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Abstract— An analytical framework for the study of a generic
distribution problem is introduced in which a group of agents
with different capabilities intend to maximize total utility by
dividing themselves into various subgroups without any form
of global information-sharing or centralized decision-making.
The marginal utility of belonging to a particular subgroup
rests on the well-known concept in economic theory of the law
of diminishing returns. For a class of discrete event systems,
we identify a set of conditions that define local information
and cooperation requirements, and prove that if the proposed
conditions are satisfied a stable agent distribution representing
a Pareto optimum is achieved even under random but bounded
decision and transition delays.

I. INTRODUCTION

One of the most profound trends in modern society is
the movement from centralized to distributed applications.
It is envisioned that large-scale networks of agents replace
more costly and vulnerable centralized systems. Trying to
maximize total utility, these agents must work together and
coordinate their actions to complete a set of tasks [1]-[3].
Because agents often make decisions based on outdated
sensing about their surroundings and their actions affect
the state of the network only at some distant point in the
future, delays become a major obstacle in the development
of network-based applications. The question of how to share
information depends in general on the effect of delays on
both the agents’ perceptions and interactions. Identifying
what information over the network is of value is important to
overcome these limitations and design interaction strategies
that guarantee the performance of the group as a whole [4]-
[7].

The work in [4] presents an epidemic model that com-
pares the effects of different intervention strategies in social
networks. It identifies conditions under which the process
of treating wait-listed households gives the least effective
outcome (i.e., under constant intervention delays). Moreover,
it shows that allowing for the immediate treatment of 33
percent of the infected households is sufficient to prevents
outbreaks. The work in [5] proposes various strategies to
control epidemic outbreaks based on the structure of contact
networks. The authors compare the effects of delays both in
implementing mass and targeted vaccination strategies and
in keeping infected patients away from other individuals
for some period of time. They show that if the delays in
implementation are short, a targeted vaccination can be as
effective as a mass vaccination. Moreover, if quarantine

periods are short, outbreaks can be contained with a targeted
strategy, avoiding the full cost of mass vaccination.

In technological networks, delays are often
introduced due to resource and information flow
constraints [6]-[7]. The work in [6] characterizes
the consensus problem for a group of agents under
constant communication delays. Taking advantage of a
regular network topology, the authors propose a distributed
algorithm based on a proportional-derivative control law for
second-order dynamics. They identify regions of stability
that characterize the response of the system to variations in
delays and controller gains. The work in [7] considers the
load balancing problem on a network based on outdated
estimates (due to network bandwidth constraints). Delays
limit the range of controller gains and as consequence the
rate of convergence to an optimal distribution. As in [6],
the results in [7] suggest a trade-off between the optimal
parameters of the control strategies (gains leading to a better
system response), and the risk for instability due to delays.

This paper considers the effects of delays on a generic
distribution problem of a group of heterogeneous agents.
Heterogeneous agents have two or more distinctive fea-
tures that define the various types of agents. Like [8],
we present a cooperation strategy that coordinates the ac-
tions between agents and takes into account to what ex-
tent each type of agent contributes toward the group’s
common goal. We use a discrete event systems frame-
work to capture how the group achieves an equilib-
rium distribution that represents a Pareto optimum in
the sense that no subgroup of agents can benefit from
reallocating agents without making the group as a whole
worse off. We associate to each subgroup mathematical
functions that satisfy the well-known concept in economic
theory of the law of diminishing returns. The proposed
framework allows the heterogeneous agents to achieve the
optimal distribution despite the effect of delays on both
the agents’ perceptions and interactions. Adding random
but bounded delays extends the work in [3] allowing us
to propose a cooperation scheme based on local, outdated
information. In particular, the proposed framework quantifies
the trade-off between the optimal degree of cooperation for
faster convergence and the size of the delays in decision-
making and transitioning (which is of interest in various
contexts of multi-agent networks [9]-[11]).

The remaining sections are organized as follows: Section II
introduces the notion of utility functions and formalizes
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the generic distribution problem. Section III introduces the
model and presents sufficient conditions for a group of
heterogeneous agents to reach the optimal distribution under
both types of delays. Our analytical results in Section IV
characterize the stability properties of the Pareto optimum
equilibrium point of the network. Section V provides Monte
Carlo simulations that explore the link between cooperation,
settling time, information-sharing, and the size of the delays.

II. THE NOTATION AND BASIC PROBLEM

Let a node represent an activity, task, or subgroup of
agents; nodes belong to a set N , indexed from 1 to n. An
agent represents a resource or unit of supply and may be of
various types; agent types belong to a set M , indexed from
1 to m. The interconnection among nodes is described by a
network G = (N,A), where A represents the set of edges. If
{j, k} ∈ A, agents at node j can sense (outdated) information
about node k and can move to k, and agents at node k can
also sense (or move) to node j. Let Nj = {k : {j, k} ∈ A}
denote the set of neighboring nodes of node j. We assume
that the number of agents of each type is large enough to
be appropriately represented by a continuous variable (as
in [12]). Let R = [0,∞)m be the space of all combinations
of available agents and let r̂ `j represent the number of agents
of type ` at node j and r̂j=[r̂ 1

j , . . . , r̂
m
j ]>∈R be the distri-

bution of agents at node j (e.g., the number of agents of each
type assigned to a particular subgroup). Let ∆c⊂Rn denote
the m(n − 1) dimensional simplex defined by the equality
constraint

∑n
i=1 r̂i=c, where c is a vector [c1, . . . , cm]>∈R

and c` the available number of agents of type `. The utility
of having a distribution of agents r̂j at node j is given
by the function fj : R → [0,∞) and the total utility
function is defined by f :Rn→ [0,∞), f(r̂) =

∑n
i=1 fi(r̂i),

where r̂ = [r̂>1 , . . . , r̂
>
n ]>. The objective is to identify local

requirements that allow a group of heterogeneous agents to
solve the following optimization problem

maximize f(r̂), subject to r̂ ∈ ∆c (1)

under decision delays (agents have a delayed perception of
the marginal utility function of the neighboring nodes) and
transition delays (agents require some finite time to move
from one node to another), both random but bounded.

We suppose that each utility function fj satisfies the follo-
wing three assumptions, common in economic theory [13].
First, each function fj is continuously differentiable on R.
Second, an increase in utility must satisfy the law of dimin-
ishing returns, i.e.,

fj(r̂j + u`h`)− fj(r̂j)
u`

>
fj(r̂j + w`h`)− fj(r̂j)

w`
(2)

where r̂j ∈ R, w` > u` > 0 are some number of agents of
type `∈M , and h`∈R is a vector with one in the `th row
and zeros otherwise. In other words, we assume a decreasing
average return with respect to (w.r.t.) increasing magnitudes
of agent additions. Third, an increase of agents at a node
must always increase the utility associated to that node and

satisfy the bounds

0 <
fj(r̂j + v`h`)− fj(r̂j)

v`
<∞ (3)

where v` > 0, ` ∈M . Note that (2) and (3) can be viewed as
a particular case of the law of diminishing returns. Under the
above assumptions, the partial derivative of fj w.r.t. agents
of type ` ∈ M , that is the marginal utility w.r.t. agents of
type `, denoted by s`j , satisfies

−a` ≤
s`j(xj)− s`j(yj)

x`j − y`j
≤ −b` (4)

for any xj , yj ∈ R, x`j 6= y`j , and some constants 0 < b` ≤ a`
defined for each type of agent ` ∈M . Moreover, because of
the assumptions on fj , the functions s`j are continuous on
R, strictly decreasing, and non-negative (see [3] for details).

III. THE MODEL

Agent transitions across the network are driven by the
asynchronous occurrence of discrete events at time index
t = 0, 1, 2, . . .. At time t, the number of agents of type ` ∈M
transitioning from node j to a neighboring node k is defined
as r`j→k(t). The total number of agents of type ` transitioning
from node j to its neighboring nodes is defined as ~r `j (t) =∑
k∈Nj

r`j→k(t). Let ~rj(t) = [~r 1
j (t), . . . , ~r mj (t)]>. To take

into account delays in transitioning between nodes let

~r(t) =

~r1(t) . . . ~r1(t−Bt + 1)
...

. . .
...

~rn(t) . . . ~rn(t−Bt + 1)


where ~r ∈ Rn×Bt , Bt > 1. Similarly, to capture delays in
decision-making let

r̂(t) =

r̂1(t) . . . r̂1(t−Bs + 1)
...

. . .
...

r̂n(t) . . . r̂n(t−Bs + 1)


where r̂ ∈ Rn×Bs , Bs > 1. The state of the system is
defined as r = [~r, r̂ ], r ∈ Rn×(Bt+Bs).

Let (r̂)pq ∈ Rn×Bs denote the vector of the distribution
of all types of agents across node p in column q of its
matrix argument (i.e., the distribution at time t + 1 − q).
Let S = {1, . . . , Bs}. Note that each utility function fj is
strictly concave on R and f is strictly concave on Rn. Thus,
the optimal point r̄ that satisfies (1) is unique and belongs
to the set ∆?

c defined as

{r ∈ ∆c| ∀p∈N, ∀p′∈Np,∀`∈M,∀q, q′∈S, ~r `p =0,

s`p((r̂)pq)<s
`
p′((r̂)p′q′)⇒ r̂ `p =0} (5)

In other words, when r ∈ ∆?
c , it must be that for any type

of agents ` ∈ M there are no agents transitioning between
nodes (because they would not represent a gain in terms of
utility) and if a particular node has a lower marginal utility
than a neighboring node, then the optimal distribution has
no agents of type ` at that node [14].
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Let e`j→k(t) denote the departure of u`j→k(t) agents of
type ` ∈ M from node j to node k at time t. Let ej→k(t)
denote the set of all possible departures from node j to
node k for any type of agent. Similarly, let e`j←i(t) denote
the arrival of w`j←i(t) agents of type ` ∈ M at node j
from node i at time t and ej←i(t) denote the set of all
possible arrivals for any type of agents. Finally, let E =
P({ej→k(t)} ∪ P({ej←i(t)})− {∅} be the set of events of
all simultaneous transitions (departures and arrivals) between
nodes. An event e(t) ∈ E is defined as a set with each
element representing a transition of an number of agents of
type ` ∈M between two neighboring nodes.

If an event e(t) ∈ E occurs at time t, the update of the
state of the system is given by r(t+1) = g(r(t)). For agents
of type ` ∈M , the number of agents at node j ∈ N at time
t+ 1 is given by

r̂ `j (t+ 1) = r̂ `j (t) −
∑

{k: e`j→k(t)∈ e(t)}

u`j→k(t)

+
∑

{i: e`j←i(t)∈ e(t)}

w`j←i(t) (6)

In other words, the number of agents of type ` at node j ∈ N
at time t + 1 is the actual amount, minus the number of
agents that departures toward its neighboring nodes, plus the
number of agents that arrives from some neighboring nodes.
The number of agents that are in transition from node j ∈ N
to its neighboring nodes at time t+ 1 is given by

~r `j (t+ 1) = ~r `j (t) +
∑

{k: e`j→k(t)∈ e(t)}

u`j→k(t)

−
∑

{k:e`k←j(t)∈ e(t)}

w`k←j(t) (7)

Note that the number of agents of type ` that are in transition
depends on the number of agents that departs from node j
and the number of agents that arrives at any of the destination
nodes. We do not differentiate between agents transitioning
to different destination nodes. Moreover, solving (1) requires
that the agents on a network G satisfy the following three
assumptions.
Assumption 1 (on the network): The network G = (N,A) is
connected, i.e., ∀j, k ∈ N there exists a path from node j to
node k.

The requirement that G has one network component places
minimum conditions on the sensing constraints and the
possible transitions of the agents.
Assumption 2 (on the various types of agents): The total
number of agents of each type ` ∈ M , c`, is large enough
to have some number of agents of type ` at each node when
r ∈ ∆?

c .
Following a similar argument as in [3], we can show that

when Assumption 1 and 2 hold, ∆?
c in (5) can be written as

{r ∈ ∆c| ∀p∈N, ∀p′∈Np,∀`∈M,∀q, q′∈S, ~r `p =0,

s`p((r̂)pq)=s`p′((r̂)p′q′)} (8)

Assumption 3 (on the delays): At time t, agents of type ` at
node j decide to transition to neighboring nodes based on a
delayed value of the marginal utility of node k w.r.t. agents
of type `. This perception of the marginal utility of node
k ∈ Nj satisfies

ρ`jk(t) ∈ {s`k(r̂k(t′)) : t′ ∈ [t−Bs + 1, t]}

where Bs > 1. Moreover, ρ`jj(t) = s`j(r̂j(t)) and agents that
start transitioning from node j at time t must arrive at their
destination node within Bt > 1.

Agents at node j must know the actual value of s`j(r̂j(t)),
but both decision and transition delays can be random but
bounded. Transitions may be stochastic, but rest on the
following conditions for e(t)∈ E at time t.
Condition 1: If ρ`jk(t)≤ s`j(r̂j(t)) ∀k ∈Nj then e`j→k(t) ∈
e(t) has u`j→k(t)=0 (i.e., agents at node j cannot transition
to any neighboring node).
Condition 2: If ρ`jk(t) > s`j(r̂j(t)) for some k ∈ Nj , then
e`j→k(t) ∈ e(t) has u`j→k(t) > 0 and node k is the unique
destination node such that

ρ`jk(t) ≥ ρ`ji(t) > s`j(r̂j(t)), ∀i, k ∈ Nj (9)

The number of agents of type ` that starts to transition from
node j to node k is

0 < u`j→k(t) = φ`[ρ`jk(t)− s`j(r̂j(t))] (10)

where φ` ∈ (0, 1/2a`].
Eq. (9) guarantees that agents transition toward a unique

node perceived to have higher or equal marginal utility than
all other neighboring nodes. Eq. (10) bounds the number of
agents that can transition. The value of φ` in (10) captures
the degree of cooperation between agents of type `.

IV. RESULTS
By restraining the allowable events in the network, the

assumptions and conditions in Section III define a distribu-
tion process that leads to a Pareto solution that captures the
optimum distribution of the heterogeneous agents across the
network.

Theorem 1: Suppose Assumptions 1-3 hold. Moreover,
decision-making on the network G satisfies Conditions 1-2.
Then, the point r ∈ ∆?

c is an equilibrium point of the model
and has a region of asymptotic stability equal to ∆c.

Theorem 1 implies that from any initial distribution of
agents, the group of agents will reach the point r∈∆?

c that
maximizes the total utility, despite local requirements and
decision and transition delays.

Proof :
Let the Lyapunov candidate function be defined as

V (r(t)) =

m∑
`=1

[
max
i
{s`i(r̂i(t′)) : t′ ∈ [t−Bs+1, t]}−s`i( r̄i)

+
1

n

(
max
i
{s`i(r̂i(t′)) : t′ ∈ [t−Bs+1, t]}

− 1

nBt

n∑
i=1

t∑
t′=t−Bt+1

s`i(r̂i(t) + ~ri(t
′))

)]
(11)
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where r̄ is the case when r ∈ ∆?
c . The supplement to this pa-

per (available at http://www.jfinke.org/public_
html/publications.html) shows that there exist a
metric ϕ(r(t),∆?

c) and two constants η1, η2 > 0 such that
η1ϕ(r(t),∆?

c) ≤ V (r(t)) ≤ η2ϕ(r(t),∆?
c). Moreover, if

the maximum marginal utility decreases, then the Lyapunov
function V (r(t)) = 0 as t→∞. Here, we will show that the
maximum marginal utility must decrease after (n−1)(Bs+Bt)
time steps.

Note that when r∈∆?
c ,∀j∈N, ∀k∈Nj , ∀`∈M , because

~r `j = 0, we know that there are no agents transitioning
between nodes and marginal utilities have not changed their
value within the last Bs−1 time steps. Because ρ`jk(t) =

s`k(r̂k(t))=s`j(r̂j(t)), u `j→k=0 (i.e., agents cannot transition
toward any neighboring node). Therefore, ∆?

c is invariant.
Let r 6∈∆?

c . Fix a time index t1>Bs. Fix a type of agent
` ∈M such that for some node j either ~r `j (t1) 6= 0 (some
agents are transitioning) or maxi{s`i(r̂i(t))} > s`j(r̂j(t)) at
some t∈ [t1−Bs+1, t1] (there exists a node with a marginal
utility below the maximum value within the last Bs−1 time
steps). (Because r 6∈ ∆?

c , at least one case must be true).
Let t0 =argmint maxi{s`i(r̂i(t)) : t∈ [t1−Bs+1, t1]} be the
minimum time index at which some node has the maximum
marginal utility. Let K`(t) = argmaxi{s`i(r̂i(t))} be the set
of nodes with the highest marginal utility w.r.t. agents of
type ` at time t. We now show that the transition of agents
of type ` from any node j to its neighboring nodes will not
cause the maximum marginal utility value to increase over
time (i.e., there isn’t any node that exceeds the value of the
nodes in K`(t0)).

First, consider an event e(t)∈E at time t with a transition
e`j→k′(t) where u`j→k′(t)> 0 from a node j ∈ N to some
node k′ ∈ Nj . Because agents of type ` at node j can only
transition toward a unique destination node, using (6), the
marginal utility of node j at time t + 1 is overbounded by
the number of agents that transition toward node k′, so that

s`j(r̂j(t+ 1)) ≤ s`j(r̂j(t)− u`j→k′(t)h`) (12)

Note that agents that arrive at a node can only decrease its
marginal utility. Moreover, using (4) for node j with xj =
r̂j(t) and yj = r̂j(t)− u`j→k′(t)h` yields

s`j(r̂j(t)− u`j→k′(t)h`) ≤ s`j(r̂j(t)) + a`u`j→k′(t) (13)

According to (10) and because 0<φ`≤1/2a`, we know that

s`j(r̂j(t))+a`u`j→k′(t)≤ρ`jk′(t)−a`u`j→k′(t)
=(1−a`φ`)ρ`jk′(t)+a`φ`s`j(r̂j(t))(14)

Combining (12), (13), and (14), we have that

s`j(r̂j(t+ 1))≤(1−a`φ`)ρ`jk′(t)+a`φ`s`j(r̂j(t)) (15)

Because ρ`jk′(t)∈{s`k′(r̂k′(t′)) : t′∈ [t−Bs+1, t]} and a` ≥
b` > 0, we can overbound (15) by

s`j(r̂j(t+ 1))≤max
i
{s`i(r̂i(t′)) : t′∈ [t−Bs+1, t]}

−b`φ`
[
max
i
{s`i(r̂i(t′)) : t′∈ [t−Bs+1, t]}

− s`j(r̂j(t))
]

(16)

Second, consider an event e(t) ∈ E at time t in which no
agents depart from node j, e`j→k′(t) with u`j→k′(t) = 0 for
all k′ ∈Nj . According to (6), the marginal utility of node
j cannot increase at time t + 1. (Eq. (16) also holds for
nodes from which no agents depart). Thus, for a fix time t1,
the marginal utility at any node j ∈N does not exceed the
maximum value within the last Bs − 1 time steps.

Next, using (16) with t = t′, for t′ ∈ [t1, t1 +Bs− 1],
we know that the occurrence of e`j→k′(t

′) ∈ e(t′) with
u`j→k′(t

′) ≥ 0, cannot increase the marginal utility of any
node j ∈ N above maxi{s`i(r̂i(t)) : t ∈ [t1−Bs+ 1, t1]}.
In other words, for all t′′ ∈ (t1, t1 +Bs], it must be that
s`j(rj(t

′′)) ≤ maxi{s`i(r̂i(t)) : t ∈ [t1−Bs+ 1, t1]} for all
node j∈N . Thus, we know that

max
i
{s`i(r̂i(t)) : t∈ [t1−Bs+1, t1]}

≥ max
i
{s`i(r̂i(t)) : t∈ [t1, t1+Bs]} (17)

To show that after a certain number of time steps the
maximum marginal utility in fact decreases, consider the
following two cases.

First, if for some t′ ∈ [t1, t1 + Bs], maxi{s`i(r̂i(t′))}<
maxi{s`i(r̂i(t)) : t ∈ [t1−Bs+1, t1]}, because s`j(r̂j(t

′)) ≤
maxi{s`i(r̂i(t′))} for all j ∈N , using (16) with t = t′, we
get that s`j(r̂j(t

′+1))<maxi{s`i(r̂i(t)) : t∈ [t1−Bs+1, t1]}.
Using a similar argument as above, the marginal utility values
cannot reach maxi{s`i(r̂i(t)) : t ∈ [t1−Bs+1, t1]} for all
t′′ > t′. Thus, we can conclude that (17) holds with strict
inequality.

Second, if for all t′ ∈ [t1, t1 + Bs], maxi{s`i(r̂i(t′))} =
maxi{s`i(r̂i(t)) : t ∈ [t1 − Bs + 1, t1]}, i.e., the maximum
marginal utility value at time t0 does not decrease between t1
and t1 +Bs, then there exist a set of (possibly a few) nodes
k′, . . . , k′′ ∈ K`(t′) for all t′ ∈ [t1, t1 + Bs] with the same
marginal utility value as node k ∈ K`(t0). From (16) with
t= t′, we know that the marginal utility of node j 6∈K`(t′)
at some t′∈ [t1, t1+Bs] cannot reach the same value as node
k ∈ K`(t0). Therefore, we can conclude that |K`(t′ + 1)| ≤
|K`(t′)| for all t′ ∈ [t1, t1 +Bs].

Furthermore, as long as r 6∈ ∆?
c , if the maximum marginal

utility value does not decrease between t1 and t1 +Bs, there
exists some node k′∈K`(t′) for all t′∈ [t1, t1 + Bs] with a
neighboring node j 6∈K`(t1+Bs−1) because the network G
is connected (Assumption 1). Note that the perception of any
neighboring node about the marginal utility of node k′ must
be equal to its actual value, s`j(r̂j(t1 +Bs−1))<ρ`jk′(t1 +

Bs−1) = maxi{s`i(r̂i(t)) : t ∈ [t1 − Bs + 1, t1]}. Because
ρ`jk′(t1 +Bs − 1) > s`j(r̂j(t1 +Bs − 1)), agents at node j
must transition toward node k′. According to Assumption 3,
those agents that transition at time t1+Bs−1 must arrive at
node k′ within Bt time steps, i.e., e`k′←j(t

′′) ∈ e(t′′) with
w`k′←j(t

′′)> 0 must occur at some t′′ ∈ [t1+Bs, t1+Bs+
Bt−1].

Let τk′ = argmint′′{w`k′←j(t′′)> 0 : j ∈Nk′ , t′′ ∈ [t1+
Bs, t1+Bs+Bt−1]} be the minimum time index at which
transitioning agents arrive at node k′. Using (6) with t=τk′ ,
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we have that

s`k′(r̂k′(τk′+1))

≤s`k′

r̂k′(τk′)+
∑

{j: e`
k′←j

(τk′ )∈e(τk′ )}

w`k′←j(τk′)h
`


<s`k′(r̂k′(τk′))

=max
i
{s`i(r̂i(t)) : t∈ [t1−Bs+1, t1]} (18)

Because τk′ ∈ [t1+Bs, t1+Bs+Bt−1], if for all t′∈ [t1, t1+Bs],
maxi{s`i(r̂i(t′))}=maxi{s`i(r̂i(t)) : t∈ [t1−Bs+1, t1]}, we
know that after Bs+Bt time steps either |K`(t1+Bs+Bt)|<
|K`(t1)| or maxi{s`i(r̂i(t1 +Bs+Bt))} < maxi{s`i(r̂i(t)) :
t∈ [t1−Bs+1, t1]} (due to (18)). Furthermore, because the
set K`(t′) for all t′ ∈ [t1, t1 + Bs] may contain several
nodes, after at most (n − 1)(Bs + Bt) time steps, some
agents transitioning must have reached all the nodes with
the maximum marginal utility within [t1−Bs+1, t1], i.e.,

max
i
{s`i(r̂i(t)) : t ∈ [t1 −Bs + 1, t1]}

> max
i
{s`i(r̂i(t)) : t ∈ [t2 −Bs + 1, t2]}

where t2 = t1+n(Bs+Bt). Note that if r 6∈∆?
c , Condition 2

will be always satisfied and will cause that some agents start
to transition toward a node with a higher perception. As
consequence, the maximum will decrease and the variations
in the Lyapunov function in (11) will be negatives. Thus,
V (r(t)) = 0 as t → ∞ and the optimal point r ∈ ∆?

c is
asymptotically stable in the region ∆c. More details can be
found in the supplement to this paper.

V. SIMULATIONS

This section presents the dynamics of a group of two types
of agents across a network with a regular degree distribution
and short, medium, and long size decision and transition
delays. Short delays represent periods of time that are within
5% of the average settling time without delays (175 time
steps). Medium and long delays correspond to periods within
5%-15% and 15-30%, respectively. Each node represents
a subgroup that requires both types of agents but with a
different marginal utility w.r.t. each type. Let the marginal
utility functions of each node be characterized by the form
s`i(ri) = c`id

−c`ir
`
i

i` where c`i and di` are chosen from a
uniform random distribution with support on [0.5, 1.3] and
[2, 4], respectively. Figure 1 shows the average settling time,
ts, to reach the optimal distribution defined in (8) from an
initial random distribution. Each plot considers 8 different
networks with a particular density of links (i.e., proportion of
links of G relative to the total number possible) and degrees
of cooperation.

Figure 1a shows the impact of short decision and transition
delays (Bs = Bt = 5 time steps). Note that increasing the
degree of cooperation leads to faster settling times with lower
standard deviations, σ, for all densities. Moreover, networks
with a high density have a lower σ for any fixed degree of
cooperation.

Figure 1b considers medium decision delays and short
transition delays(Bs = 20 and Bt = 5). Note that increasing
the degree of cooperation from 25% to 50% leads to a
faster ts and lower σ values for all density values, but more
noticeable for networks with a low density (with values
under .55). While increasing the degree of cooperation from
50% to 100% leads to faster ts only for a low density (un-
der .67), for networks with high densities (values between .89
and 1) ts may increase. The results in Figure 1c are similar
to Figure 1b. Note, however, that for degrees of cooperation
between 50% and 100%, the effect of decision delays has
a slightly stronger effect than transition delays on both ts
and σ for high density networks (values above .78).

In Figure 1d, decision and transition delays are medium
(Bs = Bt = 20). Note that increasing the degree of
cooperation from 50% to 100% leads to slower settling
times with higher σ values for networks with high density
(values above .67). The higher the density values, the slower
the settling times. For low density networks (with densities
under .55), Figure 1d shows a faster ts and lower σ values
as the degree of cooperation increases. Note also that for
degrees of cooperation under 75%, σ is lower for networks
with high density than for low density values.

In Figure 1e, decision delays are long and transition
delays are medium (Bs = 35 and Bt = 20). Note that
increasing the degree of cooperation is useful (i.e., leads to a
faster ts and lower σ values) only for low densities (values
under .44). Increasing the degree of cooperation for high
density networks leads to slower ts with higher σ values. The
higher the density values are, the slower the settling times. As
in Figure 1d, increasing the degree of cooperation from 25%
to 50% always leads to faster ts and lower σ values for all
network densities. For degrees of cooperation under 75%, σ
is lower for high density than for low density networks. The
results in Figure 1f are similar to Figure 1e. In networks with
high density, however, the effect of medium size decision
delays and long transition delays is subtle compared with
long decision delays and medium transition delays.

In general, Figure 1 shows that under short, medium, or
long decision and transition delays, increasing the degree
of cooperation leads to a faster settling times for networks
with low densities. However, there exists a trade-off between
the optimal degree of cooperation and the size of delays for
high density values (i.e., less cooperation may lead to faster
settling times as delays increase). Overall, when decision
and transition delays are short, we can get a faster ts as the
degree of cooperation increases regardless the density of the
network. When delays are medium or long, we can avoid
slower settling times by letting the agents exploit the trade-
off between the degree of cooperation and the size of the
delays. Finally, the agents reach a Pareto optimum through
local decision-making strategies despite the presence of both
types delays with different sizes.

VI. CONCLUSIONS AND FUTURE WORK

The proposed mathematical framework generalizes models
of generic team formation and should be of interest in be-
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FIG. 1: Settling time for different density values under varying degrees of cooperation between agents and short, medium, and long
delays. Each point represents 100 simulation runs. A density of .22 corresponds to a network with a ring topology, while a density
of 1.0 corresponds to a fully connected network.

havioral sciences [4]-[8] and engineering applications [1]-[7]
where collective outcomes are the result of coordinated
actions by heterogeneous agents. Using discrete event sys-
tems theory, the model allows us to study how distributed
agents reach a Pareto solution that maximizes the total utility
despite local requirements and the presence of delays in both
decision-making and transitioning.
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