system used by the application, time requirements 
granularity, specific hardware needs, etc.  
 
The MultiPARTES toolset relies on Model Driven 
Engineering (MDE), which is a suitable approach in this 
setting, as it facilitates to bridge the gap between design 
issues and partitioning concerns. MDE is changing the way 
systems are developed nowadays, reducing development 
time significantly. In general, modeling approaches have 
shown their benefits when applied to embedded systems. 
These benefits have been achieved by fostering reuse with an 
intensive use of abstractions, or automating the generation of 
boiler-plate code. 
 
Applications are described using UML, as the standard 
format. They are enriched with annotations related with 
extra-functional requirements, such as timing, criticality, 
security, etc. Additional information can be included, such as 

requirements on the execution platform (hardware and 
operating system), and requirements on needed 
computational resources (CPU time, memory, or bandwidth). 
For this purpose, it is used UML-MARTE. This information 
will be used for assessing the fulfillment of some of the non-
functional requirements, and for generating a suitable system 
partitioning. 
 
The MultiPARTES project is developing tool support for 
partitions identification and applications allocation. The 
overall approach is shown in figure 2. The initial inputs are: 

� Application models: They describe application 
specific information, such as extra-functional 
requirements, resource usage needs, etc. In 
particular, the criticality level of an application 
should be included in this model. 

� Platform models: They include information on the 
characteristics of the hardware, and the operating 
systems that can be run on top of XtratuM, for this 
specific platform.  

 
A system to be developed is initially composed by a set of 
applications that has to be executed on top of a given 
platform. The first step is the specification of the partitioning 
constraints model, which includes information for 
partitioning that relates the platform and application models. 
For example, a set of applications that has to be executed on 
the same partition, an application having specific hardware 
requirements, etc. 
  

 
Figure 2 . MultiPARTES toolset 

 
The partitioning tool takes the information from these 
models as input, for generating a deployment model, which 
defines a system partitioning: a set of partitions, assignment 
of hardware resources to each partition, communication 
ports, partitions security configuration, and the allocation of 
applications to partitions. The deployment model must meet 
all system functional and extra-functional requirements. 
Some of them are correct by construction. For example, the 
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partitioning tool ensures that two applications with different 
criticality level will never be in the same partition. However, 
in some cases analysis tools are required. This is the case 
with time requirements, as it is needed to ensure that they are 
met. For this purpose, a response time analysis tool will be 
used. A model transformation will be in charge of generating 
the tool input format from the described models. The results 
of the analysis are fed back to the partitioning tool. If time 
requirements are met, the generated deployment model is 
valid. Otherwise, current system partitioning must be refined.  
 
When the deployment model is valid, a neutral model is 
generated. It includes only the information required for the 
generation of the final toolset outcomes. It relies mainly on 
the deployment model and on the applications model. 
However, in some cases it may also require to use 
information from the platform model. The aim of the neutral 
model is to isolate the partition generation activities from the 
generation of the final files. As it is simpler than the other 
models, it will be easier to develop model transformations 
for different programming languages. 
 
The toolset generates three types of final outcomes: 

� Source code: the toolset is able to generate Real-
Time Java code, or Ada 05 package skeletons. 

� XtratuM configuration files: This hypervisor 
requires a number of files including information 
about partitions, allocated applications, hardware 
devices used, and assigned computational 
resources. These files are automatically generated, 
taking as main input the information from the 
deployment model, extracted in the neutral model.  

� System generation files: The toolset also generates 
a set of make files intended to ease the generation 
of the final system. These files compile and links 
together the source code, operating systems, and 
XtratuM, to form the executable that will 
downloaded to the embedded platform for system 
execution.  

 
The models and toolset being currently developed will 
speed-up the integration of mixed-criticality systems based 
on partitioning and deployed on multicore hardware. 
 

VIII. CONCLUSIONS 
This paper presented the approach followed in the  

MultiPARTES FP7 project to support mixed-criticality 
integration for embedded systems based on virtualization 
techniques for heterogeneous multicore processors.  
 

The major outcomes of the project are the methodology 
to deal with activities with different levels of criticality and 
the MultiPARTES virtualization layer based on XtratuM, an 
open source hypervisor designed as a generic virtualization 
layer for heterogeneous multicore and the methodology. 

 
The partitioning approach and the methodology 

introduced pave the way to certification. Indeed, this is a 
major enabler for the adoption of the MultiPARTES 
approach when engineering mixed-criticality systems. 
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