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Abstract— This paper presents a lane departure detection
method. The road curvature is estimated and compared to the
vehicle trajectory curvature. The proposed algorithm reduces
false alarms and integrates the driver corrections by taking
account of the steering dynamics. The used nonlinear model
deduced from the vehicle lateral dynamics and a vision system
is represented by a T-S fuzzy uncertain model with unknown
inputs. Stability conditions of such observers are expressed in
terms of linear matrix inequalities (LMI). Simulation results
obtained in two various driving scenarios show the efficiency
of the proposed method.

I. INTRODUCTION

Lane departure represents a large part of car accidents.

Accident analysis published in [1], studied by the French

road administration (CEESAR, France) shows that a large

part of road fatalities (approximately 30% ) is a result of this

kind of accident. Moreover, the mortality of these fatalities

is two time higher than other ones.

The development of lane keeping devices is a widespread

research area since the last years. Different driver assistances

were proposed [2] [3], they vary from simple warning

systems to active limiting and correcting driver trajectory

systems. The goal is the avoidance of large lateral excursions.

Often, these systems seem, from a driver’s point of view,

intrusive (they warn him excessively). The main problem is

to find a driving risk indicator which can be used to engage

the assistances. This indicator has to approach the driver

behavior and shall, integrating his correction, not to warn him

when he is already correcting his maneuver. For example the

TLC (time to line crossing) and the DLC (distance to line

crossing) are two driving risk indicators who have received

considerable attention during the two last decades [3] [4]. In

this paper the estimated road curvature is compared to the

vehicle trajectory curvature in order to define a lane departure

indicator.

Estimating vehicle dynamics and road attributes are of

primary importance for the implementation of warning and

active safety systems. More particularly, lane departure

avoidance and excessive yaw motion limitation systems

generally make use of the lateral vehicle dynamics which are

impossible or hard to measure accurately with cost effective

sensors [5] [18]. In this work, we use a vision system

(camera) to measure the lateral displacement at a lookahead
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distance of the vehicle. A representation of the nonlinear

model of lateral vehicle dynamics by an uncertain Takagi-

Sugeno (TS) fuzzy model will be considered [6] [7] [8] .

This representation is largely used and studied these lasts

years (see for example [9] [10] [11] [12]).

This paper is organized as follows: section II introduces

the used car model and its representation by an uncertain

fuzzy model. A T-S observer obtained by the interpolation

of classical luenberger observers involving additive terms

used to overcome the uncertainties is designed in section III.

Section IV presents the methodology considered to define the

driving risk and detect the lane departure. Finally, simulation

results are presented in section V.

II. VEHICLE MODEL DESCRIPTION

The model used in this work describe vehicle lateral

dynamics in a turn lane [13], which is obtained from the

bicycle model “Fig. 1” and a vision system with lateral

displacement measure.

Fig. 1. bicycle model
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A. Lateral model

The two-dimensional model with nonlinear tire character-

istics of the four wheels vehicle behavior can be described

by the following differential equations [12]:

{
mv(β̇ + ψ̇) = 2Fy f + 2Fyr

Jzzψ̈ = 2Fy f l f − 2Fyrlr
(1)

Where β denotes the sideslip angle, ψ is the yaw angle, Ff

is the cornering force of the two front tires, Fr is the corning

force of the two rear tires. v is the vehicle velocity, Iz is the

yaw moment of inertia, m is the vehicle mass.

Using the so-called magic formula [14], the cornering

forces Ff and Fr are given as functions of tire slip angles

by the following expressions:




Fy f = D f sin[C f tan−1B f (1−E f )α f +E f tan−1(B f α f )]

Fyr = Drsin[Crtan−1Br(1−Er)αr +Ertan−1(Brαr)]
(2)

with {
α f = δ f −

l f ψ̇

v
−β

αr = δr +
lrψ̇

v
−β

(3)

Where δ f is the front steer angle, δr is the rear steer angle,

α f is the slip angle of the front tires and αr is the slip angle

of the rear tires “Fig. 1”.

Coefficients Di, Ci, Bi and Ei(i = f ,r) depend on the tire

characteristics, road adhesion coefficient and the vehicle

operational conditions.

To obtain the TS fuzzy model, we have modeled the front

and rear lateral forces (2) by the following rules:

If |α f | is M1 then

{
Fy f =C f 1α f

Fyr =Cr1αr

If |α f | is M2 then

{
Fy f =C f 2α f

Fyr =Cr2αr

The overall forces are obtained by :




Fy f = µ1(|α f |)C f 1α f + µ2(|α f |)C f 2α f

Fyr = µ1(|α f |)Cr1αr + µ2(|α f |)Cr2αr

(4)

Where µ j( j = 1,2) is the jth bell curve membership function

of fuzzy set M j. They satisfy the following properties:




2

∑
i=1

µi(|α f |) = 1

0 ≤ µi(|α f |) ≤ 1 ∀i = 1,2

(5)

The expressions of the membership functions used are:

µi(|α f |) =
βi(|α f |)

2

∑
i=1

βi(|α f |)

, i = 1,2

βi(|α f |) =
1(

1+

∣∣∣∣∣

(
|α f −ci|

ai

))∣∣∣∣∣

2bi

Using an identification method based on the Levenbenrg-

marquadt algorithm [15] combined with the least square

method, allows to determine parameters of membership

functions (ai, bi and ci) and stiffness coefficients values.

For a road friction coefficient µ = 0.7 the following

values are obtained:

a1 = 0.0978, b1 = 0.7079, c1 = 0.0137

a2 = 0.1924, b2 = 0.7445, c2 =−1.1388

C f 1 = 69120, C f 2 =−796.64

Cr1 = 56458, Cr2 =−876.24

Using the above approximation idea of nonlinear lateral

forces by TS rules, nonlinear model (1) can be represented

by the following TS fuzzy model:
[

β̇ (t)
ψ̈(t)

]
=

2

∑
i=1

µi(|α f |)

[
a11i a12i

a21i a22i

]
×

[
β (t)
ψ̇(t)

]
+

[
b1i

b2i

]
δ (t)

(6)

with:

a11i =−2
Cri+C f i

mv
, a12i =−1− 2

l fC f i−lrCri

mv2

a21i =−2
l f C f i−lrCri

Jzz
, a22i =−2

l2
f C f i+l2

r Cri

Jzzv

b1i = 2
C f i

mv
, b2i = 2

l f C f i

Jzz

The nominal values of the vehicle parameters are given in

the following table:

TABLE I

NOMINAL VALUES OF THE VEHICLE PARAMETERS

m(Kg) Jzz(Kg.m2) l f (m) lr(m) v(m.s−1)
1500 2454 1.0065 1.4625 20

B. T-S model with Vision system measurement

Using a vision system measuring the lateral displacement

of the vehicle at a look-ahead distance “Fig. 2”, the equations

describing the evolution of the measurement extracted from

image, caused by the motion of the car and changes in the

road geometry can be written as follows [18]:

ẏs = v(β +∆ψ)+ ls∆ψ̇ (7)

The angular displacement ∆ψ is obtained as follows:

∆ψ̇ = ψ̇ − v
Rc

= ψ̇ − vw (8)

ys is the offset from the centerline at the look-ahead

distance, ∆ψ the angle between the tangent to the road and

the orientation of the vehicle with respect to the road, ls the

look-ahead distance at which the measurement is taken and

w the road curvature.

Combining the vehicle lateral dynamics (6) and the vision

dynamics (7) and (8) leads to a single dynamical system with

the following form:
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Fig. 2. Vision System measurement




β̇ (t)
ψ̈(t)
ẏs(t)

∆ψ̇(t)


=

2

∑
i=1

µi(|α f |)




a11i a12i 0 0
a21i a22i 0 0

v ls 0 v
0 1 0 0


×




β (t)
ψ̇(t)
ys(t)

∆ψ(t)


+




b1i

b2i

0
0


δ (t)+




0
0

−lsv
−v


w(t)

(9)

By considering δ as the known input, w the unknown input

of the system, we obtain the following TS fuzzy model:




ẋ(t) =
2

∑
i=1

µi(|α f |)
(
Aix(t)+Biu(t))+Bww(t)

y(t) =Cx(t)

(10)

with

Ai =




a11i a12i 0 0

a21i a22i 0 0

v ls 0 v

0 1 0 0


,Bi =




b1i

b2i

0

0




Bw =




0

0

−lsv

−v


, C =

[
0 0 1 0

]

To take into account the variation of the stiff-

ness coefficients, vehicle mass variation and modelisa-

tion/approximation errors, we introduce uncertainties in the

system. The model described in (10) becomes:




ẋ(t) =
2

∑
i=1

µi(|α f |)
(
(Ai +∆Ai)x+(Bi +∆Bi)u)+Bww

y(t) =Cx(t)
(11)

The variable matrices ∆Ai(t) and ∆Bi(t) are assumed to be

bounded, such that ‖∆Ai‖< γi and ‖∆Bi‖< τi where γi and

τi are positive scalars. The unknown input w is also bounded,

i.e., ‖w‖< ρ .

III. UNKNOWN INPUT T-S OBSERVER DESIGN

In this paper, we consider the state estimation of an

uncertain multiple model perturbed by unknown inputs “Fig.

3”. The proposed multiple observer is based on a linear com-

bination of local observers involving sliding terms allowing

to compensate the uncertainties and the unknown inputs w(t).

Fig. 3. Observer structure

A. T-S observer design conditions

The proposed multiple observer of the multiple model (11)

has the following form:





˙̂x(t) =
2

∑
i=1

µi(|α f |)
(
Aix̂(t)+Biu(t)+Li(y(t)−Cx̂(t))+

Bwµ(t)+αi(t))
ŷ(t) =Cx̂(t)

(12)

The aim of the design is to determine gain matrices Li

and variables µ(t) ∈ ℜq and αi(t) ∈ ℜn, that guarantee the

asymptotic convergence of x̂(t) towards x(t). Let us note

that the variables µ(t) and αi(t) compensate respectively the

errors due to the unknown inputs and the model uncertainties.

Let us define the state estimation error:

e(t) = x(t)− x̂(t) (13)

The output estimation error is defined as follows:

r(t) = y(t)− ŷ(t) =C(x(t)− x̂(t)) =Ce(t) (14)

The dynamic of the state estimation error is governed by:

ė(t)=
2

∑
i=1

µi(|α f |)
(
Aie(t)+∆Aix(t)+Bww(t)+Bwµ(t)−αi(t))

(15)

Where

w(t) = [w(t) b(t)]T , b(t) =
2

∑
i=1

µi∆BT
i u(t)

Thorme 1 [16]: The state estimation of the robust state

T-S observer (12) converges globally asymptotically to the

state of the T-S model (11) if there exists a matrix P > 0,

some matrice F and positive scalars β1 and β2 satisfying the

following constraints:

{
A

T

i P+PAi +β−1
1 P2 +β1(1+β−1

2 )γ2
i I < 0

CT FT = PBw, i = 1,2
(16)
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with

Ai = Ai −LiC (17)

and µ(t) and αi(t) are defined as :





µ(t) =− Fr(t)
‖Fr(t)‖ρ

αi(t) = β1(1+β2)γ
2
i

x̂(t)T x̂(t)
2r(t)T r(t)

P−1CT r(t)

, i f r 6= 0

{
µ(t) = 0

αi(t) = 0
, otherwise

(18)

Remark 1.:To improve the observer proposed in [15], we

replace ρ in expression (18) with m(t) by considering the

following update law

ṁ(t) = GrT r, m(0)> 0 (19)

Where G is a design constant that can be used to regulate the

increasing rate of m(t).large G means that the state estimation

error converges to zero faster [17].

B. Resolution method

By considering the following change of variable:

Wi = PLi (20)

The inequalities (16) can be written as:

{
AT

i P+PAi−CTW T
i −WiC+β−1

1 P2 +β3γ2
i I < 0

CT FT = PBw, i = 1,2
(21)

where

β3 = β1(1+β−1
2 ) (22)

Applying the Schur complement, we obtain from (22) the

following LMI formulation:





[
AT

i P+PAi−CTW T
i −WiC+β3γ2

i I P

P −β1I

]
< 0

CT FT = PBw, i = 1,2
(23)

The solution of this LMI in P and Wi allows one to

compute the observer gains Li = P−1Wi and F , β 1, β 2 and

then α(t) and µ(t) which define completely the observer

(12).

It is important to note that a potential problem arises in the

implementation of this multiple observer: when the output

estimation error r(t) tends towards zero, the magnitude of

α(t) and µ(t) may increase without bound. This problem is

overcome as follows. The terms α(t) and µ(t) are fixed to

zero when the output estimation error is such that ‖r(t)‖< ζ
a small positive number chosen by the user. In this case,

the estimation error cannot converge to zero but to a small

neighborhood of zero depending on the choice of ζ

C. Road curvature estimation

Once the states of the system rebuilt, they will be used

to estimate the road curvature. From equation (8), the road

curvature w can be computed as follows:

w̃ =
1

v
˙̂ψ −

1

v
∆ ˙̂ψ (24)

where v is the vehicle velocity, ˙̂ψ and ∆ ˙̂ψ are the estimate

results of the observer.

IV. LANE DEPARTURE DETECTION

Now that the road curvature is estimated, it can be

compared with the vehicle trajectory curvature wv in order

to detect any lane departure.

Computing the steady state of equation (6), leads to the

steady state yaw rate described by:

ψ̇

δ
=

v

l −
mv2(l f C f −lrCr)

lC f Cr

(25)

where l = l f + lr

The vehicle trajectory radius Rv is given by

Rv = v/ψ̇ (26)

Then the vehicle trajectory curvature can be computed

from (25) and (26) as follows

wv =
1

Rv

=
δ

l−
mv2(l f C f −lrCr)

lC f Cr

(27)

A. Lane departure detection algorithm

Risk indicators studied in the last decade for the lane de-

parture problem like the TLC present several limitations, they

are time consuming and require accurate road information

[3], moreover they are approximated geometrically without

vehicle dynamics and don’t integrate driver corrections.

The risk indicator r1 used here is given by the difference

between the estimated road curvature ŵ obtained from the

vision system equation (24) and the vehicle trajectory cur-

vature wv obtained from (27) [19] [20].

To reduce false alarms and no detection of a possible lane

departure we have to take into account of the steering

dynamics δ̇ , we will be able to avoid false alarms when

the driver is already correcting his maneuver.

We define a second indicator r2, when r1 exceeds a threshold

value rT hres1, the driver must begin correcting his maneuver

( δ̇
r1
> ε) and then we compute the second indicator r2 given

by:

r2 =
w̃−wv

ẇv

(28)

The indicator r2 is defined as the time remaining for the

vehicle to have the same trajectory that the road, it must be

always lower than the minimal value rT hres2. All these steps

are summarized in The following algorithm:
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Fig. 4. Lane departure detection algorithm

B. Simulation results

In this section, we illustrate the above presented methods

and present the different scenarios used to demonstrate the

effectiveness of the used techniques.

Consider the double turn example shown in “Fig. 5”, the

following assumptions are made:

Assumption A1: The road curvature in a turn is considered

to be constant.

Assumption A2: A straight lane has a zero road curvature.

Assumption A3: The vehicle moves with a constance

velocity. Under assumption A1 ∼ A3, the double turn

Fig. 5. Double turn example

considered can be represented as a signal ( first curve

of“Fig. 6”) and used as unknown input to be estimated

using the observer results.

Uncertainties of the model are such that ∆Ai(t) =
±10%Ai(t) = 0.1Aiη(t) and ∆Bi(t) = ±10%Bi(t) =
0.1Biη(t) the function η(t) is a Gaussian random function

with zero mean and a unity variance.

The resolution of equation (23) using LMI tools leads to

the following matrices P, F and Li :

P =




206.3010 344.7786 −0.1545 0.0165
344.7786 860.3926 −0.0758 0.0082
−0.1545 −0.0758 4.0191 −0.2166
0.0165 0.0082 −0.2166 0.0166


,

L1 = [ −0.300 0.100 511.6 4733.5 ]

L2 = [ −0.400 0.100 506.1 4543.4 ]

F = [ 4.3319 −0.1545 −0.0758 4.0191 −0.2166 ]T

β1 = 623.25, β3 = 2007.6.

The system (11) is simulated using the known input δ (t)
and unknown input w(t) depicted in “Fig. 6”.

The vehicle estimated state using the above observer are

shown in “Fig. 7” and the road curvature estimation is

illustrated in “Fig. 8”. Risque indicators r1 and r2 are
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Fig. 6. Steering angle and road curvature

computed in two scenarios (“Fig. 9” and “Fig. 10”). In the

first scenario the vehicle follows the lane considered. In the

second, we simulate a lane departure at t = 12s. In “Fig. 10”

the driver risks reach great values starting from the moment

when the lane departure is simulated.

V. CONCLUSIONS AND FUTURE WORKS

A technique of lane departure detection based on road

curvature estimation is proposed. The aim here is that only

one sensor is used and no knowledge on the path road is

needed. The used nonlinear model deduced from the vehicle

lateral dynamics and a vision system is represented by a

T-S fuzzy uncertain model affected by unknown inputs. A

T-S observer using the principe of interpolation of local

observers with uncertainties has been used to estimate system

states and then the road curvature. Design conditions are

given in LMI terms easy to solve using numerical tools.

The proposed algorithm to detect lane departures is very

efficient and practical, it uses two risk indicators and takes

into account of the steering dynamics. We have also shown

the efficiency of the risk indicators proposed by considering

two driving scenarios in a double turn . further works will

extend the different approaches by considering more complex

vehicle model and implement the proposed algorithm in

experimental validation.
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REFERENCES

[1] F. Bar and Y. Page, An empirical classification of lane departure
crashes for the identification of relevant counter-measures,46th AAAM
Conference Florida,USA,2002.

[2] C.Boussard ,Estimations embarques de conditions de risque, Thse de
l’cole des mines de Paris, 2007.

[3] S.Glaser, S. Mammar, M. Netto and B.Lusetti, Experimental Time to
Line Crossing validation, IEEE Conference on Intelligent Transporta-
tion Systems, Vienna, Austria, 2005.

[4] S.Mammar, S.Glaser and Y.Sebsadji, Time-to-Line-Crossing: from
Perception to Control Variable, IEEE Intelligent Transportation Sys-

tems Conference, Seattle, WA, USA, 2007

[5] Mammar S, Glaser S, Netto M. Vehicle lateral dynamics estimation
using Unknown Input Proportional-Integral Observers, American Con-
trol Conference, Minnesota, 2006.

[6] T.Takagi and M. Sugeno, Fuzzy identification of systems and its
applications to modeling and control, IEEE Transactions on Systems,

Man, and Cybernetics, 1985, vol.15, pp. 116-132.

[7] A. Rabhi, M. Chadli, A. El Hajjaji and J. Bosche, Robust Observer
for Prevention of Vehicle Rollover, International Conference on
Advances in Computational Tools for Engineering Applications, IEEE-

ACTEA09,pp. 627-633, 15-17 July, Lebanon, 2009.

[8] M. Oudghiri, Mohammed Chadli, A. El Hajjaji, Robust observer-

0 5 10 15 20
−0.1

0

0.1

R
is

k
 i
n

d
ic

a
to

r 
r1

0 5 10 15 20
0

0.5

1

R
is

k
 i
n

d
ic

a
to

r 
 r

2

0 5 10 15 20
−1

0

1

time(s)

A
la

rm
 s

ig
n

a
l

Fig. 9. Risk indicators in Scenario 1

0 5 10 15 20
−0.5

0

0.5

R
is

k
 i
n

d
ic

a
to

r 
r1

0 5 10 15 20
0

20

40

60

R
is

k
 i
n

d
ic

a
to

r 
r2

0 5 10 15 20
0

0.5

1

time(s)

A
la

rm
 s

ig
n

a
l

Fig. 10. Risk indicators in Scenario 2

based fault tolerant control for vehicle lateral dynamics, International

Journal of Vehicle Design, Volume 48, No 3-4. 2008.
[9] A. Akhenak,M. Chadli, J. Ragot, and D. Maquin, Design of sliding

mode unknown input observer for uncertain Takagi-Sugeno model.
15th Mediterranean Conference on Control and Automation. MED’07,
Athens, Greece,2007.

[10] M. Chadli, A. Elhajjaji, Output robust stabilisation of uncertain Takagi-
Sugeno model, CDC-ECC,Seville (Spain),2005.

[11] T. Guerra, A. Kruszewski, L. Vermeiren, and H. Tirmant, Conditions
of output stabilization for nonlinear models in the Takagi-Sugeno’s
form. Fuzzy Sets and Systems, 2006, vol. 157, no. 9, pp. 1248-1259.

[12] H. Dahmani, M. Chadli, A. Rabhi and A.El Hajjaji, Road angle
considerations for detection of impending vehicle rollover, IFAC AAC
2010, 12-14 july 2010, Munich, Germany.

[13] J.Ackermann, A.Bartelett, D.Kaesbauer, W.Sienel, and R. Steinhauser,
Robust control with incertain parameters, Springer, London,1993.

[14] H. B. Pacejka, E. Bakker and L. linder, A new tire model with an
application in vehicle dynamics studies, SAE paper 890089, 1989.

[15] C. Lee, W. Lai and Y. Lin. A TSK Type Fuzzy neural network systems
for dynamic systems identification, In Proceedings of the IEEE-CDC

Hawaii USA, p 4002-4007,2003 .
[16] A. Akhenak, M. Chadli and D. Maquin, State estimation of uncertain

multiple model with unknown inputs, IEEE CDC,Bahamas, 2004.
[17] W. Chen and M. Saif, Novel Sliding Mode Observers for a Class of

Uncertain Systems, American Control Conference,Minnesota, 2006.
[18] N. Zbiri, A. Rabhi, K. N. M’sirdi, Detection of critical situations

for lateral vehicle Control, International Conference on Advances in

Vehicle Control and Safety, Italy, 2004, pp. 176-181.
[19] H. Dahmani, M. Chadli, A. Rabhi and A.El Hajjaji, Lane departure

detection using Takagi-Sugeno Fuzzy model, LFA 2009,Annecy,
France, 2009.

[20] H. Dahmani, M. Chadli, A. Rabhi and A.El Hajjaji, Observateur
robuste pour l’estimation de la courbure de la route: Application la
dtection de sorties de route des vhicules, CIFA 2010,Nancy, France,
2010.

693


