
Using First-Order Logic to Reason about Submodule
Construction1

Gregor v. Bochmann

School of Information Technology and Engineering (SITE), University of Ottawa, Canada
bochmann@site.uottawa.ca

Abstract. We consider the following problem: For a system consisting of two
components, the behavior of one component is known as well as the desired
global behavior. What should be the behavior of the second component such
that the behavior of the composition of the two conforms to the desired
behavior ? - This problem has been called "submodule construction" or
"equation solving”. Solutions to this problem have been described in the context
of various specification formalisms and various conformance relations. This
paper presents a new formulation of this problem and its solution in first-order
logic. It is also shown how the solutions for submodule construction in various
specification formalisms can be derived from the solution in logic. The simple
proof of correctness for the logic solution is then used to justify the particular
forms of solutions in the different specification formalisms, such as (a)
synchronous rendezvous at several interfaces, and (b) interleaved rendezvous
(labeled transition systems).

1. Introduction

In automata theory, the notion of constructing a product machine S from two given
finite state machines MA and MB , written M = MA x MB, is a well-known concept (see
Figure 1(a)). This notion is very important in practice since complex systems are
usually constructed as a composition of smaller subsystems, and the behavior of the
overall system is in many cases equal to the composition obtained by calculating the
product of the behaviors of the two subsystems. Here we consider the inverse
operation, called “equation solving” or “submodule construction”: Given the
composed system M and one of the components MA, what should be the behavior of
the second component MB such that the composition of these two components MA and
MB will exhibit a behavior equal to M. That is, we are looking for the value of X
which is the solution to the equation MA x X = M (see Figure 1(b)). Actually, since
equality often cannot be realized, we are looking for the most general machine X
which composed with MA satisfies some conformance relation in respect to M. In this
paper we consider trace inclusion as conformance relation.

1 This work was partly supported by a research grant from the Natural Sciences and

Engineering Research Council of Canada.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357586923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A first paper of 1980 [1] (see also [2]) gives a solution to this problem for the
case where the machine behavior is described in terms of LTS (communicating by
interleaved rendezvous). This work was later extended to the cases where the
behavior of the machines is described by CSP, FSMs with queues, IOAs and
synchronous FSMs. The problem has also been formulated for databases using
relational algebra (see [3] for pertinent references). The main applications of this
work are in the design of communication protocols, the construction of protocol
converters for communication gateways, the selection of test cases of testing a module
in a context, and for finding a controller for discrete event control systems [4].

The purpose of this paper is to show that, in fact, the equation solving (or
submodule construction) problem can be formulated in logic. It turns out that (a) a
solution with a structure similar to the solutions mentioned above exists, and (b) a
proof of the correctness of this solution is quite simple, apparently much simpler than
the existing proofs of correctness for the solutions in the contexts mentioned above.
We show in this paper how the solutions for submodule construction in different
contexts can be derived from the general solution in the logic context. The proof of
correctness from the logic context can therefore be used to justify the particular forms
of solutions in the contexts of different specification formalisms. In this paper we give
an overview of the cases of (a) synchronous rendezvous at several interfaces, and (b)
interleaved rendezvous (that is, labeled transition systems). A more detailed
discussion, including examples, can be found in [3]. Other contexts are considered in
[5], such as synchronous (I/O) automata with complete or partial behavior
specifications, interleaving IOA with complete or partial behavior specifications, and
finite state machines with queued communication, as well as relational algebra for
databases. These contexts include much of the previous work mentioned above and
also some not so common modeling approaches.

2. Equation solving in the logic context
We use in this section first-order logic with typed variables. We consider a universe
with three variables XA, XB, and XC that may take values from three domains DA , DB
and DC , respectively. These domains may be infinite. Therefore, the set of possible
value assignments to the variables is U = DA × DB × DC . We write xA, xB, and xC for
possible values of the variables XA, XB, and XC , respectively.

We are interested in relationships between values of different variables. For
instance, we may consider a relation R ⊂ DA × DB which is a subset of pairs < xA, xB
> of values of the variables XA and XB . We also use predicates to characterize sets.
For instance, the relation R may be characterized by a predicate C(xA, xB) which is
true exactly for those pairs < xA, xB > that are in R.

The equation solving problem

In the following, we are interested in three relations RA ⊂ DB × DC, RB ⊂ DA × DC and
RC ⊂ DA × DB . We write CA(xB, xC) , CB(xA, xC) , and CC(xA, xB) for their respective
characterizing predicates. We now consider the following proposition:

∀ < xA, xB, xC >∈U : <xB, xC> ∈ RA ∧ <xA, xC> ∈ RB ⇒ <xA, xB> ∈ RC (1Rel)

This proposition may be equivalently rewritten in terms of the predicates as follows:

∀ < xA, xB, xC > ∈ U : CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB) (1Pred)

The problem of equation solving is the following: We assume that RA and RC are
given. What are the properties of relation RB that ensure that proposition (1) is
satisfied? – We would like to find a maximal solution RB

max to this problem, that is,
RB

max together with RA and RC would satisfy (1), but any larger RB’ ⊃ RB
max would

not satisfy this proposition.

The maximal solution

Starting from (1Pred), it is easy to see that the following predicate characterizes the
maximal solution:

CB
max(xA, xC) = ∀ xB ∈ DB : CA(xB, xC) ⇒ CC(xA, xB) (2)

The right side of this definition can be equivalently transformed in several steps as
follows:
 ∀ xB ∈ DB : ¬CA(xB, xC) ∨ CC(xA, xB)
 ∀ xB ∈ DB : ¬ (CA(xB, xC) ∧ ¬CC(xA, xB))
 ¬∃ xB ∈ DB : CA(xB, xC) ∧ ¬CC(xA, xB)
which leads to the following equivalent expression for the maximal solution:

CB
max (xA, xC) = ¬∃ xB ∈ DB : CA(xB, xC) ∧ ¬CC(xA, xB) (3)

The realized subset of RC

We note that in general not all pairs <xA, xB> ∈ RC could be “realized” by RA and
RB

max .

Definition: We say that a pair <xA, xB> ∈ RC is realizable by RA and RB if there exist
a value xC ∈ DC such that <xB, xC> ∈ RA and <xA, xC> ∈ RB .

We call the subset of RC that is realisable by RA and RB
max the maximally realisable

subset of RC (or “product”), written RC
prod . We therefore have

<xA, xB> ∈ RC
prod iff ∃ xC ∈ DC : <xB, xC> ∈ RA ∧ <xA, xC> ∈ RB

max (4)

The reduced maximal solution

We consider the relation RB
incompatible characterized by the following predicate:

 CB
incompatible(xA, xC) = ¬∃ xB ∈ DB : CA(xB, xC) ∧ CC(xA, xB)

Lemma: There is no <xA, xB> ∈ RC that is realizable by RA and RB
incompatible .

Proof: Let us assume that there is a pair <xA, xB> ∈ RC that is realizable by RA and
RB

incompatible . According to the definition of “realizable”, this implies that there is a xC
∈ DC such that <xB, xC> ∈ RA and <xA, xC> ∈ RB

incompatible . Now, the definition of

RB
incompatible implies that there is no x’B ∈ DB such that CA(x’B, xC) ∧ CC(xA, x’B).

However, this is a contradiction, since xB satisfies this condition for x’B.

We conclude from the lemma above that those pairs <xA, xC> of RB
max that are in

RB
incompatible do not contribute to the realization of RC

prod . We therefore may eliminate
from the solution RB

max all pairs in RB
incompatible and still obtain the same set RC

prod of
realizable pairs <xA, xB>. We call this the reduced maximal solution to the equation
solving problem. It is characterized by the following predicate:
 CB

red (xA, xC) = (∃ xB ∈ DB : CA(xB, xC) ∧ CC(xA, xB)) ∧
 (¬∃ xB ∈ DB : CA(xB, xC) ∧ ¬CC(xA, xB)) (5)

3. Submodule construction for synchronous systems and LTS

State machines are often used as models for reactive systems that interact with their
environment. Often one considers a system model which is the composition of several
state machines. Therefore a state machine is normally a component within a system, it
interacts with other components of the system and possibly also with the environment
of the system; or the state machine represents the interactions of the whole system
with its environment. Because of space limitations, this sections is much condensed.
More details can be found in [3].

Fig. 1. (a) two communicating components; (b) submodule construction problem

A system component has one or more interfaces where interactions with the
environment of the component take place. Each interface i is associated with a
domain Ii ; the elements of Ii are the possible interactions that may take place at that
interface. We write xi

(t) for the interaction that takes place at interface i at time unit t.
Clearly, xi

(t) ∈ Ii for all t. We write xi for a sequence of interactions at interface i over
a certain time period. We write Ii* for the set of all sequences that can be formed by
concatenating interactions from the domain Ii . We have xi ∈ Ii* .

We assume trace semantics for the specification of the dynamic behaviour of a
system, that is, the dynamic behavior of a system M is defined in terms of the set of
possible execution histories that could occur during the execution of the component.
For a system with n interfaces i (i = 1, …, n), an execution history consists of a tuplet
< x1, x2, … xn > where xi (i = 1, …, n) is the sequence of interactions that occurred at
interface i during the execution history. We therefore assume that the specification S
of the behavior of M is given in the form of a (normally infinite) set of such tuplets.
As in Section 2, instead of talking about the set S of tuplets, one may also talk about
the predicate C that characterizes this set.

3.1. Submodule construction for synchronous systems

For synchronous systems, there is an interaction at each interface during each global
time unit. Therefore, for a system as shown in Figure 1(b), the formula

 ∀ < xA, xB, xC > ∈ U : CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB) (1syn)

states that the traces of the composition of machines MA and MB are included in the
traces of MC . In order to compare this formula with what has been discussed
previously in the literature, we have to introduce the hiding operator. When one of the
interfaces (say i) is hidden, we obtain a visible behaviour which only involves the
non-hidden interfaces. For a behavior C of a machine with n interfaces, we use the
notation “hide(syn)

i (C(x1, x2, … xn)” to represent the predicate of the behaviour when
interface i is hidden. As discussed by Abadi and Lamport, this predicate has the
following form:
 < x1, … , xi-1, xi+1, …, xn > ∈ hide(syn)

i (C(x1, x2, … xn))
 iff ∃ xi ∈ Ii* : < x1, … , xi-1, xi, xi+1, …, xn > ∈ C(x1, x2, … xn)

We note that (1syn) has the form of (1Pred) and we can follow the derivations of
Sections 2.3 through 2.5. Using the above formula for hiding, we can rewrite
Equation (5) of Section 2 for the reduced maximal solution as follows:

 CB
red (xA, xC) = hide(syn)

B (CA(xB, xC) ∧ CC(xA, xB))
 \ hide(syn)

B ((CA(xB, xC) ∧ (IA* × IB* \ CC(xA, xB))) (5syn)

3.2. Submodule construction for interleaving semantics

In this modeling framework, we also have rendezvous interactions at interfaces, but
interleaving semantics is assumed, which means that at most one interaction (on a
single interface) may occur during each time unit. We use in the following the same
modelling framework as for synchronous machines, but introduce the following
changes:
− We allow an interface to have the value null during a given time unit, which means

that no interaction takes place at this interface during this time unit.
− In a system of several components with n interfaces, a possible execution history

<x1, x2, … xn> must satisfy the following constraint, called interleaving
constraint:

 IC(x1, x2, … xn) = for all t : xi
(t) ∈ Ii implies xj

(t) = null for all j ≠ i.

We say that two execution histories are equivalent if they exhibit the same
sequence of non-null interactions. This leads to the following formula of interface
hiding:
 < x1, …, xi-1, xi+1, …, xn > ∈ hide(LTS)

i (C(x1, x2, … xn))
 iff IC(x1, … , xi-1, xi+1, …, xn)
 ∧ ∃ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ > : (IC(x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘)
 ∧ < x1‘, … , xi-1‘, xi+1‘, …, xn‘ > ≅ < x1, … , xi-1, xi+1, …, xn >
 ∧ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ > ∈ C(x1, x2, … xn))
Because of the interleaving constraint, the formulas (1syn) and (2) become:

 ∀ < xA, xB, xC > ∈ U : IC(xA, xB, xC) ∧ CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB) (1LTS)
 CB

max(xA, xC) = IC(xA, xC) ∧ ∀ < xA‘, xB‘, xC‘ > ∈ U :
 IC(xA‘, xB‘, xC‘) ∧ <xA‘, xC‘> ≅ <xA, xC> ∧ CA(xB‘, xC‘) ⇒ CC(xA‘, xB‘) (2LTS)

And the reduced maximal solution becomes
 CB

red (xA, xC) = hide(LTS)
B (CA(xB, xC) ∧ CC(xA, xB)

 ∧ ¬ hide(LTS)
B (CA(xB, xC) ∧ ¬CC(xA, xB)) (5LTS)

This solution was presented (using a different notation) in [1], which was the first
paper on submodule construction to our knowledge. We note that this formula is the
same as (5 syn), except that a different hiding operator is used.

4. Conclusions

We have shown in this paper that the problem of submodule construction can be
formulated in a general setting using first-order logic. It turns out that solutions to this
problem in logic are quite simple, and they can be mapped (together with their proof
of correctness) into the different specification formalisms considered in earlier work.
Therefore this paper provides, in a sense, new proofs of correctness for the solutions
of the submodule construction problem described earlier.

We consider in this paper trace semantics, that is, the behaviour of the system, or
of a component, is characterized by the set of possible execution histories. This is
adequate for safety properties, but ignores issues of liveness, progress, absence of
deadlocks and fairness.

It is to be noted that the complexity of the algorithms for constructing the missing
submodule depends on the specification formalism used. For state machines the
complexity is polynomial if the interactions at the interface IC in Figure 1(b) are
visible by MC, however, if they are hidden, as we assume in this paper, the algorithms
become exponential, because the hiding introduces non-determinism and the
algorithm to find a deterministic automaton equivalent to a non-deterministic one is
exponential. The problem becomes undecidable for behavior specifications in CSP.

References
For a complete list of references, see [3].
[1] G. v. Bochmann and P. M. Merlin, On the construction of communication protocols, ICCC,

1980, pp.371-378, reprinted in "Communication Protocol Modeling", edited by C. Sunshine,
Artech House Publ., 1981; russian translation: Problems of Intern. Center for Science and
Techn. Information, Moscow, 1981, no. 2, pp. 146-155.

[2] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications and
Communication Protocols, ACM Trans. on Programming Languages and Systems, Vol. 5,
No. 1 (Jan. 1983), pp. 1-25.

[3] Extended version of this paper, see
http://www.site.uottawa.ca/~bochmann/dsrg/PublicDocuments/Publications/Boch09a.pdf

[4] P. J. G. Ramadge and W. M. Wonham, The control of discrete event systems, in
Proceedings of the IEEE, Vo. 77, No. 1 (Jan. 1989).

[5] G.v. Bochmann, Submodule construction – the inverse of composition, submitted.

