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Abstract

Using the likelihood depth, new consistent and robust tests for the parameters

of the Weibull distribution are developed. Uncensored as well as type-I right-

censored data are considered. Tests are given for the shape parameter and also

the scale parameter of the Weibull distribution, where in each case the situation

that the other parameter is known as well the situation that the other parameter

is unknown is examined. In simulation studies the behavior in finite sample size

and in contaminated data is analyzed and the new method is compared to existing

ones. Here it is shown that the new tests based on likelihood depth are comparable

to standard methods and robust against contamination. They are also robust in

censored data in contrast to existing methods like the method of medians.

Keywords: Weibull distribution, censored data, data depth, likelihood depth, simplicial

depth, testing, robustness against contamination

1 Introduction

The Weibull distribution is often used in survival analysis, especially in life-testing and

reliability studies. It was introduced by Weibull (1951). The distribution function is one-

dimensional and depends on two parameters. Its survival function has a rather simple

form and it can be used to model constant as well as de- and increasing Hazard-functions.
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The textbook of Rinne (2009) gives a good overview of the developed test procedures for

the parameters of the Weibull distribution, for complete and for censored data. Tests

based on maximum likelihood procedures are presented there. Besides, many articles

deal with tests and confidence intervals for the parameters of the Weibull distribution in

censored and uncensored data, see for example Balakrishnan and Stehlik (2008), Chen

(1997), Wong and Wong (1982) or Kahle (1996). But still these methods are not robust

against contamination. Only He and Fung (1999) give outlier robust confidence intervals

for the shape parameter, but only for data where at most 16 % of the largest and 34% of

the smallest observations are censored.

In this work the likelihood depth shall be used to develop consistent and robust tests,

as described in Denecke and Müller (2011b) for general depth notions. The concept of

data depth is an approach to generalize the median and ranks to multivariate data and

more complex situations. Algorithms for computation can be found e.g. in Rousseeuw

and Ruts (1998). Notions of data depth were for example developed for multivariate

data by Tukey (1975), Liu (1988, 1990) and Mosler (2002). Zou and Serfling (2000a,b)

provided some general properties of depth notions. For recent approaches in data depth

see e.g. Lin and Chen (2006), Li and Liu (2008), Romanazzi (2009), López-Pintado and

Romo (2009), López-Pintado et al. (2010), Hu et al. (2009).

Any depth notion can be used to define simplicial depth as Liu (1988, 1990) did

using the halfspace depth of Tukey (1975). Every simplicial depth is a U-statistic so

that its asymptotic distribution is in principle known and asymptotic α-level tests can be

derived as Müller (2005) did. However, many simplicial depth notions are degenerated

U-statistics so that the spectral decomposition of a conditional expectation is needed to

derive the asymptotic distribution which is then not a normal distribution. Such spectral

decompositions were for example derived for polynomial regression, multiple regression,

and orthogonal regression by Wellmann et al. (2009) and Wellmann and Müller (2010a,b),

respectively. But there are also situations, when the simplicial depth is a non-degenerated

U-statistic. This is the case, when the estimator maximizing the underlying depth notion

is biased, as Denecke and Müller (2011b) showed. For these distributions they point

out how consistent tests based on general depth notions can be defined. Thereby a test
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ϕN : ZN → {0, 1} for H0 : θ ∈ Θ0 against H1 : θ ∈ Θ \ Θ0 is called consistent if

lim
N→∞

Pθ(ϕN = 1) = 0 for all θ ∈ int(Θ0),

lim
N→∞

Pθ(ϕN = 1) = 1 for all θ ∈ int(Θ \ Θ0),

where int(A) denotes the interior of a set A. The theory of Denecke and Müller (2011b)

shall be used here to derive tests for the parameters of the Weibull distribution in complete

and type-I right-censored data based on likelihood depth.

This work is organized as follows. In Section 2 a short introduction to likelihood

depth and tests based on likelihood depth is given. Also we recall the important results

about the consistency of the tests from Denecke and Müller (2011b). In Section 3 tests

and confidence intervals for the shape and scale parameter of the Weibull distribution

in uncensored data are developed. And in Section 4 the methods are used for type-I

right-censored data. Thereby each of the two section starts with the tests for the shape

parameter, when the scale is assumed to be known. Then the situation when the scale is

unknown is examined. After this, the procedure is repeated for the scale parameter, i.e.

we start with the shape to be known and then consider the shape to be unknown. Section

3, as well as Section 4, uses results from Denecke and Müller (2011c) about the robust and

consistent estimation of the parameters of the Weibull distribution based on likelihood

depth. The subsections of Section 3 and 4 include simulation studies to compare the new

method to existing ones. Thereby in each setting the sample size is 100 and the number

of repetitions 1000. For the simulations we used R (2010).

2 Tests based on likelihood depth

We will only repeat the main results of Denecke and Müller (2011b) that are used to

construct consistent α-level tests for the parameters of the Weibull distribution.

Consider Z1, . . . , ZN i.i.d. with continuous density fθ, θ ∈ Θ ⊂ R
q. The likelihood

function at parameter θ and observation z will be denoted by L(θ, z) := fθ(z).

For an introduction to likelihood depth see e.g. Mizera and Müller (2004) or Müller

(2005). As in this paper only one-dimensional parameters are considered, we define the

tangential likelihood depth and simplicial likelihood depth, that will be used for testing,
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for θ ∈ R only. The (tangent) likelihood depth of θ within z∗ := (z1, . . . , zN)T is defined

as

dT (θ, z∗) = 1
N

min(♯{n;
∂

∂θ
ln L(θ, zn) ≥ 0}, ♯{n;

∂

∂θ
ln L(θ, zn) ≤ 0}),

and the simplicial likelihood depth of θ within observations z∗ := (z1, . . . , zN)T is defined

as

dS(θ, z∗) := 2
N(N−1)

∑

1≤n1<n2≤N

dT (θ, (zn1 , zn2)),

thus, it is the U-statistic belonging to the tangent likelihood depth, which is the symmetric

kernel.

To simplify the presentation we introduce some abbreviations. The set, where ∂
∂θ

ln L(θ, z)

is positive or zero (negative or zero), will be denoted by T θ
pos (T θ

neg), i.e.

T θ
pos := {z ∈ R

m; ∂
∂θ

ln L(θ, z) ≥ 0}, T θ
neg := {z ∈ R

m; ∂
∂θ

ln L(θ, z) ≤ 0}.

Define

pθ,θ′ := Pθ(T
θ′

pos) := Pθ(Z ∈ T θ′

pos) = 1 − Pθ(T
θ
neg),

thus, the parameter with asymptotically maximum likelihood depth s(θ) for Pθ, θ ∈ Θ,

is the solution of pθ,s(θ) = Pθ(T
s(θ)
pos ) = 1

2
.

Lemma 1 (see Denecke 2010). Let be θ ∈ Θ with pθ,θ 6= 1
2

and Z∗ = (Z1, . . . , ZN),

Z1, . . . , ZN i.i.d., Zi ∼ fθ, i = 1, . . . , N . The test statistic, defined as

T (θ, z∗) :=
√

N

2
N(N−1)

∑
1≤n1<n2≤N dT (θ, (zn1 , zn2)) − 2pθ,θ(1 − pθ,θ)

2
√

(1 − pθ,θ)pθ,θ(1 − 2pθ,θ)2
,

satisfies T (θ, Z∗,N)
D→ X ∼ N (0, 1). Then the test ϕ(z∗) := 1{supθ∈Θ0

T (θ,z∗)<Φ−1(α)}(z∗) is

an asymptotic α-level test for H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0.

In particular, under the conditions of Lemma 1 we have that

ϕ0,≤
θ0

:= 1{supθ≤θ0
T (θ,·)<Φ−1(α)} for H0 : θ ≤ θ0, H1 : θ > θ0,

ϕ0,≥
θ0

:= 1{supθ≥θ0
T (θ,·)<Φ−1(α)} for H0 : θ ≥ θ0, H1 : θ < θ0, and
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ϕ0,=
θ0

:= 1{T (θ0,·)<Φ−1(α)} for H0 : θ = θ0, H1 : θ 6= θ0

are asymptotic α-level tests.

However, if the maximum likelihood estimator overestimates the true parameter θ0,

i.e. s(θ0) > θ0, then the test ϕ0,≥
θ0

has a bad power, see Denecke and Müller (2011b).

To improve the power, the rejection set {supθ≥θ0
T (θ, z∗) < Φ−1(α)} is extended, by

taking the supremum over a smaller set, i.e. θ ≥ c1
α(θ0) > θ0 instead of θ ≥ θ0.

To obtain the best power, c1
α(θ0) is chosen as the maximum value such that the re-

sulting test is still an asymptotic α-level test. Hence c1
α(θ0) is defined as c1

α(θ0) :=

max{θ; limN→∞ Pθ0 (T (θ, Z∗,N) < Φ−1(α)) ≤ α}. Under the assumptions

p(·),θ = P(·)(T
θ
pos) is strictly increasing from 0 to 1, pθ,(·) is strictly decreasing,

1/2 < pθ,θ ≤ 1/2 + 1/
√

8, and α < 0.5 (1)

for θ = θ0, Denecke (2010) shows that c1
α(θ0) is the value θ̃, such that 1 − pθ̃,θ̃ = pθ0,θ̃.

Additionally assume

c1
α is an increasing function, pθ,θ is a continuous function of θ. (2)

Proposition 1 (see Denecke 2010). Under the conditions (1) and (2) and pθ,θ 6= 1
2

for

all θ ∈ Θ,

ϕ0,≤
θ0

for H0 : θ ≤ θ0, H1 : θ > θ0,

ϕ≥
θ0

:= 1{sup
θ≥c1α(θ0)

T (θ,·)<Φ−1(α)} for H0 : θ ≥ θ0, H1 : θ < θ0, and

ϕ=
θ0

:= max{1{T (θ0,·)<Φ−1(α
2 )}

, 1{T (c1α
2

(θ0),·)<Φ−1(α
2 )}

} for H0 : θ = θ0, H1 : θ 6= θ0

are consistent tests with asymptotic level α.

Analogous results hold for s(θ0) < θ0. Here ϕ0,≥
θ0

is already a consistent test and

does not have to be corrected. However, ϕ0,≤
θ0

and ϕ0,=
θ0

must be corrected to ϕ≤
θ0

:=

1{sup
θ≤c2α(θ0)

T (θ,·)<Φ−1(α)} and ϕ=
θ0

:= max{1{T (θ0,·)<Φ−1(α
2 )}

, 1{T (c2α
2

(θ0),·)<Φ−1(α
2 )}

}. Here c2
α(θ0)

is defined by c2
α(θ0) := min{θ; limN→∞ Pθ0 (T (θ, Z∗,N) < Φ−1(α)) ≤ α} and satisfies

c2
α(θ0) < s(θ0) < θ0. Under conditions analogously to (1), c2

α(θ0) =: θ̃ is given by

1 − pθ̃,θ̃ = pθ0,θ̃ and the tests based on likelihood depth are also consistent. For more

details see Denecke (2010).
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In Denecke and Müller (2011b) it is also discussed and proven that the tests based on

simplicial likelihood depth have a high breakdown point in the sense of Ylvisaker (1977),

He et al. (1990), Coakley and Hettmansperger (1994), Zhang (1996), Müller (1997). This

is also supported by the results of the simulation studies of the next sections.

3 Tests and confidence intervals for the parameters

of the Weibull distribution in uncensored data

The density of the Weibull distribution is given by fa,b(t) = a
b

(
t
b

)a−1
exp

(
−
(

t
b

)a)
, where

a > 0 is the shape parameter and b > 0 the scale parameter. The corresponding distri-

bution function is Fa,b(t) = 1 − exp
(
−
(

t
b

)a)
.

3.1 Tests for the shape parameter, known scale parameter

Assume the scale parameter b0 > 0 to be known. Denecke and Müller (2011c) show

that T a
pos = {t ∈ R; ∂

∂a
ln fa,b0(t) ≥ 0} = [c

1
a

1 b0, c
1
a

2 b0], with 0.259 ≈ c1 < 1 < c2 ≈ 2.240

being the solutions of ln c = 1
c−1

. Thus pa,a = Pa,b0(T
a
pos) = Fa,b0(c

1
a

2 b0) − Fa,b0(c
1
a

1 b0) =

exp(−c1) − exp(−c2) ≈ 0.665 > 0.5. Further, the parameter with asymptotically max-

imum likelihood depth in Weibull data with shape a, s(a), is given by the solution of

pa,s(a) = exp(−c
a

s(a)

1 ) − exp(−c
a

s(a)

2 ) = 0.5, thus s(a) = 1
κ
a ≈ 1.447a > a.

Let be the test statistic T (a, t∗) as defined in Lemma 1. Because s(a) > a, the tests

for the hypothesis H0 : a ≥ a0 and H0 : a = a0 have to be corrected. Therefore c1
α has to

be determined. It holds pa0,a = exp(−c
a0
a

1 ) − exp
(
−c

a0
a

2

)
. It is pa0,(·) strictly decreasing

and p(·),a0
is strictly increasing. Thus, the condition (1) is fulfilled and ã := c1

α(a0) is

given by 1 − pã,ã = pa0,ã, so α < 0.5,

c1
α(a0) = k0 · a0,

with k0 ≈ 2.275. Especially c1
α(a0) exists for all a0 > 0, it is c1

α(a0) > a0 for all a0 > 0

and c1
α(·) strictly increasing. As further also (2) is fulfilled, the tests based on simplicial

likelihood depth are consistent tests with asymptotic level α: Let be α < 0.5, then

Proposition 1 gives:

6



The test ϕ0,≤
a0

(t∗) = 1{supa≤a0
T (a,t∗)<Φ−1(α)}(t∗) is a consistent test with asymptotic

level α for H0 : a ≤ a0.

The test ϕ≥
a0

for H0 : a ≥ a0 is consistent with asymptotic level α, by rejecting H0,

if sup
a≥c1α(a0)

T (a, t∗) < Φ−1(α).

A consistent test with asymptotic level α for H0 : a = a0 against H1 : a 6= a0

is given by ϕ=
a0

(t∗) = max
(
1{T (a0,t∗)<Φ−1(α

2
)}(t∗), 1{T (c1α

2
(a0),t∗)<Φ−1(α

2
)}(t∗)

)
. A confi-

dence interval with asymptotic level γ = 1 − α for the shape parameter a is given

by {a0 > 0; ϕ=
a0

(t∗) = 0}.

We compare this new test based on likelihood depth to a test based on the maximum

likelihood estimator (MLE), which can be found e.g. in the textbook of Rinne (2009). The

graphics in Figure 1 show the simulated power functions for H0 : a ≤ a0 and H0 : a ≥ a0

with a0 = 1. We note that the level is not kept by both tests and that the power functions
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Figure 1: Simulated power of the tests for H0 : a ≤ 1 (left) and H0 : a ≥ 1 (right), b0 the

scale parameter known.

are very similar. Denecke (2010) shows some more simulation results. They demonstrate

that the power does not change if different a0 and b0 are considered.

We also consider ε-contaminated data, as the new test is supposed to be robust against

contamination. Thereby ε-contaminated data means that (1 − ε)100% of the data come

from a Weibull distribution with the assumed parameters and ε100% from a different
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distribution. As a contamination distribution we only consider Weibull distributions with

different shape and/or scale. So, now examine data where some part is given by another

distribution, here Wei(a1, b0). In Figure 2, the simulated power-functions for H0 : a ≤ 1

and H0 : a ≥ 1 are pictured, where the contaminated data has a shape parameter a1 = 0.5

and the ratio of the contaminated data is 10%. For this contamination, the test based
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Figure 2: Simulated power of the tests for H0 : a ≤ 1 (left) and H0 : a ≥ 1 (right), b0

known, for 0.1-contaminated data with Wei(0.5, b0).

on the maximum likelihood estimator for H0 : a ≤ 1 has a very bad power in contrast

to the test based on likelihood depth. For H0 : a ≥ 1 both tests are infected by the

contamination with a small shape parameter, as both do not keep the level anymore. The

test based on the MLE behaves much worse than the test based on likelihood depth. When

considering contamination distribution with a bigger shape (e.g. a1 = 10), simulation

studies, see Denecke (2010), picture that for H0 : a ≤ a0 both tests do not keep the level,

while the tests for H0 : a ≥ a0 both tests are not really infected by the contamination.

Figure 3 displays the simulated power functions of the tests for H0 : a = a0 based on

likelihood depth, based on the MLE and based on the method of medians (MoM) of He

and Fung (1999), see also Boudt et al. (2011). All three tests have a very similar power

for uncontaminated data (left-hand side of Figure 3), but only the test based on likelihood

depth and the MoM test are robust against ε-contamination (right-hand side of Figure

3). When considering confidence intervals in the next step, also other contaminations are
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Figure 3: Simulation of the power-function of the tests for H0 : a = a0, known scale, left-

hand side: uncontaminated data, right-hand side: 0.1-contaminated data from Wei(a, b1).

simulated.

There are some more methods to determine confidence intervals for the shape param-

eter of the Weibull distribution. E.g. in Lawless (2003) a likelihood-ratio procedure is

described. We compare the confidence intervals for the shape parameter based on like-

lihood depth (lik depth) to ones based on the method based on the MLE, the method

based on likelihood-ratio statistics (LRS), and as a robust method we consider confidence

intervals based on the MoM, see He and Fung (1999). Table 1 shows some results for

ε-contaminated data.

MLE LRS MoM lik depth

a b a1 b1 cov. length cov. l. cov. l. cov. l.

a) 2 0.1 0.5 10 < 10−2 0.14 < 10−2 0.28 0.85 0.85 0.85 1.04

b) 2 1 0.5 1 0.07 0.40 0.06 0.41 0.88 0.88 0.89 1.00

c) 1 102 1 106 0.05 0.23 0.13 0.34 0.88 0.44 0.90 0.52

Table 1: Coverage rate (cov.) and length (l.) of the confidence intervals for the shape

parameter for ε-contaminated data from Wei(a1, b1), known scale parameter b0.

The method of medians and the method based on likelihood depth are quite robust.

The confidence intervals based on the maximum likelihood estimator and likelihood-ratio
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method are very bad. The method based on likelihood depth gives the best coverage

rates in two of the cases regarded.

3.2 Tests for the shape parameter, unknown scale parameter

If the scale parameter b0 is unknown and has to be estimated, the depth of a can only be

calculated based on the biased maximum likelihood depth estimator for the scale b̃N , the

median of the data (see Denecke 2010). To calculate the test statistic, we plug b̃N into

the simplicial depth instead of b0. Thus, db̃N

S (T∗) is not a U-statistic any more. We can

not use the theorem of Hoeffding to get the asymptotic distribution of the test statistic.

Anyway, we develop how the quantities would look like, if we still could use the same

theory as before and show in simulations studies that the power is still good for these

disturbed cases. We determine p̃shape as the asymptotic value for the part of observations

lying in T a0,b̃
pos = [c

1
a0
1 b̃N , c

1
a0
2 b̃N ], thus p̃shape = 2−c1 − 2−c2 ≈ 0.624.

Analog to the case, where the scale parameter is known, we define the test statistic

as

T̃ (a, t∗) :=
√

N
db̃N

S (a, t∗) − 2p̃shape(1 − p̃shape)

2
√

p̃shape(1 − p̃shape)(1 − 2p̃shape)2
.

Thus, we test H0 : a ≤ a0 with ϕ̃0,≤
a0

(t∗) = 1{supa≤a0
T̃ (a,t∗)<Φ−1(α)}(t∗).

As p̃shape ≈ 0.624 > 0.5, a correction for the test H0 : a ≥ a0 is needed. Determining

ã := c̃1
α(a0) analog to the case of known scale parameter, i.e. as the solution of 1− p̃ã,ã =

p̃a0,ã leads to c̃1
α(a0) = k̃0a0, with k̃0 ≈ 1.835. We test H0 : a ≥ a0 against H1 : a < a0

with ϕ̃≥
a0

:= 1{sup
a≥c̃1α(a0)

T̃ (a,t∗)≤Φ−1(α)}(t∗).

The power of the new test is, as before, compared to the power of the test based on

the MLE. In Figure 4 the simulated power functions of the tests for H0 : a ≤ a0 and

H0 : a ≥ a0 with a0 = 1 are displayed. Compared to the plot in Figure 1, when b0 is

supposed to be known, no real changes can be detected. Still both tests do not keep the

level.

Using the tests for H0 : a ≤ a0 and H0 : a ≥ a0, we can also define a test for the hy-

pothesis H0 : a = a0 against H1 : a 6= a0 as ϕ̃=
a0

= max(1{T̃ (a0,·)≤Φ−1(α
2
)}, 1{T̃ (c̃1α

2
(a0),·)≤Φ−1(α

2
)}).

Thus, we can also use the test for the shape parameter in situations, where the scale pa-
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Figure 4: Power of the tests for the shape a0, unknown scale parameter.

rameter is unknown. Again simulation studies, see Denecke (2010), show that this plug-in

test has the same power as the test with known scale parameter.

3.3 Tests for the scale parameter, known shape parameter

Now assume the shape parameter a0 > 0 to be known. In Denecke and Müller (2011c)

it is proven that T b
pos = [b,∞). Thus pb,b = Pa0,b(T

b
pos) = 1 − Fa0,b(b) = exp(−1) < 0.5.

Further the parameter with asymptotic maximum likelihood depth s(b) is the solution

of pb,s(b) = Pb,a0(T
s(b)
pos ) = exp

(
−
(

s(b)
b

)a)
= 0.5, so s(b) = (ln 2)

1
a0 b < b. Therefore, the

tests for the hypotheses H0 : b ≤ b0 and H0 : b = b0 have to be corrected. It holds

pb0,b = exp
(
−
(

b
b0

)a0
)

, thus it is pa0

b0,(·) strictly decreasing, pa0

(·),b0 is strictly increasing,

and 1/2 < 1− pb,b = 1− exp(−1) ≈ 0.623 < 1/2 + 1/
√

8. So the correction c2
α(b0) can be

determined as that value b̃ for that pb0,b̃ = pb̃,b̃, see Denecke (2010), and we get

c2
α,a0

(b0) = b0(− ln(1 − exp(−1)))
1

a0 ≈ b0(0.4587)
1

a0 ,

if α < 0.5. Especially, it is c2
α,a0

(·) strictly increasing and as − ln(1−exp(−1)) ≈ 0.46 < 1,

it holds c2
α,a0

(b0) < b0 for all b0 > 0. We see that c2
α,a0

is depending on a0, so here we

have to know a0, while the test statistic and the test for H0 : b ≥ b0 are independent of

a0. Let be α < 0.5, according to Proposition 1 it holds:

The test ϕ≥
b0

(t∗) := 1{supb≥b0
T (b,t∗)<Φ−1(α)}(t∗) is a consistent test with asymptotic

11



level α for H0 : b ≥ b0.

ϕ≤
b0

(t∗) := 1{sup
b≤c2α,a0

(b0)
T (b,t∗)<Φ−1(α)}(t∗) is consistent with asymptotic level α for

the hypothesis H0 : b ≤ b0.

It is ϕ=
b0

(t∗) := max(1{T (b,t∗)<Φ−1(α
2
)}(t∗), 1{T (c2α

2 ,a0
(b),t∗)<Φ−1(α

2
)}(t∗)) a consistent test

with asymptotic level α for H0 : b = b0 against H0 : b 6= b0. A confidence interval

with asymptotic level γ = 1−α for the scale parameter is given by {b0 > 0; ϕ=
b0

(t∗) =

0}.

We compare the power of this new test in a simulation study with a test for the

scale parameter given in the textbook of Rinne (2009), based on the maximum likelihood

estimator. Figure 5 shows the simulated power functions for the hypotheses H0 : b ≥ b0

(left-hand side) and H0 : b ≤ b0 (right-hand side) for b0 = 1, where in the second case for

both tests we assumed the shape a0 = 1 to be known and in the first case only needed

this information for the test based on the MLE. The test based on likelihood depth and
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Figure 5: Simulated power for the tests H0 : b ≥ b0 and H0 : b ≤ b0 in uncontaminated

data.

the test based on the MLE do not really differ in their power for uncontaminated data,

especially when testing H0 : b ≥ b0, the latter seems to give only slightly better results

when considering the hypotheses H0 : b ≤ b0. Further studies demonstrate that the shape
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parameter a0 has an influence on the power of both tests, but still both tests behave very

similar.

In a next step ε-contaminated data is considered, Figure 6 shows some simulation

results. For this contaminations the power of the test based on likelihood depth is better
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Figure 6: Simulated power for contaminated data, i.e. 10% of the data is coming from

Wei(a1, b1), where on the right-hand side it is b1 = b.

than the power of the test based on the MLE. Other studies, see Denecke (2010) showed

that contamination distributions with a smaller shape lead to very bad power of the test

based on the MLE, while the new test is not affected. Contamination with a smaller scale

has no influence on the power of both tests for H0 : b ≤ b0, but the tests for H0 : b ≥ b0

do not keep the level anymore. For contamination with a bigger scale the tests behave

vice versa.

A further simulation study shows that the new test for H0 : b = b0 based on likelihood

depth does not keep the level and that its power is little worse than the power of the test

based on the MLE, see Figure 7 on the left. Note that here we simulate tests with level

α = 0.04. For contaminated data, we display one result in Figure 7 on the right-hand

side. It shows again that the new test is robust against ε-contamination in contrast to

the test based on the MLE. Also the confidence intervals for the scale parameter based

on the method of likelihood depth and confidence intervals based on the testing with

the maximum likelihood estimator are compared. We calculate 96%-confidence intervals.
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Figure 7: Simulated power for H0 : b = b0, known shape parameter, left-hand side:

uncontaminated data, right-hand side: 0.1-contaminated data from Wei(a1, b).

The results for contaminated data are given in Table 2.

MLE likelihood depth

a b a1 b1 coverage length coverage length

1 1 0.5 1 0.796 0.496 0.941 0.592

1 1 5 1 0.976 0.445 0.805 0.360

1 1 1 10 0.008 0.847 0.857 0.683

5 5 1 10 0.005 1.120 0.952 0.650

Table 2: Coverage rate and length of the 96%-confidence intervals for the scale parameter

for 0.1-contaminated data, with contamination distribution Wei(a1, b1).

If we consider contaminated data, the coverage rate of the confidence intervals based

on the MLE goes down to less than one percent in some cases, while the new method is

robust against contamination.

3.4 Tests for the scale parameter, unknown shape parameter

If the shape parameter is unknown, we can not use Hoeffding’s theorem to derive the

asymptotic distribution of the test statistic anymore. As a0 is unknown, we have to
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estimate it. Therefore we can use the estimation procedure based on likelihood depth

introduced e.g. in Denecke (2010). We already mentioned that the test ϕ≥
b0

for H0 : b ≥ b0

against H1 : b < b0 is independent of a0. Here we need not to do any extra work. For

testing H0 : b ≤ b0 and H0 : b = b0 we use the correction c2
α,a0

(b0) that is dependent on a0,

while the test statistic is independent of a0. Considering a0 unknown and estimated by

âMLDE, we get a new plug-in test by using âMLDE =: â, the estimator based on likelihood

depth, instead of a0. Then the correction becomes c̃2
α,â(b0) = (− ln(1 − exp(−1)))

1
â b0.

Simulation studies, see Denecke (2010), show that the power does not really change, if

the shape parameter is unknown and has to be estimated in case of uncontaminated data.

We get comparable results as in the case, where it is supposed to be known.

4 Tests for the parameters of the Weibull distribu-

tion in type-I right-censored data

In this section we study type-I right-censored data with fixed censor time c0. Consider

variables Z1, . . . , ZN , Zi = min(Ti, c0), where Ti is the real lifetime and c0 is the censor

time, and the indicator variables ∆i, i = 1, . . . , N, that indicate if Ti is censored or not, i.e.

∆i :=





1, Ti < c0

0, Ti ≥ c0

. The realizations of (Zi, ∆i) are described by (zi, δi), i = 1, . . . , N .

Assume

c0 > med(z1, . . . , zN), (3)

that means less than half the data is censored. The likelihood-function of a data (zn, δn)

is given in type-I right-censored data by

L(a, b, zn, δn) = fa,b(zn)δnSa,b(zn)1−δn , n = 1, . . . , N,

where Sa,b(z) = exp
(
−
(

z
b

)a)
is the survival function of the Weibull distribution.

4.1 Tests for the shape parameter, known scale parameter

Assume the scale parameter b0 > 0 to be known. The set, where the derivative of the

log-likelihood-function is positive or zero, i.e. T a
pos = {(z, δ); ∂

∂a
ln L(a, b, z, δ) ≥ 0} is
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determined in Denecke (2010) as T a
pos = [c

1
a

1 b0, c
1
a

2 b0] ∩ (0, c0) for b0 < c0. If b0 ≥ c0, it

holds T a
pos = [min(c0, c

1
a

1 b0), c0]. Thus, we have

pa,c0 := Pa,b0,c0(T
a
pos) =






e−c1 − e−c2 , b0 < c0 ∧ c
1
a

2 b0 < c0

e−c1 − e

(
−
(

c0
b0

)a)

, b0 < c0 ∧ c
1
a

2 b0 ≥ c0

e−c1, b0 ≥ c0

.

Further, we have for c0 > b0, pa0,a,c0 := Pa0,b0(T
a,b0
pos ) = e

(
−c

a0
a

1

)

− e



−



min(c0,c

1
a
2 b0)

b0




a0




, and

if b0 ≥ c0, it is pa0,a,c0 = exp
(
−c

a0
a

1

)
. So, pa0,(·),c0 is strictly decreasing and p(·),a,c0 strictly

increasing in both cases.

For the correction of the tests, we have to check, whether it holds that the parameter

with asymptotically maximum depth s(a) is greater or smaller than the real parameter a.

Denecke (2010) shows, if b0 is known and c
1

s(a)

2 b0 ≥ c0 > b0, then both cases can appear: If

a ≤ ln(− ln(e−c1− 1
2))

ln(c0/b0)
≈ 0.265

ln(c0/b0)
, then s(a) ≤ a, with s(a) = a, if a = 0.265

ln(c0/b0)
, else s(a) > a

holds, where again s(a) is such that pa,s(a),c0 = 0.5. So we have situations, where the tests

H0 : a ≥ a0 and H0 : a = a0 have to be corrected by c1
α(a0) and situations, where we have

to introduce the correction c2
α(a0) for the tests H0 : a ≤ a0 and H0 : a = a0, depending

on the value of a0.

Lemma 2. (a) If b0 < c
1

a0
2 b0 < c0, it holds c1

α(a0) = k0 · a0, with k0 ≈ 2.275 as in the

uncensored case.

(b) If b0 < c0 ≤ c
1

a0
2 b0 and a0 <

ln(− ln(exp(−c1)− 1
2
))

ln(c0/b0)
≈ 0.265

ln(c0/b0)
, c2

α(a0) can be determined

as the solution for a of e−c
a0
a

1 − e
−
(

c0
b0

)a0

= 1 − e−c1 + e
−
(

c0
b0

)a

. Further it holds

c2
α(a0) < a0.

(c) If b0 < c0 ≤ c
1

a0
2 b0 and a0 > 0.265

ln(c0/b0)
, it is c1

α(a0) the solution for a of e−c
a0
a

1 −

e
−


min(c0,c

1
a
2

b0)

b0




a0

= 1 − e−c1 + e
−
(

c0
b0

)a

. Further, it holds c1
α(a0) > a0.

(d) If b0 ≥ c0, then s(a) > a, but c1
α(a0) does not exist.

The proof can be found in Denecke (2010), the main argument used is again that

c1
α(a0) and c2

α(a0) are given by 1 − pc1α(a0),c0 = pa0,c1α(a0),c0, in the different situations.

Let be α < 0.5.
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(a) If b0 < c
1

a0
2 b0 < c0, then the test ϕ≤

a0
= 1{supa≤a0

T (a,·)<Φ−1(α)} is a consistent test

with asymptotic level α for H0 : a ≤ a0. Further, let be c1
α(a0) = k0 · a0, with

k0 ≈ 2.275 and a consistent asymptotic α-level test for H0 : a ≥ a0 is given by ϕ≥
a0

:=

1{sup
a≥c1α(a0)

T (a,·)<Φ−1(α)}. And ϕ=
a0

:= max(1{T (a0,·)<Φ−1(α
2
)}, 1{T (c1α

2
(a0),·)<Φ−1(α

2
)}), is a

consistent asymptotic α-level test for H0 : a = a0.

(b) If b0 < c0 ≤ c
1

a0
2 b0 and a0 > 0.265

ln(c0/b0)
, then the test ϕ≤

a0
= 1{supa≤a0

T (a,·)<Φ−1(α)} is a

test with asymptotic level α for H0 : a ≤ a0, ϕ≥
a0

= 1{sup
a≥c1α(a0)

T (a,·)<Φ−1(α)}, with

c1
α(a0) being the solution for a > a0 of exp

(
−c

a0
a

1

)
− exp

(
−
(

min(c0,c
1
a
2 b0)

b0

)a0
)

=

1 − exp(−c1) + exp
(
−
(

c0
b0

)a)
, is a test with asymptotic level α for H0 : a ≥ a0.

And ϕ=
a0

:= max(1{T (a0,·)<Φ−1(α
2
)}, 1{T (c1α

2
(a0),·)<Φ−1(α

2
)}), is an asymptotic α-level test

for H0 : a = a0.

(c) If b0 < c0 ≤ c
1

a0
2 b0 and a0 < 0.265

ln(c0/b0)
, then the test ϕ≤

a0
= 1{sup

a≤c2α(a0)
T (a,·)<Φ−1(α)},

with c2
α(a0) being the solution of exp(−c

a0
a

1 ) − exp
(
−
(

c0
b0

)a0
)

= 1 − exp(−c1) +

exp
(
−
(

c0
b0

)a)
, for a < a0, is a test with asymptotic level α for H0 : a ≤ a0 against

H1 : a > a0, ϕ≥
a0

:= 1{supa≥a0
T (a,·)<Φ−1(α)} is a test with asymptotic level α for

H0 : a ≥ a0, and ϕ=
a0

:= max(1{T (c2α
2

(a0),·)<Φ−1(α
2
)}, 1{T (a0,·)<Φ−1(α

2
)}), is an asymptotic

α-level test for H0 : a = a0 against H1 : a 6= a0.

Consequently, in all cases a confidence interval for a is given by {a0; ϕ
=
a0

(z∗) = 0}.
In the situation of (a) we prove consistency using Proposition 1, while in the case of

(b) and (c) we can not prove that the resulting tests are consistent, as the proof needs c1
α

and c2
α being strictly increasing. But in case of b0 < c0 < c

1
a0
2 b0, this is not easy to see. We

only give one example here where we fix b0 and c0 and determine c1
α(a0) for a0 ≥ 0.265

ln(c0/b0)
,

resp. c2
α(a0) for a0 ≤ 0.265

ln(c0/b0)
. The results for b0 = 1, c0 = 2 are displayed in Figure 8.

The graphics provide the assumption, that c1
α and c2

α are strictly increasing, at least

for c0 = 2, b0 = 1, for a second example see Denecke (2010). The remaining assumptions

of Proposition 1 are true, as p(·),a,c0 is strictly increasing, pa,(·),c0 strictly decreasing, 1
2

<

pa0,a0,c0 < 1
2

+ 1√
8

and c1
α(a0) > a0 resp. 1

2
< 1 − pa0,a0,c0 < 1

2
+ 1√

8
and c2

α(a0) < a0 hold.

The simulated power function of this new test is compared to the simulated power

function of the test based on the MLE for the hypotheses H0 : a ≤ a0 and H0 : a ≥ a0 in
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Figure 8: Development of c1
α and c2

α for b0 = 1, c0 = 2.

20% right-censored data for a0 = 1. The results are displayed in Figure 9.
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Figure 9: Simulated power of the tests for the scale in 20% right-censored data with

known scale parameter b0.

If one fifth of the data is censored, the new test does not keep the level. The differences

between the new test and the test based on the maximum likelihood estimator seem not to

be very large for uncontaminated data, especially when considering H0 : a ≤ a0 (see left-

hand side). We consider also contaminated data, when simulating confidence intervals.

There we will see that the new test is robust in contrast to the test based on the MLE.

We simulate 95%-confidence intervals for the shape parameter with the new test (lik
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depth) in ε-contaminated data, see Table 3. The contamination distribution is Wei(a1, b)

and ε = 0.1, the rate of censored data 20%. The confidence intervals are compared

to the ones based on the maximum likelihood estimator (MLE) and on the method of

medians (MoM). In further simulation studies, see Denecke (2010), it is shown that for

uncontaminated data the coverage rate of the MoM goes even down to less than 25 % in

censored data, so that this method seems not practical at all. The method of the MLE

produces covering rates that go down to five percent in contaminated data. The new

method is robust and can also be used in censored data in contrast to the MoM.

MLE MoM lik depth

a b a1 cov. length cov. length cov. length

1 1 0.2 0.427 0.437 0.819 0.527 0.844 0.472

1 1 2 0.997 0.603 0.429 0.630 0.774 0.570

5 1 0.2 0.005 1.086 0.824 2.595 0.805 2.383

Table 3: Coverage rate (cov.) and length of the confidence intervals for the shape pa-

rameter, contaminated (10% with Wei(a1, b1)) and censored (20%) data, known scale

b0.

4.2 Tests for the shape parameter, unknown scale parameter

If the scale parameter is unknown, again the theory as in the case, where the scale b0 is

known cannot be used anymore. We plug b̃N = med(y∗) into the depth-function of a and

calculate the likelihood depth as

db̃N

T (a, z∗) = 1
N

min
(
♯{n; δn = 1 and c

1
a

1 b̃N ≤ yn ≤ c
1
a

2 b̃N},

♯{n; δn = 1 and (yn ≥ c
1
a

2 b̃N or yn ≤ c
1
a

1 b̃N)} + (N − k)
)

.

Since, it holds

1
N

♯{n; δn = 1 and ta,b̃N

01 ≤ yn ≤ ta,b̃N

02 } → − exp

(
−
(

min(c0, c
1
a

2 b0(ln 2)
1
a )

b0

)a0)
+2−c

a0
a

1
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as N tends to infinity, we use p̃a,c0 :=





2−c1 − 2−c2, c
1
a

2 b̃N < c0

2−c1 − 2
−
(

c0
b̃N

)a

, c
1
a

2 b̃N ≥ c0

, and define the

test statistic as T̃ (a, z∗) :=
√

N
d

b̃N
S

(a,z∗)−2p̃a,c0(1−p̃a,c0 )

2
√

p̃a,c0(1−p̃a,c0)(1−2p̃a,c0 )2
. We work with this, as if we could

use the same theory as in the case of b0 known in the last subsection. c̃2
α(a0) is given by

the solution for 0 < a < a0 of 2−c
a0
a

1 − 2
−
(

c0
b̃N

)a0

= 1− 2−c1 + 2
−
(

c0
b̃N

)a

, analog to the case

of known scale parameter. Define a test for H0 : a ≤ a0 against H1 : a > a0 for unknown

scale parameter as

ϕ̃≤
a0

(z∗) :=





1{sup
a≤c̃2α(a0)

T̃ (a,z∗)<Φ−1(α)}(z∗), c
1

a0
2 b̃N ≥ c0 and a0 < k1

ln

(
c0
b̃N

)

1{supa≤a0
T̃ (a,z∗)<Φ−1(α)}(z∗), else

,

where k1 = ln

(
− ln(2−c1−2−1)

ln(2)

)
≈ 0.455. If c

1
a0
2 b̃N ≥ c0 and a0 > k1

ln

(
c0
b̃N

) , it is c̃1
α(a0) given

by 1 − 2−c1 + 2

−




min(c0,c

1
c̃1α(a0)
2 b̃N )

b̃N




c̃1α(a0)

= 2−c

a0
c̃1α(a0)
1 − 2

−




min(c0,c

1
c̃1α(a0)
2 b̃N )

b̃N




a0

. Further, the

test for H0 : a ≥ a0 against H1 : a < a0 is defined as

ϕ̃≥
a0

(z∗) =





1{sup
a≥k̃0a0

T̃ (a,z∗)<Φ−1(α)}(z∗), c
1

a0
2 b̃N < c0

1{supa≥a0
T̃ (a,z∗)<Φ−1(α)}(z∗), c

1
a0
2 b̃N ≥ c0 and a0 < k1

ln
c0
b̃N

1{sup
a≥c̃1α(a0)

T̃ (a,z∗)<Φ−1(α)}(z∗), c
1

a0
2 b̃N ≥ c0 and a0 > k1

ln
c0
b̃N

,

where k1 ≈ 0.455.

Using the tests for H0 : a ≥ a0 and H0 : a ≤ a0, a test for H0 : a = a0 against

H1 : a 6= a0 is defined as ϕ̃=
a0

:= max(1{T̃ (a0,·)<Φ−1(α
2
)}, 1{T̃ (a,·)<Φ−1(α

2
)}), with

a =





k̃0a0, c
1

a0
2 b̃N < c0

c̃1
α(a0), c

1
a0
2 b̃N ≥ c0 and a0 > k1

ln
c0
b̃N

c̃2
α(a0), c

1
a0
2 b̃N ≥ c0 and a0 < k1

ln
c0
b̃N

and k̃0 ≈ 1.835, k1 ≈ 0.455. Hence, confidence intervals for the shape parameter of

the Weibull distribution in type-I right-censored data with unknown scale parameter are

given by {a0 > 0; ϕ̃=
a0

(z∗) = 0}.
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Again simulation studies, see Denecke (2010), show that as in the case of uncensored

data, that the estimation of the scale parameter has no influence on the power of the

tests.

4.3 Tests for the scale parameter, known shape parameter

Now consider type-I right-censored data and the shape parameter to be known. The

number of uncensored data is denoted with k, according to (3) it holds k > N
2
. In

Denecke and Müller (2011c) it is shown that T b
pos =





[b ,∞), b < c0

[c0 ,∞), b ≥ c0

. Thus, it holds

pb,c0 := Pa0,b(T
b
pos) =





exp(−1) = pscale, b < c0

exp
(
−
(

c0
b

)a0
)
, b ≥ c0

. If b < c0, this is just the same as

in the case of uncensored data. If b ≥ c0, the simplicial likelihood depth is constant,

but pb,c0 is growing with b up to exp(0) = 1. Thus, the test statistic is growing to

infinity. Hence, testing hypotheses for b0 > c0 does not make sense. Moreover, when

testing H0 : b ≥ b0 for b0 ≤ c0, we only consider the supremum of the test statistics over

b ∈ {b; b0 ≤ b ≤ c0}. As for b ≤ c0 the test statistic is the same as in the uncensored case

and also Pa0,b0(T
b
pos) = Pa0,b0(T ≥ b) = exp

(
−
(

b
b0

)a0
)

, for b ≤ b0 ≤ c0, is the same as

in the uncensored case, we can use the results from there and get the same (consistent)

tests.

Figure 10 shows some results for the simulation of the power functions for the different

hypotheses in 20% censored data. As a comparison we consider the Wald test, see e.g.

the textbook of Lawless (2003).

For H0 : b ≥ b0 the power-functions of the new test and the Wald test do not really

differ. For H0 : b ≤ b0 the power of the Wald test is only slightly better.

We use the test for H0 : b = b0 to give confidence intervals for the scale parameter of

the Weibull distribution: {b0 > 0; ϕ=
b0

(z∗) = 0}, where ϕ=
b0

denotes the test for H0 : b = b0.

We compare the confidence intervals based on likelihood depth for censored data with

confidence intervals given by Wald-type confidence procedures, see e.g. Lawless (2003).

Table 4 shows the results of some simulations of confidence intervals in ε-contaminated

data, ε = 0.2 and 20% right-censored data.
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Figure 10: Simulated power-function of the tests for the scale parameter with 20% right-

censored data.

Wald-type likelihood depth

a b a1 b1 coverage length coverage length

1 1 0.2 1 0.888 0.459 0.953 0.755

1 1 0.2 10 0.684 0.524 0.962 0.823

1 1 1 10 0.039 0.698 0.617 0.953

1 2 0.2 10 0.778 1.004 0.977 1.575

1 2 1 100 0.003 1.722 0.587 2.354

Table 4: Coverage rate and length of the 95%-confidence intervals for the scale parameter

for 20% right-censored and ε-contaminated data, ε = 0.2.

In Table 4 we see that the covering rates of the confidence intervals based on the new

test are much more stable than the ones based on the Wald test.

4.4 Tests for the scale parameter, unknown shape parameter

Up to know, for the type-I right-censored data, we only considered tests in the situation

of known shape parameter a0. If it is unknown, we use an estimation based on likelihood

depth for it, see e.g. Denecke (2010), and plug it into the the correction, c2
α,a0

, of the tests
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ϕ≤
b0

and ϕ=
b0

instead of a0. As in the uncensored case, the test statistic is independent of

a0. For this “plug-in” tests we can not prove the consistency. Denecke (2010) shows in

simulation studies, that the estimation of a0 has no influence on the power of the tests.

References
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