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Computational Techniques for
Stabilized Edge-Based Finite
Element Simulation of Nonlinear
Free-Surface Flows
Free-surface flows occur in several problems in hydrodynamics, such as fuel or water
sloshing in tanks, waves breaking in ships, offshore platforms, harbors, and coastal
areas. The computation of such highly nonlinear flows is challenging, since free-surfaces
commonly present merging, fragmentation, and breaking parts, leading to the use of
interface-capturing Eulerian approaches. In such methods the surface between two fluids
is captured by the use of a marking function, which is transported in a flow field. In this
work we discuss computational techniques for efficient implementation of 3D incompress-
ible streamline-upwind/Petrov–Galerkin (SUPG)/pressure-stabilizing/Petrov–Galerkin fi-
nite element methods to cope with free-surface problems with the volume-of-fluid method
(Elias, and Coutinho, 2007, “Stabilized Edge-Based Finite Element Simulation of Free-
Surface Flows,” Int. J. Numer. Methods Fluids, 54, pp. 965–993). The pure advection
equation for the scalar marking function was solved by a fully implicit parallel edge-
based SUPG finite element formulation. Global mass conservation is enforced, adding or
removing mass proportionally to the absolute value of the normal velocity of the inter-
face. We introduce parallel edge-based data structures, a parallel dynamic deactivation
algorithm to solve the marking function equation only in a small region around the
interface. The implementation is targeted to distributed memory systems with cache-
based processors. The performance and accuracy of the proposed solution method is
tested in the simulation of the water impact on a square cylinder and in the propagation
of a solitary wave. �DOI: 10.1115/1.3124136�
Introduction
Free-surface flows occur in many hydrodynamics problems.

loshing of liquids in tanks, wave breaking in ships, offshore
latforms, harbors, coastal areas, and green water on decks are
mportant examples of this class of problems. The main computa-
ional challenge when solving such highly nonlinear problem is
etermining the evolution of the interface location. There are a
arge number of numerical methods devoted to the computation of
ree-surface problems. These methods are frequently classified as
nterface tracking and interface-capturing methods.

Interface tracking methods are based on a Lagrangian frame-
ork where the moving interface or boundary is explicitly tracked
y the computational grid or by the particles of meshless methods,
hich must be deformed or moved in order to follow the fluid
ow. The deforming-spatial-domain/stabilized space time �DSD/
ST� finite element formulation proposed by Tezduyar et al. �1–3�

s a mesh based example of the interface tracking method. Particle
ethods, such as those of Koshizuka et al. �4� and Violeau and

ssa �5� are examples of smoothed particle hydrodynamics �SPH�
ethods to the simulation of free-surface problems. However,

hese methods still present a high computational cost since they
eed to compute the interaction between the particles using search
lgorithms. As a compromise between the advantages offered by
esh based and meshless methods, Del Pin et al. presented in Ref.
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�6� the particle finite element method �PFEM� applied to free-
surface flows. In this method the critical parts of the continuum
are discretized with particles, while the remaining parts are treated
by a Lagrangian finite element formulation. Another technique
mixing Lagrangian and Eulerian flavors was proposed in Ref. �7�
by Takizawa et al. In this work the authors enhanced the con-
strained interpolation profile �CIP� method for solving hyperbolic
equations with a meshless Soroban grid. The resulting formulation
was used to treat fluid-object and fluid-structure interactions in the
presence of free-surfaces.

As a cost effective alternative to interface tracking methods,
interface-capturing methods have emerged. Interface-capturing
methods are Eulerian in their concept, thus, they rely on a unique
and fixed computational grid to capture the interface evolution. In
this class of methods the interface is represented by a scalar func-
tion, which marks the regions filled with the fluids involved. In
other words, the interface position is implicitly captured in a sca-
lar marking function value, and the interface evolution is deter-
mined by the additional cost of solving an advection equation for
the marker. As opposed to interface tracking methods, interface-
capturing methods require little effort to represent all complicated
features of moving interfaces. Additionally, the parallel imple-
mentation and postprocessing of interface-capturing methods are
straightforward. The main drawback of interface-capturing meth-
ods is the need to average the fluid properties at the interface cells
�elements� due to the discontinuity of the Eulerian representation
of the interface. Moreover, the accuracy and computational cost of
interface-capturing methods are typically associated to grid reso-
lution, properties of the marking function chosen to represent the
interface, and numerical methods for solving the fluid flow and

marking function advection. The well known volume-of-fluid
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VOF� scheme, first proposed by Hirt and Nichols �8� for Carte-
ian grids, is an interface-capturing technique, which employs a
tep function ranging from 0 to 1 to represent the fraction of fluid
ithin the grid cells. In this sense, the interface is implicitly rep-

esented by the partially filled cells. The main issues associated to
OF methods include the difficulty in advecting a discontinuous

tep function and the accurate modeling of surface tension effects.
he enhanced-discretization interface-capturing method, first pro-
osed by Tezduyar et al. in Ref. �9� and the work of Lohner et al.
resented in Ref. �10�, are both examples of unstructured grid
ormulations based on the finite element method to solve free-
urface flows using a VOF marking function. Level set methods
11� implement free-surface flows in a different manner than VOF
y changing the marking function employed to represent the in-
erface. Therefore, the fluids are associated to the range of the
istance function signs, while the interface is implicitly repre-
ented by the zero level set. However, the level set method suffers
hen the distance function loses its properties and must be rebuilt.

n fact, the success of level set method lies in its ability of build-
ng and keeping a signed distance function without losing its prop-
rties.

In this work we use our VOF edge-based stabilized finite ele-
ent solver �12� to deal with complex free-surface problems. The
ain characteristics of our solver are streamline-upwind/Petrov–
alerkin �SUPG�, pressure-stabilizing/Petrov–Galerkin �PSPG�,

nd least-squares incompressibility constraint �LSIC� stabilized fi-
ite element formulation; implicit time marching scheme with
daptive time stepping control; advanced inexact-Newton solvers;
dge-based data structures to save memory and to improve per-
ormance; support to message passing and shared memory parallel
rogramming models; and large eddy simulation extensions using
classical Smagorinsky model.
The remainder of this paper is organized as follows. Section 2

resents the incompressible flow and interface-capturing govern-
ng equations, respectively, Sec. 3 summarizes the solution proce-
ures employed, and Sec. 4 shows results obtained for the simu-
ation of the water impact on a square cylinder and in the
ropagation of a solitary wave. We compare our results with avail-
ble experimental and analytical results showing that the present
cheme is fast, simple, and accurate. The final remarks and con-
lusions are summarized in Sec. 7.

Governing Equations

2.1 Incompressible Fluid Flow. Let ��RnSD be the spatial
omain, where nSD is the number of space dimensions. Let �
enote the boundary of �. We consider the following velocity-
ressure formulation of the Navier–Stokes equations governing
he incompressible flow of two immiscible fluids:

�� �u

�t
+ u · �u − f� − � · � = 0 on � � �0,tf� �1�

� · u = 0 on � � �0,tf� �2�

here � and u are the density and velocity, f is the body force
ector carrying the gravity acceleration effect, and � is the stress
ensor given as

��p,u� = − pI + T �3�

here p is the pressure, I is the identity tensor, and T is the
eviatoric stress tensor

T = 2���u� �4�

nd ��u� is the strain rate tensor defined as

��u� = 1
2 ��u + ��u�T� �5�

n the present work a large eddy simulation �LES� approach to
urbulence is considered by the use of a classic Smagorinsky tur-

ulence model �13�. In this model, the viscosity � is augmented

41103-2 / Vol. 131, NOVEMBER 2009
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by a subgrid-scale viscosity �SGS proportional to the norm of the
local strain rate tensor and to a filter width h defined here as the
cubic root of the element volume

�SGS = ��CSh�2�2��u�:��u�� �6�

where CS is the Smagorinsky constant, ranging from 0.1 to 0.2.
The essential and natural boundary conditions associated with

Eqs. �1� and �2� can be imposed at different portions of the bound-
ary � and represented by

u = g on �g �7�

n · � = h on �h �8�

where �g and �h are complementary subsets of �.
Let us assume that we have some suitably defined finite-

dimensional trial solution and test function spaces for velocity and
pressure, Su

h, Vu
h, Sp

h, and Vp
h =Sp

h. The finite element formulation of
Eqs. �1� and �2� using SUPG and PSPG stabilizations for incom-
pressible fluid flows can be written �see Ref. �1�� as follows. Find
uh�Su

h and ph�Sp
h such that ∀wh�Vu

h and ∀qh�Vp
h

�
�

wh · �� �uh

�t
+ uh · �uh − f�d� +�

�

��wh�:��ph,uh�d�

−�
�h

wh · hd� +�
�

qh � · uhd�

+ 	
e=1

nel �
�e

1

�
��SUPG�uh · �wh + �PSPG � qh� · 
�� �uh

�t

+ uh · �uh� − � · ��ph,uh� − �f�d�e

+ 	
e=1

nel �
�e

�LSIC � · wh� � · uh�e = 0 �9�

In the above equation the first four integrals on the left hand side
represent terms that appear in the Galerkin formulation of the
problem �1�–�8�, while the remaining integral expressions repre-
sent the additional terms, which arise in the stabilized finite ele-
ment formulation. Note that the stabilization terms are evaluated
as the sum of elementwise integral expressions, where nel is the
number of elements in the mesh. The first summation corresponds
to the SUPG term, and the second corresponds to the PSPG term.
We have evaluated the SUPG and PSPG stabilization parameters
according to Ref. �2�, as follows:

�SUPG = �PSPG = 
�2�uh�
h

�2

+ 9�4�

h2 �2�−1/2

�10�

here uh is the local velocity vector, and � is the kinematic
viscosity.

In Eq. �9�, the last summation is the least-squares incompress-
ibility constraint term �3� added to prevent spurious oscillations at
high Reynolds number flows. The LSIC stabilization parameter is

�LSIC =
�uh�h

2
�11�

The discretization of Eq. �9� leads us to a nonlinear system of
equations to be solved at each time step.

2.2 Interface Capturing. The VOF method was first pro-
posed by Hirt and Nichols �8� for finite difference schemes. The
idea of the method is to define a scalar marking function over the
computational domain in such a manner that its value at a certain
point and instant indicates the fraction of the fluids involved.

Thus, a scalar marking function can be employed to capture the
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osition of the interface between the fluids by simply using the
uid’s fraction relationship.
The volume-of-fluid can be stated as: assuming the value 1 in

egions filled with fluid A, e.g., water, and the value 0 in regions
lled with fluid B, e.g., air, the position of the fluid interface will
e defined by the isovalue contour ��x , t�=�c, where �c� �0,1�.
he value �c=0.5 is usually assumed. Finally, the function ��x� is
riven by a velocity field u satisfying the following transport
quation, given in conservative form as

��

�t
+ � · �u�� = 0 �12�

n the VOF formulation the fluid density and viscosity, employed
n the fluid flow solution, are interpolated across the interface as
ollows:

� = ��x,t��B + �1 − ��x,t���A �13�

� = ��x,t��B + �1 − ��x,t���A �14�
here subscripts A and B denote the values corresponding to each
uid.
The finite element formulation of Eq. �12� can be written as

ollows. Find �h�S�
h , such that, ∀wh�V�

h

�
�

wh� ��h

�t
+ uh · ��h�d� +�

�

wh�� · uh��hd�

+ 	
e=1

nel �
�e

�SUPGuh · �wh� ��h

�t
+ uh · ��h + �� · uh��h�d�e

+ 	
e=1

nel �
�e

	��h� � wh · ��hd� = 0 �15�

here S�
h and V�

h are standard test and weight finite element
paces. The first two integrals represent the Galerkin formulation
f Eq. �12�, while the first elementwise summation represents the
UPG, and the second summation term is the nonlinear
iscontinuity-capturing term, useful when sharp gradients and/or
oundary layers are present in directions other than the stream-
ines �14�. The evaluation of �SUPG and 	 stabilization terms fol-
ow the definitions described in Refs. �14,15�, respectively. The
iscretization of Eq. �15� leads us to a nonlinear ordinary differ-
ntial equation system due to the discontinuity-capturing term. In
his work, we have adopted the YZ
 discontinuity-capturing term
s proposed in Ref. �16�, where 	 is computed as

	��h� = �he

2
�


��̄−1Re�����	
j=1

3 �̄−1��h

�xj
2�
/2−1

�16�

here Re��� is the element residual of Eq. �15�

Re��h� =
��h

�t
+ � · �uh�h� �17�

ote that if 
=1 and the reference value �̄=1, the YZ

iscontinuity-capturing term renders to the consistent approxi-
ated upwind �CAU� method �14�. In order to avoid nonphysical

esults, values lying outside the range �0,1� were truncated with
he following function:

�h = min�max��h,0�,1� �18�

Solution Procedure
The computational solution kernels consist of predictor multi-

orrector time integration schemes, as described in Refs. �15,17�
or both incompressible fluid flow and interface transport equa-
ions. The generalized trapezoidal rule is employed in the time

iscretization. The nonlinearities due to the convective term in the

ournal of Offshore Mechanics and Arctic Engineering
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Navier–Stokes equation are treated by an inexact Newton-
generalized minimum residual �GMRES� algorithm, as described
in Ref. �18�. In this solution algorithm, at the beginning of the
nonlinear iterations in each time step, the algorithm computes
large linear tolerances, producing fast nonlinear steps. As the it-
erations progress toward the solution, the inexact nonlinear
method adapts the GMRES tolerances to reach the desired accu-
racy. A nodal-block diagonal preconditioner is employed for the
flow, and a simple diagonal preconditioner is employed for the
marker. Moreover, for both the fluid flow and the marking func-
tion advection, we use an adaptive time stepping procedure based
on a proportional-integral-derivative �PID� controller �see Ref.
�19�� for further details�. Most of the computational effort spent in
this solution procedure is due to the matrix-vector products within
the GMRES driver for both flow and marker. To improve the
computational efficiency with respect to standard element-by-
element and sparse matrix-vector storage schemes, we adopt an
edge-based data structure in order to minimize indirect memory
addressing and to diminish floating point operation counts �flops�
and memory requirements, as described in Refs. �20,21� for both
the Navier–Stokes equations and the marking function advection.
Further computational gains are obtained from data preprocessing
performed by the EdgePack library—a package to improve cache
reutilization based on reordering and grouping techniques �22�.
All computational kernels are parallelized, as detailed in Ref. �23�.
Thus, to enable these computational enhancements, the mesh is
preprocessed. First, it was partitioned into several subdomains by
METIS �24�, and the nodes, edges, and elements within the subdo-
mains are reordered for improving data locality by EdgePack. It is
worth noticing, however, that all preprocessing took a negligible
fraction of the whole solution time.

4 Enforcing Mass Conservation
The most challenging feature for a good interface-capturing

method resides in its ability to preserve the mass of the species
involved. According to Lohner et al. �25�, in VOF methods the
mass loss can be associated to reasons such as interface smearing
due to numerical diffusion of the step function, inexact divergence
free velocity field and boundary conditions, and undulations in the
solution of the marking function advection. Level set methods
suffer when the marking function lose its signed distance property.
These problems have been reported by many authors and are still
the subject of several researches. In this work we have followed
the procedure proposed in Refs. �12,25� to overcome mass losses.
In this procedure the mass lost/gained are found by comparing the
expected value, composed by the initial mass plus the inlet and
outlet fluxes at the end of each time step. Therefore, the values to
be added or removed are made proportional to the absolute value
of the normal velocity of the interface given by

un = u ·
��

����
 �19�

The amount computed from Eq. �19� guarantees that the mass
correction will act mainly in regions where the interface moves
faster, while keeping the stationary regions untouched. Therefore,
the portion of mass correction corresponding to each element is
computed and projected onto the global nodes by L2 projection. In
Ref. �12�, Elias and Coutinho evaluated different test problems
with the help of the mass preservation algorithm, showing its
efficiency.

5 Parallel Dynamic Deactivation
We use here another computational artifact to further improve

the overall efficiency of the present free-surface solver, the paral-
lel dynamic deactivation �PDD� technique for solving the marking
function. This technique is an extension of the dynamic deactiva-
tion �DD� procedure, which is an algorithm that restricts the com-

putation on regions were a defined gradient is found. It was first

NOVEMBER 2009, Vol. 131 / 041103-3
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resented by Lohner and Camelli in Ref. �26� for contaminant
ransport problems. In Ref. �12� the original DD scheme was ex-
ended to the parallel computation of free-surface flows. Since the

arking function employed on VOF methods presents steep gra-
ients, the dynamic deactivation algorithm catches and restricts
he computations only on regions around the interface.

Consequently, most of the computational effort that would be
ecessary to solve the interface transport over the whole domain is
onsiderably saved. Moreover, a buffer zone around the interface
s built to assure that the interface is kept within the enabled
egion in each time step. It is important to emphasize that al-
hough the computational costs associated to the transport prob-
em are recognizably lesser than those spent by the Navier–Stokes
olution, a similar approach can be employed to restrict the com-
utations only on regions filled by the aimed fluid during the
ncompressible flow solution phase. In the present context the set
f active elements initially selected by the DD algorithm is based
n the following criteria:

����e � �����m �20�

here ����e is the Euclidean norm of the element gradient solu-
ion, ����m is the average gradient norm computed for the whole
omputational grid, and �� �0,1� is a parameter, which controls
ow the element selection must work.

It is worthwhile to mention that even producing unbalanced
artitions, the PDD still produces computational gains since it can
rastically reduce the overall effort �computation and communi-
ation� to solve the problem. Moreover, the PDD does not spend
ny further effort in repartitioning, renumbering, and redistribut-
ng the entities over the processors. In fact, the PDD partitions are
roduced and controlled by the use of lists of active entities,
hich restrict the main loops of the solver. For more details,
lease see Ref. �12�

Test Problems

6.1 Solitary Wave. In the first problem we present simulation
esults of solitary wave propagation �27�. This problem consists of
n elevation of free-surface that suffers an initial “push” and then
ropagates itself. This push, that drives the wave initially, is in-
roduced in the problem by velocity initial conditions. The geom-
try of computational domain is presented in Fig. 1.

The initial conditions are provided by Laitone’s approximation
28�, given by

ux
0 = �gd

H

d
sec h2
� 3H

4d3x� �21�

uy
0 = �3gd�H

d
�3/2� y

d
�sec h2
� 3H

4d3x�tan h
� 3H

4d3x�

ig. 1 Schematic view of computational domain. L=200 m,
=10 m, d=10 m, and w=0.5 m.
�22�

41103-4 / Vol. 131, NOVEMBER 2009
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� = d + H sec h2
� 3H

4d3x� �23�

where g and d are the gravity acceleration and water depth, H and
� are the initial amplitude of solitary wave and free-surface eleva-
tion, x and y are spatial coordinates, and ux

0 and uy
0 are the initial

velocities in the x and y directions, respectively. For this example,
H was taken as 5 m. The unstructured finite element mesh has
42,168 nodes and 102,705 tetrahedral elements, and it is more
refined around the air/water interface. The time step was fixed in
0.01 s, and the simulation time is 10 s. The maximum inexact-
Newton linear tolerance for GMRES was set to 10−1 for the
Navier–Stokes solver and to 10−3 for the marking function equa-
tion. For nonlinear loops, both relative residual and relative step
increment are used as stopping criteria and were set to 10−3. With
these data, that Navier–Stokes inexact-Newton flow solver con-
verges in six or seven iterations in the initial simulation stages, but
after that, four iterations are enough. For the marking function,
convergence to the solution occurs in five or six iterations during
almost the entire simulation.

Figure 2 shows the solitary wave propagation, generated from
the initial condition given by Eqs. �21�–�23� during the first 10 s
of simulation.

The wave celerity, the pulse velocity in the x direction, is given
by

c =�gd�1 +
H

d
� �24�

According to the problem data, the wave celerity computed by Eq.
�24� is c=12.12 m /s, which compares well with the simulation,
since the pulse’s displacement is approximately 120 m in 10 s, as
shown in Fig. 2. The numerical wave celerity is equal to 12.03
m/s, which is in good agreement with the analytical value.

6.2 Wave Impact With a Tall Structure. In this problem we
simulate the interaction of a dam break wave with a tall structure.
This problem has been experimentally studied at the University of
Washington to model the effects due to Tsunami waves. It consists
of a dam break wave, which starts to flow due to gravity, and
reaches inertia before hitting a tall structure. It has been also nu-
merically studied by authors, such as Gesteira and Dalrymple
�29�, Wu �30�, and Raad �31�, by a variety of methods. The col-
lected experimental data included the net force on the cylinder and
the fluid velocity in a fixed position, 0.146 m upstream of the

Fig. 2 Solitary wave propagation from free-surface elevation
at t=0 s, t=2 s, t=4 s, t=6 s, t=8 s, and t=10 s.
center of the structure and 0.026 m of the floor of the tank. Forces
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ere measured with a load cell and velocities with a laser-doppler
elocimetry �LDV� system.

The model shown in Fig. 3 comprises a box, representing a tank
ith dimensions 1.6�0.6�0.6 m3 �L�W�H�, where a water

olumn of 0.4�0.6�0.3 m3 initially rests at the tank extreme.
An obstacle, representing a rigid column, of 0.12�0.12
0.6 m3 is placed 0.96 m from origin at the center line of the

ank. Following Wu �30� we considered only half the width of the
ank according to the symmetry plane illustrated in Fig. 3.

A thin layer of 1 cm of water at the bottom of the tank was also
odeled, which corresponds to a small leakage due to a deficient

rainage observed in the experimental set up �29,30�. The fluid
roperties are �water=1000.0 kg /m3, �water=0.001 kg / �m s�,
air=1.0 kg /m3, and �air=0.001 kg / �m s�. The air viscosity is
onsidered equal to the water in order to avoid unstable regions in
he air phase.

The problem was ran in parallel �MPI� in a SGI Altix 450
ystem employing 8 of its 32 Itanium-2 cores �1.6 GHz�. For 3 s
f simulation, about 13 h of CPU time was spent. The finite ele-
ent mesh was built with 1,600,137 tetrahedra, 1,943,367 edges,

nd 279,107 nodes, which, after applying the boundary condi-
ions, resulted in 1,057,725 velocity equations and 362,907 pres-
ure equations. The maximum inexact-Newton linear tolerance
as set to 10−1, while the linear tolerance for the marking function

quation was 10−3. The nonlinear loops were stopped after the
elative residual, as well as the relative step increment decreased
y three orders of magnitude. In addition, a fixed time step of
.0001 was employed.

Figure 4 shows the history of the hydrodynamic force exerted
y the fluid when flowing around the column. The maximum com-
uted force was 33.57 N at instant 0.36 s, while the experimental
alue reported is 33.90 N at instant 0.4 s.

It is important to note that a small lag of 0.2 s is reported for the
ate to finish its opening in the experimental set up. The computed
esults for the force profile are in good agreement with the experi-
ental data. A small lag of 0.10 s can be observed for the moment

hat the wave returns and hits the column at the second time.
oreover, the computed force value of 9.87 N was smaller than

he experimental value �11.33 N�.
Figure 5 shows the velocity in the x direction measured by a

DV gauge placed 14.6 cm upstream of the center of the column
nd 2.6 cm of the tank’s floor �75.4 cm, 31 cm, and 2.6 cm related
o the absolute tank coordinates�. Since we are using an unstruc-
ured grid, the velocity values were extracted from the nearest
ode. As can be seen in Fig. 5, the computed velocity time history
lose to the gauge follows the global behavior presented by the

Fig. 3 Wave impact with a tall structure—model description
xperiment.
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The maximum water loss was around 0.06%, which is one or-
der of magnitude smaller than the nonlinear stopping criteria. In
other words, material losses are negligible.

Figure 6 shows snapshots of the simulation for the instant when
the dam break wave collides with the structure �Fig. 6�a��, the
moment when the water flow starts to revert �Fig. 6�b�� and when
the second collision occurs �Fig. 6�c��.

Figure 7 shows the history of active edges per processor due to
the parallel dynamic deactivation algorithm. As may be noticed,
the PDD artifact, as employed in this work, produces an unbal-
anced work distribution, however, it is important to realize that
there is an expressive reduction in computational effort. Note in
Fig. 7 that, in the worst case, processor 1 �P1� had its computa-
tional effort reduced by 15% when compared with the computa-
tions being performed for the full model. The PDD algorithm,
restricting computations to a narrow band around the free-surface,
has a positive impact on the overall performance.

7 Conclusions
In this work we have discussed the use of several computational

techniques for the parallel edge-based solution of free-surface
flows on unstructured grids. The unsteady three-dimensional
Navier–Stokes equations were discretized with a SUPG/PSPG sta-
bilized finite element formulation, including a least-squares in-

Fig. 4 Impact force on the column in the mainstream direction
Fig. 5 Velocity in the x direction
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ompressibility constraint term and a classical Smagorinsky
odel. The main characteristics of this flow solver are implicit

ime marching scheme with adaptive time stepping control; ad-
anced inexact-Newton solvers; edge-based data structures to
ave memory and to improve performance; support to message
assing; and shared memory parallel programming models. Into
his flow solver we introduced VOF extensions to track the evolv-

ig. 6 Snapshots for the simulation of the wave impact with a
all structure: „a… t=0.451 s, „b… t=0.901 s, and „c… t=1.651 s
ng free-surface. The pure advection equation for the scalar mark-

41103-6 / Vol. 131, NOVEMBER 2009
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ing function was solved by a fully implicit parallel edge-based
SUPG finite element formulation. Global mass conservation is
enforced adding or removing mass proportionally to the absolute
value of the normal velocity of the interface. This guarantees that
the mass correction will act mainly in regions where the interface
moves faster, while keeping the stationary regions untouched.
This procedure is accurate, provided the volume of the fluid
phases is computed correctly. We introduced here another compu-
tational artifact to further improve the overall efficiency of the
present free-surface solver, the PDD technique for solving the
marking function. This technique restricts the computation to re-
gions where a defined gradient is found. Since the marking func-
tion employed on VOF methods presents steep gradients, the dy-
namic deactivation algorithm catches and restricts the
computations only on regions around the interface. In the PDD
extension, each processor estimates its own number of finite ele-
ment entities enabled for computation, and the loops are con-
strained to the number of active entities �nodes, edges, and ele-
ments�. Consequently, the overall effort �computation and
communication� to solve the problem is drastically reduced.

We validated the whole solution procedure simulating a solitary
wave and the water impact on a square cylinder. Our simulation
was able to reproduce the solitary wave shape and celerity. In
problem of the interaction of a dam break wave with a tall struc-
ture, good agreement was observed between our results and the
available experimental results for the time histories of the impact
force on the column and the measured water velocity. We noticed
in this case that the global mass conservation procedure is very
effective, keeping the volume loss below 1%. In this more chal-
lenging application, the free-surface presents a complex behavior,
involving fragmentation, merging, and turbulence effects.
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