
MultiPARTES: Multicore virtualization
for Mixed-criticality Systems

Salvador Trujillo
IKERLAN, S.coop.

Arrasate-Mondragon, Spain
strujillo@ikerlan.es

Alfons Crespo
Universidad Politécnica de Valencia

Valencia, Spain
acrespo@disca.upv.es

Alejandro Alonso
Universidad Politécnica de Madrid

Madrid, Spain
aalonso@dit.upm.es

Abstract— Modern embedded applications typically integrate a
multitude of functionalities with potentially different criticality
levels into a single system. Without appropriate preconditions,
the integration of mixed-criticality subsystems can lead to a
significant and potentially unacceptable increase of
engineering and certification costs. A promising solution is to
incorporate mechanisms that establish multiple partitions with
strict temporal and spatial separation between the individual
partitions. In this approach, subsystems with different levels of
criticality can be placed in different partitions and can be
verified and validated in isolation.

The MultiPARTES FP7 project aims at supporting mixed-
criticality integration for embedded systems based on
virtualization techniques for heterogeneous multicore
processors. A major outcome of the project is the
MultiPARTES XtratuM, an open source hypervisor designed
as a generic virtualization layer for heterogeneous multicore.
MultiPARTES evaluates the developed technology through
selected use cases from the offshore wind power, space, visual
surveillance, and automotive domains. The impact of
MultiPARTES on the targeted domains will be also discussed.

In a number of ongoing research initiatives (e.g., RECOMP,
ARAMIS, MultiPARTES, CERTAINTY) mixed-criticality
integration is considered in multicore processors. Key
challenges are the combination of software virtualization and
hardware segregation and the extension of partitioning
mechanisms to jointly address significant non-functional
requirements (e.g., time, energy and power budgets, adaptivity,
reliability, safety, security, volume, weight, etc.) along with
development and certification methodology.

I. INTRODUCTION TO MIXED CRITICALITY SYSTEMS
In many domains such as avionics and industrial control

there is an increasing trend for mixed-criticality systems,
where multiple functions with different criticality and
certification assurance levels are integrated using a shared
computing platform. Mixed-criticality is the concept of
allowing applications at different levels of criticality to
interact and co-exist on the same computational platform.
Mixed-criticality systems range from lowest assurance
requirements up to the highest criticality levels (e.g., DAL A
in RTCA DO-178B or SIL4 in EN ISO/IEC 61508). The
foundations for this integration are mechanisms for temporal
and spatial partitioning, which establish fault containment
and the absence of unintended side-effects between

functions. Partitions encapsulate resources temporally (e.g.,
latency, jitter, duration of availability during a scheduled
access, etc) and spatially (e.g., prevent a function from
altering the code or private data of another partition).

There is a trend towards the widespread use of Multi-
Processor Systems-on-a-Chip (MPSoCs) in embedded
systems with estimated deployment of 45% in industrial
applications by 2015 [Ernst 2010]. It is expected that up to
95% of these MPSoCs will combine cores of mixed-
criticality levels. In contrast, the latest versions of processors
in industrial applications employ multiple cores, but typically
only one core is used nowadays when highly-critical tasks
are involved [Mollison 2010]. There is a trend towards
adopting mixed-criticality systems in several domains.

II. HARDWARE SUPPORT FOR PARTITIONING
Today several processors provide an Instruction Set

Architecture (ISA) with virtualization support. Virtualization
is concerned with supporting a system’s partitioning and
protecting the execution time and memory space of each
application. There are a range of hardware properties and
components with a big influence on virtualization for
embedded systems. For example, Intel, ARM and Freescale
introduced special extensions to support virtualization (e.g.,
Intel VT-x, ARM Trustzone).

In particular, virtualization of multicore processors gains
increasing importance as these processors become widely
used. The latest versions of processors in industrial
applications employ multiple cores, but typically only one
core is used when involving highly-critical tasks. Multicore
systems present major problems to their adoption in real time
systems because of shared resources. Cache, memory
accesses, bus arbitration policy, IO, etc. are shared by all
cores and introduce a relevant source of indeterminism.
Therefore, multicore processors are harder to analyze than
single-core processors.

Several processor architectures also support device and
Input/Output (I/O) virtualization. An I/O memory
management unit (IOMMU) allows guest partitions to
directly use peripheral devices through DMA I/O bus and
interrupt remapping. Some architectures such as Intel (VT-
d), AMD (AMD-Vi) and SPARC V8 (in LEON4 processors)
have released their own versions of IOMMU. Also, several
hardware extensions for device virtualization improve
networking and I/O throughput for virtual machines (e.g.,

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.37

260

PCI-SIG I/O, network virtualization of Intel VT-c, single-
root I/O virtualization SR-IOV). However, the integration of
I/O in an architecture with time and space partitioning
remaining a research challenge [Shah 2005]. Examples of
open issues are the impact of I/O activities on CPU and
memory sharing and the safe and seamless communication
across different on-chip and off-chip communication
networks.

Several virtualization techniques in on-chip and off-chip
communication networks are available. Time-triggered
networks use time-division multiplexing (TDM) to establish
virtual communication links where components cannot
interfere with each other in the value and time domain.
TTNoC [Paukovits 2008] and AEtheral [Goossens 2010] are
examples of time-triggered on-chip networks for time and
space partitioning. Examples of time-triggered
communication protocols at the cluster level are TTEthenet
and FlexRay [Obermaisser 2011]. A major challenge is the
seamless virtualization of resources at chip and cluster level.
For example, the access to a remote I/O resource located on
another chip should be relayed via gateways involving
different on-chip and off-chip networks (i.e., vertical
integration) and possibly gateways between different types
of off-chip networks (i.e., horizontal integration).

III. SOFTWARE SUPPORT FOR PARTITIONING
Software-support for partitioning is realized by

hypervisors. Hypervisors are layers of software that exploit
the features of the hardware platform to establish
independent execution environments. Several virtualization
solutions can be observed. These are basically full
virtualization, operating system level virtualization and bare
metal hypervisors.
� Full virtualization: Advantages are that guest operating

systems are not modified. Also, both monocore and
multicore guest operating systems are supported.
Disadvantages are the low performance, the absence of
communication mechanisms between partitions, lack of
scheduling policies and guarantees for real-time.
Examples of products include VMWare Server, Virtual
Box and Qemu.

� Operating system level: While adequate performance
is achieved, no simultaneous execution of multiple
operating systems is possible, real-time is not
guaranteed and only Linux distributions are supported.
Linux VServer, Solaris Zones & Containers, FreeVPS
and openVZ are examples of products.

� Operating system virtualization support: This
virtualization technique offers adequate performance
and several guest operating systems can coexist without
modification (i.e., full virtualization). An example of
this virtualization technique is KVM, which is a solution
for full virtualization using the Linux kernel. In general
this approach is suitable for soft real-time applications,
although there are at present no specific scheduling
policies for real-time.

� Bare metal hypervisor: A bare metal hypervisor offers
good performance and strong isolation of virtual

environments. Applications of different levels of
criticality can securely coexist and the guest operating
systems can be monitored. The small footprint kernel is
also easier to validate. A drawback is that guest
operating systems have to be modified. Examples of
products are Xen, VMWare ESX Server, OKL4 Virtual
Logix and INTEGRITY Secure Virtualization.

� Bare metal Hypervisor for embedded systems: These
real-time oriented hypervisors offer a very low footprint
and static allocation of resources. Guest operating
systems also have to be modified. Products in this
category include XtratuM, PikeOS, RTS Hypervisor,
Wind-River VxWorks Integrity-178B LynxSecure,
QNX and the Freescale Embedded Hypervisor.

IV. DEVELOPMENT METHODS AND CERTIFICATION

The certification process of safety critical real-time
applications, by so-called Certification Authorities (CAs) is
based on very conservative assumptions, which typically
exceed what is required by the designer’s assurance levels.
As a consequence, the system designer has to deal with
mixed-criticality job sets: high criticality applications (jobs),
which have to be certified by CAs, have two different worst
case execution times (WCETs): designer’s WCET and a
more pessimistic (longer) WCET of the CAs.

The pessimistic assumptions of the CAs have to be
checked and certified before system start. At the same time,
design requirements must also be considered and guaranteed.
Considering low and high criticality jobs with CAs’
pessimistic assumptions in one schedule lead to an
underutilization of the system [Baruah 2010, Rushby 2010].

The problem of scheduling such mixed criticality
applications has been shown to be NP-hard for event
triggered and time triggered systems [Baruah 2001].

Similar considerations apply for networked systems.
TTEthernet or Flexray are examples for integration of
messages of various criticality, e.g., time triggered and event
triggered. As with processing, the key question becomes one
of protection and resource utilization. Analysis for the two
mentioned networks so far focused on the critical parts only.

In order to achieve an independent certification of
partitions the following aspects should be considered:
� Partition should be executed under spatial and temporal

isolation.
� Partitions should be analyzed in an isolated way.

Methods for this isolated analysis are required.
Sufficient independence may be guaranteed.

� The scheduling of the other partitions should not be
modified, causing temporal interference.

� The possible execution interference of multicore
execution should be modeled following WCET analysis
techniques.

These criteria introduce some constraints with respect to the
hardware and the scheduling policy of the virtualization
layer. In relation to the hardware, resources shared by the
processors (cache, memory, bus arbitration, IO, etc.) shall

261

not impact or have a limited impact on the partition
execution. This could be achieved with specific hardware
that permits to isolate or allow a partitioning on the
resources.
The criteria related to the scheduling policy implemented by
the hypervisor should prevent the variability of the partition
execution even preserving its processor bandwidth. A cyclic
scheduling policy, as proposed in ARINC-653 standard
[ARINC-653] should fulfill this need.

The required development process for safety-critical
systems is defined in domain-independent (e.g. IEC 61508)
or domain-specific (e.g. ISO 26262, DO-178B) certification
standards. These standards require appropriate separation
mechanisms for mixed-criticality systems, but do not specify
concrete mechanisms or methods to achieve this separation.
Multicore and mixed-criticality is a hot topic for certification
bodies.

In many cases, the V-Model shape is employed since it
covers the entire development progress including
requirements engineering, specification, implementation and
integration as well as validation and verification (e.g.,
testing). Therefore, it eases certification according to the
mentioned safety standards. However, this needs to be
adapted to the mixed-criticality realm.

A plethora of methods are being studied to be applied
nowadays to engineer mixed criticality systems. More
prominent are those related to Model-Driven Engineering
(MDE) and Software Product Lines. There is as well a line
of work based on Components.

These techniques promote cross-industry reuse with
reduced development cost, shorter time-to-market and higher
reliability of mixed-criticality systems.

The development process will leverage the reuse of
software and hardware components, safety case reuse, multi-
vendor tools interoperability and traceability, and prevent
any side effects of component interaction.

A key goal of the project is for academia to listen
industry, and for industry to explain openly its needs. An
updated roadmap to adoption is expected as an output of the
discussion.

Currently a number of related European research projects
under both FP7 and Artemis programs are working along
similar lines, namely, ACROSS, MultiPARTES, ARAMIS,
CERTAINTY, VIRTICAL and RECOMP. They featured
some works on both the practical and scientific perspectives,
on topics such as reference architecture, methodology, tools,
certification issues and industrial application, among others.

A key point is how to assure that techniques are
certification ready and certification bodies are well aware of
the last progress. In this regard, a hot topic is “sufficient”
independence among involved subsystems. Other relevant
trends as multicore advent, pressure from consumer
electronics, and other topics will be covered.

V. MULTIPARTES PROJECT
The main objective of MultiPARTES is to provide

execution environments and tools to support the
development of mixed criticality applications over

partitioned embedded platforms based on a multicore open
source virtualization layer thereby shortening the time-to-
market. This will be done through the definition,
demonstration and validation of a complete engineering
framework supporting the design and development of
partitioned systems.
Two main results can be identified:
1. The definition of a methodology to enforce the

development and production of new applications based
on partitioned multicore systems. The methodology will
be supported by a tool that allow the definition of
activities and its attributes (security level, criticality
level, real-time constraints, operating system needs,
hardware dependencies, etc.). Based on these attributes,
the tool proposes a partitioning scheme to isolate
activities in partitions, an allocation of partitions to
cores, and a scheduling scheme to execute the partitions.
The final result is a set of configuration files that
statically define the behavior of the virtualization layer.

2. An execution platform based on XtratuM [Masmano
2012] hypervisor specifically designed for embedded
real-time systems. It provides spatial and temporal
isolation of partitions and permits to execute partitions
without a specific knowledge of its internals. Partitions
can contain different execution environment as single
thread (bare partitions). multi-thread (guest RTOS or
GPOS) or multicore (multicore guest OS).

3. Execution environments. In the project several
execution environment (guestOSs) have been ported:
MPTAL (MultiPARTES Abstraction Layer) which is a
simple runtime which offers services close to the
ARINC-653 P4, ORK+ that provides an Ada
environment based on Ravenscar profile [Ureña 2007],
Partikle that is a POSIX RTOS [Peiro 2007] and a
Linux environment.

VI. MULTIPARTES ARCHITECTURE

XtratuM [Masmano 2010, Crespo 2010] is a hypervisor
that uses para-virtualisation technique to build a
virtualisation layer. Para-virtualisation is a technique that
permits to achieve high performance and low complexity.
The para-virtualized model offers potential performance
benefits when a guest operating system or application is
aware that it is running within a virtualized environment, and
has been modified to exploit this. One potential downside of
this approach is that such modified guests cannot ever be
migrated back to run on physical hardware.

Basically, a hypervisor provides multiple isolated virtual
machines. Each VM can execute a complete system (OS
kernel and the application processes). Communication
between VM’s is done commonly by means of a virtual
network. From the application layer, a hypervisor system is
much more than a distributed system: a set of computers,

262

where each computer runs its own operating system and
applications, and computers are inter-connected with a high
speed network. The most noticeable difference is the speed
of the virtual computers, which is only a fraction of the
native computer.

The main features provided by the MultiPARTES
virtualization layer are:
� Spatial isolation: A partition is completely allocated in a

unique address space (code, data, stack). This address
space is not accessible by other partitions. The
hypervisor has to guarantee the spatial isolation of the
partitions. The system architect can relax this property
by defining specific shared memory areas between
partitions.

� Temporal isolation: A partition is executed under a
cyclic policy. The execution of a partitions is not
impacted by others. However, shared resources could
affect to the execution of a partition. Explicit hardware
mechanism could reduce it. Also, the appropriated
cyclic plan design could avoid this execution
dependency in the more critical tasks..

� Predictability: A partition with real-time constraints has
to execute its code in a predictable way. It can be
influenced by the underlying layers of software (guest-
OS and hypervisor) and by the hardware. From the
hypervisor point of view, the predictability applies to the
provided services, the operations involved in the
partition execution and the interruption management of
the partitions.

� Security: All the information in a system (partitioned
system) has to be protected against access and
modification from unauthorized partitions or unplanned
actions. Security implies the definition of a set of
elements and mechanisms that permit to establish the
system security functions. This property is strongly
related with the static resource allocation and a fault
model to identify and confine the vulnerabilities of the
system.

� Static resource allocation: The system architect is the
responsible of the system definition and resource
allocation. This system definition is detailed in the
configuration file of the system specifying all system
resources, namely, number of CPUs, memory layout,
peripherals, partitions, the execution plan of each CPU,
etc. Each partition has to specify the memory regions,
communication ports, temporal requirements and other
resources that are needed to execute the partition code.
Static resource allocation is the basis of predictability
and security of the system. The hypervisor has to
guarantee that a partition can access to the allocated
resources and deny the requests to other not allocated
resources.

� Fault isolation and management: A fundamental issue in
critical systems is the fault management. Faults, when

occur, have to be detected and handled properly in order
to isolate them and avoid the propagation. A fault model
to deal with the different types of errors is to be
designed. The hypervisor has to implement the fault
management model and permits to the partitions to
manage those errors that involve the partition execution.

� Partition support: The execution environments require to
be adapted to work on a virtual platform. The hypervisor
has to provide the support to execute partitions and
inform about how the system is working.

� Confidentiality: Partitions cannot access to the space of
other partitions neither to see how the system is
working. From its point of view, they only can see its
own partition. This property can be relaxed to some
specific partitions in order to see the status of other
partitions or control their execution.

In multi-core platforms, the hypervisor can provide several
virtual CPUs to the partitions. A partition can be configured
as mono or multi-core. Different partitions (from the number
of cores point of view) can coexist in the system. This allows
taking profit from a multicore platform even if the partitions
are not multicore. Figure 1 shows an example of this view. It
shows a multicore platform virtualised by XtratuM which
offers the possibility to build multi-core or mono-core
partitions. In the example, two partitions use all the
virtualised CPUs due to it uses a multi-core OS. The third
partition is mono-core and only uses a virtual CPU.

Figure 1 . XtratuM approach

In order to handle the underlying multi-core hardware

two software architecture alternatives have been analyzed:
� Asymmetric Multiprocessing (AMP). In this case, one

instance of the hypervisor per core executes the
partitions allocated to it. As many instances of the
hypervisor as core provides the platform run in parallel.
Each one of these units executes a different software
instance and has exclusive access to its hardware
resources. A logical interconnection mechanism is
provided in order to communicate/synchronise these
logical units. AMP architectures do not permit

263

parallelism, so no additional exclusion/synchronisation
mechanisms are required.

� Symmetric Multi-Processor (SMP) architecture where a
single software instance manages all the hardware
resources. The software defines execution units (e.g.
thread, process) which are dynamically distributed
among the hardware processors. SMPs architectures
ease the implementation of parallel computing but, on
the other hand, more efficient exclusion mechanisms
than mutexes must be provided: spin-locks.

In MultiPARTES, the virtualization layer implements a

SMP architecture. On the other hand, MultiPARTES deals
with heterogeneous multicore systems. The hardware
platform consists in two different systems: a dual core x86
based processor and a FPGA with several LEON3 (Sparc
V8) synthesized processors. While the x86 subsystem
provides high computation capabilities, the LEON3 permits
to reach more predictable computation.

XtratuM has been adapted to both platforms and an

instance of XtratuM runs in each one. Explicit mechanisms
to communicate both instances in different hardware
platforms have been implemented. These mechanisms permit
to communicate by means of ARINC-653 sampling and
queuing ports partitions allocated in different processors.

VII. MULTIPARTES METHODOLOGY

The development of mixed-criticality virtualized multi-core
systems poses new challenges that are being subject of active
research work. There is an additional complexity: it is now
required to identify a set of partitions, and allocate
applications to partitions. In this job, a number of issues have
to be considered, such as the criticality level of the
application, security and dependability requirements,
operating system used by the application, time requirements
granularity, specific hardware needs, etc.

The MultiPARTES toolset relies on Model Driven
Engineering (MDE), which is a suitable approach in this
setting, as it facilitates to bridge the gap between design
issues and partitioning concerns. MDE is changing the way
systems are developed nowadays, reducing development
time significantly. In general, modeling approaches have
shown their benefits when applied to embedded systems.
These benefits have been achieved by fostering reuse with an
intensive use of abstractions, or automating the generation of
boiler-plate code.

Applications are described using UML, as the standard
format. They are enriched with annotations related with
extra-functional requirements, such as timing, criticality,
security, etc. Additional information can be included, such as

requirements on the execution platform (hardware and
operating system), and requirements on needed
computational resources (CPU time, memory, or bandwidth).
For this purpose, it is used UML-MARTE. This information
will be used for assessing the fulfillment of some of the non-
functional requirements, and for generating a suitable system
partitioning.

The MultiPARTES project is developing tool support for
partitions identification and applications allocation. The
overall approach is shown in figure 2. The initial inputs are:

� Application models: They describe application
specific information, such as extra-functional
requirements, resource usage needs, etc. In
particular, the criticality level of an application
should be included in this model.

� Platform models: They include information on the
characteristics of the hardware, and the operating
systems that can be run on top of XtratuM, for this
specific platform.

A system to be developed is initially composed by a set of
applications that has to be executed on top of a given
platform. The first step is the specification of the partitioning
constraints model, which includes information for
partitioning that relates the platform and application models.
For example, a set of applications that has to be executed on
the same partition, an application having specific hardware
requirements, etc.

Figure 2 . MultiPARTES toolset

The partitioning tool takes the information from these
models as input, for generating a deployment model, which
defines a system partitioning: a set of partitions, assignment
of hardware resources to each partition, communication
ports, partitions security configuration, and the allocation of
applications to partitions. The deployment model must meet
all system functional and extra-functional requirements.
Some of them are correct by construction. For example, the

264

partitioning tool ensures that two applications with different
criticality level will never be in the same partition. However,
in some cases analysis tools are required. This is the case
with time requirements, as it is needed to ensure that they are
met. For this purpose, a response time analysis tool will be
used. A model transformation will be in charge of generating
the tool input format from the described models. The results
of the analysis are fed back to the partitioning tool. If time
requirements are met, the generated deployment model is
valid. Otherwise, current system partitioning must be refined.

When the deployment model is valid, a neutral model is
generated. It includes only the information required for the
generation of the final toolset outcomes. It relies mainly on
the deployment model and on the applications model.
However, in some cases it may also require to use
information from the platform model. The aim of the neutral
model is to isolate the partition generation activities from the
generation of the final files. As it is simpler than the other
models, it will be easier to develop model transformations
for different programming languages.

The toolset generates three types of final outcomes:

� Source code: the toolset is able to generate Real-
Time Java code, or Ada 05 package skeletons.

� XtratuM configuration files: This hypervisor
requires a number of files including information
about partitions, allocated applications, hardware
devices used, and assigned computational
resources. These files are automatically generated,
taking as main input the information from the
deployment model, extracted in the neutral model.

� System generation files: The toolset also generates
a set of make files intended to ease the generation
of the final system. These files compile and links
together the source code, operating systems, and
XtratuM, to form the executable that will
downloaded to the embedded platform for system
execution.

The models and toolset being currently developed will
speed-up the integration of mixed-criticality systems based
on partitioning and deployed on multicore hardware.

VIII. CONCLUSIONS
This paper presented the approach followed in the

MultiPARTES FP7 project to support mixed-criticality
integration for embedded systems based on virtualization
techniques for heterogeneous multicore processors.

The major outcomes of the project are the methodology
to deal with activities with different levels of criticality and
the MultiPARTES virtualization layer based on XtratuM, an
open source hypervisor designed as a generic virtualization
layer for heterogeneous multicore and the methodology.

The partitioning approach and the methodology

introduced pave the way to certification. Indeed, this is a
major enabler for the adoption of the MultiPARTES
approach when engineering mixed-criticality systems.

REFERENCES
[1] [ARINC-653] ARINC: Avionics Application Software Standard

Interface ARINC Specification 653-1 (October 2003)
[2] [Baruah 2011] S. Baruah and G. Fohler. Certification-cognizant time-

triggered scheduling of mixed-criticality systems. Proceedings of the
IEEE Real-Time Systems Symposium (RTSS), Vienna, Austria,
2011.

[3] [Baruah 2010] S. Baruah, H. Li, L. Stougie. Towards the Design of
Certifiable Mixed-criticality Systems. IEEE Real-Time and
Embedded Technology and Applications Symposium RTAS 2010,
Stockholm, Sweden, April 12-15, 2010.

[4] [Crespo 2010] A. Crespo, I. Ripoll, M. Masmano, S. Peiró:
Partitioned Embedded Architecture Based on Hypervisor: The
XtratuM Approach. Eighth European Dependable Computing
Conference, pp: 67-72, Valencia, Spain, 28-30 April 2010.

[5] [Ernst 2010] R. Ernst, Certification of trusted MPSoC platforms,
in MPSoC 2010.

[6] [Kopetz 2005] H. Kopetz; A. Ademaj; P. Grillinger; K. Steinhammer
The Time-Triggered Ethernet (TTE) Design 8th IEEE International
Symposium on Object-oriented Real-time distributed Computing
(Seattle, Washington), May 2005

[7] M. Masmano, I. Ripoll, A. Crespo, S. Peiro. XtratuM for LEON3: an
OpenSource Hypervisor for High-Integrity Systems. Embedded Real
Time Software and Systems (ERTS2 2010). May 2010. Toulouse
(France). 2010

[8] M. Masmano, M. Patte, V. Lefftz, M. Zulianello, A. Crespo, J.
Coronel. System impact of distributed multicore systems. In DASIA
2012. DAta Systems In Aerospace. May. Dubrovnik 2012.

[9] [Mollison 2010] M. Mollison and et al. Mixed-criticality real-time
scheduling for multicore systems, Proc. of IEEE Int. Conf. on
Embedded Software and Systems 2010.

[10] [Peiro 2007] S. Peiro, M. Masmano, I. Ripoll, and A. Crespo.
PaRTiKle OS, a replacement of the core of RTLinux. 9th Real-Time
Linux Workshop. November 2-4, 2007. Linz, Austria

[11] [Shah 2005] R. Shah, Y.-H. Lee, and D. Kim, "Sharing I/O in
strongly partitioned real-time systems," in Embedded Software and
Systems, ser. Lecture Notes in Computer Science, Z. Wu, C. Chen,
M. Guo, and J. Bu, Eds. Springer Berlin / Heidelberg, 2005, vol.
3605, pp. 502--507.

[12] [Paukovits 2008] C. Paukovits, H. Kopetz. Concepts of Switching in
the Time-Triggered Network-on-Chip. Proc. of the 14th IEEE Int.
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2008).

[13] [Goossens 2010]K. Goossens et al., The Aethereal network on chip
after ten years: Goals, evolution, lessons, and future. Proc. of Design
Automation Conference (DAC), 2010.

[14] [Obermaisser 2011] R. Obermaisser (Ed.): "Time-Triggered
Communication"; CRC Press, Taylour & Francis Group. 568 pages,
ISBN 9781439846612. 2011.

[15] [Rushby 2011J. Rushby. New Challenges In Certification For
Aircraft Software. Proceedings of the Ninth ACM International
Conference On Embedded Software (EMSOFT), pp. 211–218,
Taipei, Taiwan, October 2011.

[16] [Ureña 2007] S. Ureña, S. Pulido, J.A., Redondo, J., Zamorano, J.:
Implementing the new Ada 2005 real-time features on a bare board
kernel. Ada Letters XXVII(2), 61–66 (2007); Proceedings of the 13th
International Real-Time Ada Workshop (IRTAW 2007).

265

