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Protection from the potentially damaging effects of shock
loading is a common design requirement for diverse mechan-
ical structures ranging from shock accelerometers to space-
craft. High damping viscoelastic materials are employed in
the design of geometrically complex, impact-absorbent com-
ponents. Since shock transients are characterized by a broad
frequency spectrum, it is imperative to properly model fre-
quency dependence of material behavior over a wide fre-
quency range. The Anelastic Displacement Fields (ADF)
method is employed herein to model frequency-dependence
within a time-domain finite element framework. Axisymmet-
ric, ADF finite elements are developed and then used to model
shock propagation and absorption through viscoelastic struc-
tures. The model predictions are verified against longitudinal
wave propagation experimental data and theory.

1. Introduction and background

Mechanical parts are often required to withstand
shock loads. Viscoelastic materials exhibit high damp-
ing characteristics and are commonly used in the de-
sign of impact-absorbent components. Shock tran-
sients have a wide frequency spectrum, thus it is imper-
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ative to properly model the frequency dependence of
material behavior, such as the storage and loss moduli.

The classical theory of elasticity states that for suf-
ficiently small strains, the stress in an elastic solid is
proportional to the instantaneous strain and is indepen-
dent of the strain rate. In a viscous fluid, according to
the theory of hydrodynamics, the stress is proportional
to the instantaneous strain rate and is independent of
the strain. Viscoelastic materials exhibit both solid and
fluid characteristics [1,2]. Such materials include plas-
tics, rubbers, glasses, ceramics, and biomaterials. Vis-
coelastic materials are characterized by constant-stress
creep and constant-strain relaxation. Their deforma-
tion response is determined by both current and past
stress states or, conversely, the current stress-state is
determined by both current and past deformation states.
It may be said that viscoelastic materials have “mem-
ory”; this characteristic constitutes one foundation on
which their mathematical modeling may be based [1].
In polymers, material damping is a direct result of the
relaxation and recovery of the long molecular chains
after stress.

1.1. Linear viscoelasticity

Linear viscoelastic materials may be defined by ei-
ther differential or integral constitutive equations [1,
2]. Only the differential constitutive equations are re-
viewed here. The differential form of the constitutive
law for a one dimensional linear viscoelastic solid is
shown in Eq. (1).

Pσ = Qε (1)

The quantitiesσ and ε are the one-dimensional stress
and strain, respectively; P and Q are the differential
operators, which are further expressed as

P =
m∑

j=0

pj
∂j

∂tj
=

m∑
j=0

pjD
j

(2)

Q=
m∑

j=0

qj
∂j

∂tj
=

m∑
j=0

qjD
j
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where pj and qj are constants. The number of time
derivatives retained in the operators P and Q are de-
noted bym and n, respectively; j is the order of differ-
entiation.

The Maxwell model of an one-dimensional vis-
coelastic material consists of a linear spring and a linear
dashpot connected in series. The Kelvin model consists
of a linear spring and a linear damper connected in par-
allel. To better approximate material behavior over a
frequency range, more than one spring or linear damper
may be included in the model. The three-parameter
model of a standard viscoelastic solid consists of a lin-
ear spring in series with a linear Kelvin element, or a
Maxwell element in parallel with a mechanical spring

For harmonic forcing and response, the differential
linear viscoelastic constitutive law, Eq. (1), yields

σ0 = K∗ε0 (3a)

K∗ = K ′ + jK ′′ (3b)

where K∗ is the complex material modulus; K ′ and
K ′′ are the material storage and loss moduli, respec-
tively, corresponding to the circular frequencyω. Equa-
tion (3b) states that, at a given frequency, a phase shift
exists between an oscillatory stress and its correspond-
ing displacement response. The effective moduli of
linear viscoelastic materials are functions of frequency
and temperature [3,4]; however, they are independent
of stress and strain.

The frequency dependence of the complex modulus
components must be captured accurately; simple mod-
els, such as Maxwell or Kelvin, are unable to do that.
The Maxwell model behaves like a fluid at low frequen-
cies, while the Kelvin model becomes infinitely stiff at
high frequencies.

1.2. Internal variable modeling

The complex modulus variation with frequency may
be approximated using the concept of internal variables.
Various modeling techniques may be used to incorpo-
rate linear, frequency-dependent material behavior in
structural dynamics, and, in particular, Finite Element
(FE), analysis. A few of these methods are mentioned
here.

McTavish and Hughes extended the Golla-Hughes
model and formulated the GHM (Golla-Hughes-
McTavish) model for linear viscoelastic structures [6–
8]. In this formulation, the material modulus in
the Laplace domain is modeled as the sum of mini-
oscillators, consisting of a viscous damper, spring and

mass. The motion of the mass represents the internal
dissipation coordinate. This method leads to a sys-
tem of second order differential equations of motion in
the frequency domain, where the mass, stiffness, and
damping matrices are augmented by the internal dissi-
pation coordinates. A difficulty encountered with this
particular method is that the stiffness matrix is ill condi-
tioned and spectral decomposition is needed to remedy
the difficulty.

Yiu [9,10] introduced another first-order technique to
develop FE that includes frequency-dependent damp-
ing behavior of linear viscoelastic materials. This tech-
nique employs a generalized Maxwell model to repre-
sent material behavior. The dynamic stiffness matrix is
obtained in the Laplace domain. Internal coordinates
are needed to convert frequency domain equations to
the time domain. Each internal coordinate is related to a
Maxwell element. Later, the viscoelastic operator was
modified by the inclusion of a dashpot in parallel with
the generalized Maxwell model, in order to rule out
instant elastic response. As with the GHM method, the
Yiu method only models linear viscoelastic materials.

Lesieutre [11,12] and his co-workers presented the
“Augmenting Thermodynamic Fields” (ATF) approach
to model frequency-dependent material damping of
linear, viscoelastic structures in a finite element con-
text. The ATF models the dissipative behavior of lin-
ear damping materials. The ATF evolution equation is
determined from the irreversible thermodynamics as-
sumption that the rate of change is proportional to its
deviation from an equilibrium value. This results in
coupled partial differential equations in terms of the
displacement field and the gradient of the ATF. The
material constitutive equations are derived from the
Helmholtz free energy function. A first-order finite
element model is obtained from the discretized sys-
tem of equations. The coupled equations of motion
are discretized using the method of weighted residu-
als, and a first order equation system is obtained. The
ATF parameters are found by iteratively curve-fitting
the predicted complex modulus to experimental data.
Lesieutre [13] developed the “Anelastic Displacement
Fields” approach as an extension of the ATF method.
This method considers the effect of material anelasticity
on the displacement field, as opposed to directly mod-
eling physical damping mechanisms. Lesieutre and
Bianchini [14] developed rod, beam and plate, ADF-
based finite elements. Govindswamy [15] used ADF
rod elements to study longitudinal wave propagation
along a viscoelastic bar.

In this work, the ADF method is employed to develop
axisymmetric and plane stress finite elements that are



R. Rusovici et al. / Modeling of shock propagation and attenuation in viscoelastic components 289

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

m

time (ms)

middle
end

Fig. 1. End and middle displacement on free-free bar.

capable of modeling the frequency dependent behavior
of linear viscoelastic materials. The newly developed
finite elements may be used to model and analyze be-
havior of structures subjected to shock loads, such as
propagation of longitudinal waves through viscoelastic
rods, and shock absorbent mechanical filters.

1.3. Longitudinal wave propagation through rods

The wave equation governing the one-dimensional
longitudinal rod motion is

∂

∂x

(
E
∂u

∂x

)
+ q = ρ

∂2u

∂t2
(4)

where E is the Young’s modulus of elasticity, which
may be frequency dependent, ρ is the material den-
sity, u(x) is the displacement at a station x along the
rod and q(x) is a body force acting along the bar [16,
17]. The hypothesis behind the equation is that during
deformation, initially plane sections of the rod remain
plane. This equation assumes uniaxial strain and ne-
glects the effects of the Poisson’s ratio on the lateral
displacements. In an elastic rod the Young’s modulus
is frequency-independent, and the propagation velocity
is

c =

√
E

ρ
(5)

Propagation or bar velocities in most metals are
around 5000 m/s. The particle velocity, in an elastic
bar, is defined by [16]

V (x, t) = −c0σ(x, t)
E

= c0ε(t) (6)

where σ is the stress in the bar at the given time and
location, ε is the corresponding strain and c0 is the bar
velocity. In contrast to propagation velocities, particle
velocities in bars are several orders of magnitude less,
since the stress σ is typically several orders of magni-
tude smaller than the modulus of elasticityE. Consider
that an incident stress pulse reaches the fixed boundary
of a fixed-free rod. At that boundary, the reflected stress
pulse has the same sign as the incident stress pulse. At
the free boundary, the pulse changes sign. On a free-
free rod, the initial stress pulse reflects repeatedly due
to end reflections. Velocity doubling occurs at the free
ends of the bar. All points on the bar exhibit “a series
of jerky movements” [16], as seen in Fig. 1.

During longitudinal wave propagation through a bar,
a phenomenoncalled geometrical dispersion is encoun-
tered. As a result of the longitudinal displacement and
Poisson’s ratio ν, displacements in the other two coor-
dinates y and z occur (v and w, respectively):

v = −νy ∂u
∂x (7)

w = −νz ∂u
∂x

The wave propagation equation, which accounts for
lateral inertia effects, was developed by Love [17]. Ge-
ometrical dispersion becomes a factor only when the
wavelength of a given frequency component present in
the incident stress pulse Λ is on the same order as, or
smaller than, the bar radius r
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Λ =
2πc
ω

� r (8)

Lateral inertia causes high frequency components of the
pulse to travel at lower velocities than lower frequency
components [16].

When a longitudinal pulse travels through a vis-
coelastic rod, both viscoelastic attenuation and disper-
sion, and geometric dispersion phenomena may affect
it. Since viscoelastic materials exhibit frequency de-
pendence of their material moduli, the propagation ve-
locity also varies with frequency [18,19]. When a lon-
gitudinal stress-pulse propagates along a viscoelastic
bar, high-frequency components travel faster and at-
tenuate more rapidly than low-frequency components;
note that this effect is opposite to that produced by
geometric dispersion.

2. Experimental setup

The setup used to investigate longitudinal stress
pulse propagation in a PERSPEXTM viscoelastic rod
is described next. The bar is simply supported, but not
constrained axially at two longitudinal locations. A
compressed air-driven DELRINTM bullet, hits the bar
at one of the free ends. The longitudinal impact creates
a stress wave that propagates along the bar. The com-
pressive stress pulse generated by the projectile impact
usually resembles a half-sine or versed cosine shape.
Velocity, shape (blunt or sharp impact end), and ma-
terial of the projectile are all factors that influence the
duration and shape of the resulting stress pulse. The

setup is similar to the one used for shock accelerometer
calibration with a Hopkinson bar [20–22], and is shown
in Fig. 2.

The impact force is measured with a force gauge and
the strain in the middle of the bar is measured with a
pair of strain gauges. Two strain gauges are needed to
compensate for any bending strains. A GageTM data
acquisition board with 1 MHz sampling rate, records
impact force and strain gauge data. The force and strain
gauge data is recorded and processed by Labview code
adapted from the Hopkinson bar calibration code de-
veloped in part by the author [22]. Then, the force data
is used as input to the finite element code, and the strain
gauge record is compared to the model prediction.

3. Finite element development

This section shows how frequency-dependent ma-
terial behavior modeled using the Anelastic Displace-
ment Fields (ADF) is incorporated in a finite element
framework, and presents the development of the trian-
gular axisymmetric finite element [23]. First, the linear
ADF equations of motion and the material constitutive
equations are presented; then, the ADF finite element
equations are developed.

According to the theory of elasticity for the axisym-
metrical problems, two components of the displace-
ment completely define the stress state: u, the displace-
ment in the radial direction r, and v, the displacement
in the longitudinal direction z. A radial displacement
induces a strain in the circumferential direction. Thus,
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the following are true for axisymmetric problems [24]

σr, σθ, σz , τrz �= 0

εr, εθ, εz, γrz �= 0 (9)

τrθ = τzθ = 0

The axisymmetric hypotheses also apply to the
anelastic stresses and strains:

σA
r , σ

A
θ , σ

A
z , τ

A
rz �= 0

εAr , ε
A
θ , ε

A
z

(
=
∂vA

∂z

)
, γA

rz �= 0 (10)

τA
θr = τA

θz = 0

3.1. ADF modeling

The structural response of a system is determined in
computational structural dynamics by solving a set of
n simultaneous, time-dependent system of equations

Mẍ+ Cẋ +Kx = {f(t)} (11)

whereM,K andC are the mass, stiffness and damping
matrices, respectively and {f(t)} is the time depen-
dent applied load. Lesieutre [12] introduced the ADF
method to model damping in a finite element frame-
work. This method considers the effect of material
anelasticity on the displacement field: the displacement
fieldu consists of an elastic component and an anelastic
components: uE(x, t) and uA(x, t) respectively

u(x, t) = uE(x, t) + uA(x, t)
(12)

= uE(x, t) +
n∑

i=1

uA
i (x, t)

where the anelastic component may be written as the
sum of n components, as described by Eq. (12). In the
ADF model, stress-strain relationships are written in
tensor form as [13,14]

σij = Eijkl

(
εkl − εAkl

)
(13)

where εA are the anelastic strains. The anelastic
stresses are

σA
ij = Eijklεkl − EA

ijklε
A
kl (14)

Finally, the coupling between the elastic and anelas-
tic field is(

1
Ω
EA

ijklε
A
kl,t − Eijklεkl + EE

ijklε
A
kl

)
,j

= 0 (15)

where Ω is the inverse of the relaxation time, andEA
ijkl

are anelastic material constants.

The equations of motion are

ρui,tt −
(
Eijkl

(
εkl − εAkl

))
,j

= fi (16)

where fi are the body forces, and ρ is the density.
More than one ADF field may be used to for mod-

eling purposes. The frequency dependence of an indi-
vidual scalar modulus, β∗m, is characterized by [13]

β∗m(ω) = βmr

(
1 +

N∑
i=1

∆mi
(ω/Ωi)2

1 + (ω/Ωi)2

)
(17)

+iβmr

(
N∑

i=1

∆mi
(ω/Ωi)

1 + (ω/Ωi)2

)

where ω is the circular frequency (rad/s), β 0
m is the

complex modulus, βmr is the relaxed or low-frequency
modulus, Ωn is the characteristic relaxation time at
constant strain corresponding to the ith anelastic dis-
placement field, ∆mi is the relaxation strength corre-
sponding to the ith ADF field and modulus m. The
high frequency, unrelaxed, modulus is [13]

βm = βmr(1 + ∆mtotal) (18)

and

∆mtotal =
N∑

i=1

∆mi (19)

The constitutive parameters Ci show the coupling
between the total displacement field and the physical
relaxation process

Ci =

1 +
N∑

i=1

∆i

∆i
(20)

The ADF model input parameters are determined
by curve fitting the predicted material moduli to cor-
responding experimental values. The input parameter
values are adjusted iteratively to minimize differences
between predicted and experimental values in a least
square sense. The number of anelastic displacement
fields used usually determines how well the predicted
material data compares to the actual value over a given
frequency range.

3.2. Finite element development

Simple triangular axisymmetric ADF finite elements
are developed. Each node has two degrees of freedom
(DOF): u (the displacement in the radial direction r)
and v (the displacement in the vertical direction z). The
element area is denoted by ∆A. The displacements
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are approximated using the following shape functions
at each node (denoted respectively by subscripts e, f
and g) of the triangular finite element

Ne(r, z) =
ae + ber + cez

2∆A
and

(21)
[N2(r, z) = [NeNfNg]

By substituting the shape functions, the strain matrix
is obtained as a function of the displacements δ and the
anelastic displacement vector δA:{ {ε}

{εA}
}

= [B]
{ {δ(t)}
{δA(t)}

}
(22)

[B] =
1

2∆


be bf bg 0 0 0 0 0 0 0 0 0
de df dg 0 0 0 0 0 0 0 0 0
0 0 0 ce cf cg 0 0 0 0 0 0
ce cf cg be bf bg 0 0 0 0 0 0
0 0 0 0 0 0 be bf bg 0 0 0
0 0 0 0 0 0 de df dg 0 0 0
0 0 0 0 0 0 0 0 0 ce cf cg
0 0 0 0 0 0 ce cf cg be bf bg




(23)

and

∂Ne

∂r
=
be

2∆A
;
∂Nf

∂z
=
cf

2∆A
;

(24)
Ng

r
=
dg

2∆A
The strain energy is

Us =
1
2

∫
V

{ {ε}
{εA}

}T [ [D1] [−D1]
[−D1] [DA

1 ]

]
{ {ε}
{εA}

}
dV = . . .

(25)

=
1
2

∫
V

{ {δ}
{δA}

}T

[B]T

[
[D1] [−D1]

[−D1] [DA
1 ]

]
[B]
{ {δ}
{δA}

}
dV

After integrating over the volume, the element stiff-
ness matrix becomes

[k] = 2π
∫ ∫

[B]T
[

[D1] [−D1]
[−D1] [DA

1 ]

]
(26)

[B]rdrdz

The element damping-matrix is found using similar
considerations [13]

[c] =
∫

V

[B]T
[
{0} {0}
{0} [DA

1 ]
Ω

]
[B]dV

= 2π
∫ ∫

[B]T
[
{0} {0}
{0} [DA

1 ]
Ω

]
(27)

[B]rdrdz

The mass matrix of the ADF axisymmetric element
does not include any contribution from the anelastic
displacement fields and resembles the mass matrix of a
simple, elastic, triangular axisymmetric finite element

[m] = ρ
∫

V




[N2] 0 0 0
0 [N2] 0 0
0 0 0 0
0 0 0 0




T




[N2] 0 0 0
0 [N2] 0 0
0 0 0 0
0 0 0 0


 dV = . . .

(28)

= 2πρ
∫ ∫ 

[N2] 0 0 0
0 [N2] 0 0
0 0 0 0
0 0 0 0




T




[N2] 0 0 0
0 [N2] 0 0
0 0 0 0
0 0 0 0


 rdrdz

Thus, the stiffness, damping and mass matrices are
developed for a simple, triangular, ADF axisymmetric
element.

4. Results

In this section, model predictions are compared to
longitudinal wave propagation experimental results.
Two cases are analyzed: the longitudinal wave prop-
agation along a viscoelastic rod and the modeling of
mechanical filters subjected to shock.

4.1. Wave propagation through a viscoelastic rod

A shock force usually excites frequency components
spread over several decades [23]. Thus, it becomes
necessary for analysis purposes to define a high cut-
off radial frequency, which also allows for reasonable
solution accuracy [25,26]. The goal is to determine
that cutoff radial frequency ωc0 and to define a corre-
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sponding finite element mesh. The cutoff frequency
determines the critical wavelength Lw.

An axisymmetric, three-ADF finite element model
is employed to simulate the transient response of a
1.8-meter long, free-free PERSPEX bar subjected to
a half-sine, longitudinal impact force. The bar has a
15.7-mm diameter. The mesh consists of 250 nodes
in the longitudinal direction by two nodes in the radial
direction. The input force has a duration τ of 150 µs.
The Fourier amplitude spectrum of a half-sine pulse
becomes null at a frequency f , where

f =
3
2τ

(29)

In the experiment, the impact force lasts approxi-
mately 100 µs. This corresponds to a cutoff frequency
of 15 kHz. The total time for the corresponding wave
to travel a distance equal to an element length is

tw =
Lw

c(f)
= 67 µs (30)

where c is the wave velocity at the corresponding fre-
quency (c for PERSPEXTM at 15 kHz is 2193 m/s).
Assuming that n1 time steps are necessary to properly
represent the waveform of wavelength Lw, the time
step is

∆t =
tw
n1

= 3.3 µs (31)

wheren1 is recommended to be equal or greater than 20
in finite element practice [25,26]. The element length

Table 1
ADF parameters used for PERSPEXTM

Parameter 1 2 3

Ω1 (rad/s) 20 300 9000
∆∗

Gi 0.17 0.11 0.1

is

Le = c∆t = 7 mm (32)

The time step chosen is 1 µs. The time step is chosen
to be smaller than the calculated values to allow for
better solution accuracy. The cutoff frequency also de-
termines the frequency range of interest for ADF mod-
eling of material parameters. The Newmark method is
used here to numerically integrate the equations of mo-
tion, since this particular method is inherently stable.

The parameters presented in Table 1 were obtained
through a least square curve-fit of the PERSPEXTM

Young’s modulus and loss factor data using a three-
ADF model. In practice, material modulus-versus-
frequency data often varies from one batch to the next.
The ADF parameters can be slightly adjusted to better
match displacement time response.

The relaxation strengths of the shear ∆G modulus
and bulk modulus ∆K are assumed to be equal. Fig-
ures 3 and 4 show the three-ADF model curve fit of
the loss modulus and Young’s modulus, respectively,
versus the corresponding experimental values.

The Young’s modulus is approximated better than
the loss factor over the frequency range of interest.
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More ADF would increase accuracy, but would require
additional computational resources.

Figure 5 shows the three-ADF model prediction ver-
sus the experimental strain time record in the middle of
the free-free PERSPEXTM bar. The time record starts
at the beginning of the first pulse, and only the first

two pulses are considered. Figure 5 also shows the
viscoelastic attenuation of the initial pulse, as it travels
along the bar, a phenomenon captured well by the fi-
nite element model. The model predicts the peak value
of the first pulse to be within 9% relative error to the
experiment, while the second pulse is predicted within
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4% relative error. The frequency content of the pre-
dicted second pulse shows slightly less dispersion than
in reality. That is because the three-ADF material pa-
rameter approximation is valid over a limited frequency
range.

Note in Fig. 6 the decay of the mechanical energy

in the viscoelastic bar. The mechanical energy is the
sum of the kinetic and strain energies. The strain en-
ergy component decays and the total mechanical en-
ergy asymptotically approaches the constant-velocity
kinetic energy of the bar. Such results could not be
obtained using a purely elastic finite element model.
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The preceding experiment was repeated for a Perspex
bar with a 28-mm diameter and 1.9-m length. The
predicted strain in the middle of the bar is compared
against the experiment in Fig. 7.

Again, the model predicts the peak value of the first
pulse to be within 10% relative error to the experiment,
while the second pulse is predicted within 3% relative

error.

4.2. Modeling of geometrical dispersion in a
PERSPEXTM bar

A phenomenon commonly encountered in longitu-
dinal wave propagation along bars is geometric disper-
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Fig. 11. Particle velocity of mass.

sion. Geometric dispersion occurs when the diameter
of the bar is on the same order of magnitude as, or
longer than the wavelength of frequency components
contained in the stress pulse. The stress pulse is dis-
persed as a result of the effect of lateral inertia. Ge-
ometric dispersion causes high frequency pulse com-
ponents to travel slower than lower frequency pulse
components [16]. As a result, high-frequency oscil-
lations follow the displacement step pulse associated

with longitudinal wave propagation along bars. These
high-frequency oscillations that follow a step displace-
ment pulse, indicative of geometric dispersion, were
recorded and published by Kolsky [19].

The next numerical simulations show that geomet-
rical dispersion is predicted by an ADF based fi-
nite element model. In these simulations, a free-free
PERSPEXTM bar is hit at one end by a half-sine force
of 1368 N magnitude and 4.35 kHz central frequency.
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In one simulation the bar has a 15-cm diameter, and in
the other simulation the bar has a 1.5-cm diameter. The
bar is 1.8 m long. The FE mesh that models the bar has
200 nodes in the longitudinal direction by 2 nodes in
the radial direction; the element length is 0.75 cm. A
single-ADF, triangular, axisymmetric FE is used. The
time step chosen is 2.5 microseconds. This numerical
arrangement allows good modeling of frequency com-
ponents of up to 14.5 kHz in the response. Pulse dis-
persion is expected in the 15-cm diameter bar, since the
wavelength corresponding to a 14.5 kHz frequency is
on the same order of magnitude as the larger diameter.

Figure 8 compares the predicted bar end displace-

ments for the two simulations. Each end displacement
is normalized to its maximum value. The two bars have
different masses, but the same force acts upon them:
as a result, the magnitudes of the corresponding end
displacements are different.

Note in Fig. 8 that a series of high-frequency oscil-
lations follow each sharp rise of the end displacement
corresponding to the 15-cm diameter bar, which are the
effects of geometrical dispersion. The geometrical dis-
persion effects are not observable in the end displace-
ment of the smaller diameter bar, however. The effects
of viscoelastic attenuation are present in both displace-
ment traces and are represented by slope changes in the
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Fig. 14. (a) and (b) Comparison of three-ADF storage- and loss-moduli, respectively, of Buna N B-1, at 25◦C, to corresponding experimental
quantities.

displacement time record.
Figure 9 shows the mechanical energy in the 15-cm

bar, which is the sum of the kinetic and strain energies.
The strain energy component decays and the mechani-
cal energy asymptotically reaches the constant-velocity
kinetic energy of the bar.

4.3. Modeling of mechanical filters subjected to shock

Mechanical filters are often employed in shock ac-
celerometers to protect the sensing element from shock

transients [27–30]. It is of interest to quickly deter-
mine whether a given material will provide the desired
damping characteristics.

To verify this, a mechanical filter made of Buna N
B-1 [31,32] rubber was glued to the end of a 2.03-m
long Hopkinson bar. The filter was a 3-mm thick disk
with a 1.9-cm diameter (same diameter as the bar).
A 30-gram mass was glued on to the filter; the mass
had a shock accelerometer screwed into it. The shock
accelerometer did not have a mechanical filter itself. A
force gauge was screwed into the opposite end of the
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Table 2
Single-ADF parameters used for Buna N B-1 rubber

Parameter Value

Peak loss factor ηP 1.5
Frequency at peak loss factor (Hz) at 25◦C 12000
Ω (rad/s) 2.5e5
∆∗

G 9.9
∗∆G = ∆K ; the relaxation strengths corresponding to the shear
and bulk modulus, respectively, are considered to be equal.

bar. A DELRINTM bullet driven by compressed air hit
the force gauge. The impact force (shown in Fig. 10)
and acceleration were recorded using the experimental
setup described in Section 2 and Fig. 1. The force
data was used as input into the finite element code; the
acceleration record was integrated with respect to time
and the resulting velocity record was compared to the
model prediction. The ambient temperature during the
experiment was approximately 25◦C.

Axisymmetric, single-ADF finite elements were em-
ployed to model the filter, while elastic axisymmetric
finite elements were used for the bar. The bar was mod-
eled using a mesh made of 300 nodes longitudinally by
2 nodes radially. The rubber disk was represented using
a mesh formed by 10 nodes longitudinally by 2 nodes
radially. To allow proper representation of frequency
components up to 6 kHz, an integration time step of 1
microsecond was chosen.

The following formula to compute the relaxation
magnitude for a single-ADF finite element [14]:

∆ = 2ηp
[
ηp +

√
(1 + η2p)

]
(33)

where ηp is the peak loss factor. The inverse of the
relaxation time is

Ω = ωp(1 + ∆)1/2 (34)

whereωp is the circular frequency corresponding to the
peak loss factor value. All the ADF parameters used
are shown in Table 2.

The predicted longitudinal particle velocity and ex-
perimental velocity of the mass versus time are com-
pared in Fig. 11. The magnitude of the first velocity
peak is predicted within 5% relative error to the exper-
imental value.

Figure 12 shows the predicted longitudinal displace-
ment of the mass over time. Note that filter resonances
are superimposed on the displacement steps. Figure 13
depicts the mechanical energy in the bar versus time.

The filter absorbs the energy as the pulse passes
through it and causes the steps observed in the energy
time record.

Table 3
Three-ADF parameters used for Buna N B-1 rubber

Parameter 1∗∗ 2 3

Ω1 (rad/s) 300 1e3 4.4 e4
∆∗

Gi 0.22 0.75 4
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Fig. 15. Particle velocity of mass.

A new analysis was performed using three-ADF fi-
nite elements to model the filter, since it was shown
in Reference [13] that using more ADF coordinates
improves the accuracy of the material model. The
ADF parameters were found this time by curve-fitting
the predicted moduli to measured data found in Ref-
erence [32]. Figures 14(a) and (b) show a compari-
son of the three-ADF curve-fit of the storage and loss
modulus, respectively, to corresponding experimental
data.

The longitudinal particle velocity predicted using a
three-ADF (see Table 3) axisymmetric finite element
model is compared against the experiment, as shown in
Fig. 15.

The magnitude of the first velocity peak is also pre-
dicted within 5% relative error to the experimental
value.

5. Conclusions

In conclusion, the experiments and simulations sum-
marized here verify that ADF axisymmetric finite ele-
ments provide a good model for capturing the behavior
of viscoelastic components under shock loading. Such
models are capable of capturing wave propagation phe-
nomena, including geometric dispersion and viscoelas-
tic attenuation of longitudinal waves in rod, and behav-
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ior of mechanical filters in realistic shock conditions.
ADF three-dimensional finite element models may thus
be successfully employed to design mechanical filters
for various shock-isolation applications.
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