On The Design of Csound5

John ffitch
Department of Computer Science
University of Bath
Bath BA2 TAY,

UK,
jpff@cs.bath.ac.uk

Abstract

Csound has been in existence for many years, and
is a direct descendant of the MusicV family. For
a decade development of the system has continued,
via some language changes, new operations and the
necessary bug fixes. Two years ago a small group of
us decided that rather than continue the incremental
process, a code freeze and rethink was needed. In
this paper we consider the design and aims for what
has been called Csound5, and describe the processes
and achievements of the implementation.

Keywords
Synthesis language, Csound.

1 Introduction and Background

The music synthesis language
Csound (Boulanger, 2000) was produced
by Barry Vercoe(Vercoe, 1993) and was avail-
able under the MIT Licence on a small number
of platforms. The current author ported the
code to the Windows environment in the
early 1990s, whereupon a self-defining team
of programmers, DSP experts and musicians
emerged who have continued to maintain and
extend the software package ever since. The
original synthesis engine has remained largely
unchanged, while a significant number of
new operations (opcodes) and table creation
routines have been added. Despite various
suggestions over the years, the two languages —
the score language and the orchestra language
— have remained unaltered until very recently,
when user-defined opcodes, if . .else and score
looping constructs were introduced.

The user base of Csound is large, and as we
have maintained a free download policy we do
not know how many copies there are in exis-
tence or how many are being used. What is
clear from the Csound mailing lists is that the
community is very varied, and while some of us
think of ourselves as classical “art” composers,
there are also live performers, techno and ambi-
ent composers, and many other classifications.

The subject of this paper is Csoundb, and in
particular how its design has evolved from the
current Csound. But there are two particular
phenomena that have had a direct influence on
the need for the re-think.

The first was legal; Csound had been dis-
tributed under the MIT Ilicence since 1986,
which stipulates some freedoms and some re-
strictions. The freedoms are expressed as Per-
mission to use, copy, or modify these programs
and their documentation for educational and re-
search purposes only and without fee is hereby
granted, provided that this copyright and per-
mission notice appear on all copies and support-
ing documentation. There was clarification that
this should be taken to allow composers to use it
without imposing any restriction on the result-
ing music. However the licence continues For
any other uses of this software, in original or
modified form, including but not limited to dis-
tribution in whole or in part, specific prior per-
mission from M.I.T. must be obtained. When
Csound was first made available this was con-
sidered a free licence, but with the growth of the
Free Software movement, and much wider avail-
ability of computers, the restriction stopped de-
velopers making use of Csound in larger soft-
ware systems if they were intending to dis-
tribute the resulting system. It also acted to
prevent some kinds of publicity, as might be en-
gendered by inclusion in books and magazines.
Early attempts to resolve these problems failed,
mainly though incomprehension. The publica-
tion of Phillips’ book(Phillips, 2000) was a fur-
ther call to address the problem. The change
which influenced the whole approach to the de-
velopment of Csound was the adoption by MIT
of the Lesser GNU Public Licence. The de facto
monopoly allowing distribution was gone.

The second phenomenon was the appar-
ently remorseless improvements in technology.
Csound was conceived as an off-line program,
rendering a sound description over however long



Orchestra Reader

Opcodes

Figure 1: Architecture of original Csound

it took. In the mid 1990s there was a project to
recreate Csound for an embedded DSP proces-
sor(Vercoe, 1996) as a means of making a real-
time synthesis system. This has been overtaken
by the increase in machine speeds, and this
speed has resulted in the Csound community
calling for real-time performance, performer in-
terfaces and MIDI controls. While some users
had been wanting this for years, the availability
of processors that were nearly capable of real-
time rendering made all too clear the shortcom-
ings of the 15- year-old design.

At the end of 2002 we imposed a code freeze
to allow the developer community to catch up
with their modifications, and in particular to
allow larger scale changes to be made on a
fixed target. The previous version was still sub-
jected to bug fixes but mainstream development
ceased as we moved to Sourceforge and opened
up the system even further.

This paper gives one person’s view of the sys-
tem we are building, usually called Csoundb, as
we froze at version 4.23. As the system is now
running largely satisfactorily it is a good time
to reflect on the aims of this major reconstruc-
tion, and to what extent our aspirations have
been matched by our achievements.

2 Requirements

The developers had a number of (distributed)
discussions of what was needed in any revision.
The strongest requirement was the ability to
embed Csound within other systems, be they
performance system or experimental research
testbeds(ffitch and Padget, 2002). This has a
number of software implications. The most sig-
nificant one is perhaps the need for an agreed
application process interface (API) which would
allow the controlling program access to some of
the internal operations of Csound, and also sep-

arate the compilation processes from the execu-
tion. Also in the scope of the API is the possibil-
ity of adding new opcodes and generators which
have access to the opcode mechanisms, memory
allocation, navigation of internal structures and
SO on.

Related to the requirement for a documented
software interface is a call to make Csound re-
entrant. This would allow multiple uses both
serially and in parallel. The original code was
written with no thought for such niceties, and
there is a plethora of static variables throughout
the system. Removing these would be a major
step towards re-entrance, and encapsulating the
state within a single structure was the proposed
solution, a structure that could also carry parts
of the APIL.

A possible lesser goal was to improve the in-
ternal reporting of errors. The original system
set a global variable to indicate an initialisation
error or a performance error, and this is checked
at the top event loop. A simpler and more re-
spectable process is for each initialiser and op-
erator to return an error code; such a system
can be extended to make use of the error codes.

Csound originally generated IRCAM format
sound files, and AIFF. Later WAV was added
and some variants of AIFC. The code was all
ad hoc and as audio formats are continually be-
ing developed, it seemed an ideal opportunity
to capitalise on the work of others, and to use
an external library to provide audio filing.

In a similar way the real-time audio output is
specially written for each platform, and main-
taining this reduces the time available for devel-
opment and enhancement. Since Csound was
written, cross-platform libraries to encapsulate
real-time audio have been developed, and while
using an external library for files it seemed nat-
ural to investigate the same for sound.

Another aspect where there was platform-
dependent code is in graphics. Csound has been
able to display waveforms and spectral frames
from the beginning, but there are a large num-
ber of optional files for DOS, Windows, Macin-
tosh, SGI, SUN, X, and so forth. Using a gen-
eral graphical system would move this compli-
cation into someone else’s hands. It would also
be useful if the graphical activity were made ex-
ternal, using the API, so a variety of graphical
packages could be used in a fashion like embed-
ding. This leads to the idea of providing a vis-
ible software bus to communicate between the
Csound engine and the wider environment.



The last component where an external library
could assist is in MIDI. There have been com-
plaints about the support for MIDI for a long
time, and so in any reconstruction it was clearly
something that should be addressed.

The last major component that is in need of
reconstruction is the orchestra parser. The orig-
inal parser is an ad hoc parser very reminiscent
of the late 1970s. It is hard to modify and there
are bugs lurking there that have evaded all at-
tempts to fix. If a new parser were to be written
it could sidestep these problems and also allow
things like two-argument functions, which have
been requested in the past. Another possible
outcome from a new parser might be the ability
to experiment with alternative languages which
maintain the underlying semantics. That might
also incorporate the identification of a parser
APL

In all this design we were mindful that
Csound was and must remain a cross-platform
synthesis system, and should behave the same
on all implementations. It would also be con-
venient if the building system were the same
or similar on all platforms, and installation
should be simple — accessible to users at any
computer-literate level.

The other overriding requirement is that the
system must not change externally, in the sense
that all old music pieces must still render to the
same audio. We can add new functionality, but
visible things must not be removed.

3 Implementation

The previous section described the desired fea-
tures of the new Csound. But they are wishes.
In this section we consider the translations of
these aspirations to actual code.

The API is largely the work of Gogins, but
there is a number of basic concepts in the solu-
tion. The implementation is by a global struc-
ture that is passed as an argument to most func-
tions. Within the structure there are at least
three groups of slots. The first group incor-
porates the main API functions; functions to
control Csound, such as Perform, Compile, Per-
formKsmps, Cleanup and Reset. There are also
functions in this structure to allow the control-
ling program to interrogate Csound, to deter-
mine the sampling rate, the current time posi-
tion and so forth. These functions are also used
by user-defined opcode libraries to link to the
main engine. The last group are the state vari-
ables for the instantiation of Csound.

The transition to allowing a re-entrant system
is largely one of moving static variables into the
system-wide structure. Code simplicity is main-
tained by creating C macros so access can be via
the same text as previously. By adding an addi-
tional argument to every opcode of this environ-
ment structure a great simplification of much of
the code is achieved, especially for user-defined
opcodes, as described in more detail below (sec-
tion 4).

Every opcode now returns an error code, or
zero if it succeeded. This is a facility that has
not been exploited yet, but it should be pos-
sible to move more of the error messages from
the main engine, and incidentally to facilitate
internationalisation.

The decision to use an external library for
reading and writing sound files was an easy one;
what was less easy was deciding which one to
use. A number were considered, both the small
and simple, and the all-embracing. The one we
chose was Libsndfile (de Castro Lopo, 2005).
The library is subject to LGPL, but the decid-
ing factor was the helpful attitude of the au-
thor. We have not regretted this decision, and
it was moderately easy to replace the complex
accumulation of AIFF, AIFC and WAV with
the cleaner abstraction. The hardest part was
that Libsndfile works in frames and Csound has
been written in samples or sometimes bytes. Of
particular note was the removal of many lines
of code that dealt with multiple formats (alaw,
plaw, signed and unsigned...).

There seemed less choice with the real-time
audio library; PortAudio (Bencina and Burk,
2005; Bencina and Burk, 2001) seemed obvious.
As the library was in transition from version 18
to 19 we decided to look ahead and use v19.
This has been a more problematic decision. For
example Csound is written with a blocking 1/0
model for audio, but to date of writing this is
not implemented on all platforms, and we are
using a hybrid, implementing blocking via call-
backs and threads on some systems, and simple
blocking I/O on others. There have even been
suggestions that we abandon this library as it
has not (yet) delivered the simplicity we seek.
I think this can be overcome, and the decision
was correct, but there are clearly problems re-
maining in this area.

The companion to PortAudio in the Port-
Music project(Por, 2005) for MIDI is Port-
MIDI(Dannenberg, 2005). This was the obvi-
ous choice to support MIDI. The software mod-



els are fairly far apart but it has been incorpo-
rated. What we do not seem to be able to find
is a library for file-based MIDI. At present we
are continuing to use the original Vercoe code,
with what looks like duplication in places. This
needs to be investigated further.

There is a surfeit of graphical toolkits, at
many levels of complexity. Based on previ-
ous experience, both outside Csound and inside
with CsoundAV(Maldonado, 2005), FLTK was
chosen. This is simple and light-weight. There
are undoubtedly faster libraries, but graphics
performance is not of the essence and the sim-
plicity is worth the loss. A drawback is that
this is a C++ library, whereas Csound is still at
heart a C program. However in the medium
term I still intend that graphics should be
moved out of the core Csound and we should
use the API and software bus.

A contentious issue (at least within our devel-
oper community) has been a framework for com-
mon building. For most of the life of Csound
there have been three major builds, for Linux,
Windows and Macintosh. The Linux and Unix
system use a hand crafted makefile; on Win-
dows a Microsoft Visual C++ IDE was used
and on Macintosh the Codewarrior IDE. The re-
design of Csound coincided with the acceptance
of OSX on the Macintosh, and the availabil-
ity of the MinGW package for Windows. This
suggests that it should be possible to have a
common tool-chain. Initial experience with the
GNU tools (automake, autoconf etc) was highly
negative, with incompatibilities between plat-
forms, and between different releases of Linux.
We are now using SCons(SCo, 2005) which is
a Python-based building system which we have
found to work cleanly on our three major plat-
forms, and to have sufficient flexibility.

The first implementation of a software bus
has been made, by offering an arbitrary number
of uni-directional audio and control buses. This
facility remains to be exploited.

The most problematic area of the implemen-
tation is the parser. A Flex-based lexer and a
Bison parser have been developed! and these
implement most of the current Csound lan-
guage. The problem of joining this front-end
into the internal structures remains as a ma-
jor task that has not yet been attempted. The
design of the parser will allow user-defined op-

!The parse is not based on the earlier Bernardini
parser, but created with the support of Epigon Audio-
care Pvt Ltd

Orchestra Reader Input/Output
e)}

I
IL.oadable Library

Figure 2: Architecture of Csound5

codes as is essential, as well as functions of one
or more arguments. The main incompatibilities
are in the enforcement of functions as functions,
which is not in the original system. It does how-
ever mend known bugs in the lexing phase, and
also makes better use of temporary variables.

4 User Defined Libraries

One reason for the redesign was to allow third
parties to provide new opodes, either as open
source or as compiled libraries that can be
loaded into Csound. The user opcodes are com-
piled into .DLL or shared libraries, and the ini-
tialisation of Csound loads libraries as required.

User libraries were introduced in Csound4,
but in Csound5 they have been extensively de-
veloped. We provide C macros to allow the li-
brary to be written in much the same way as
base opcodes, and proforma structures to link
the opcodes into the system. We have also re-
cently made it possible to have library-defined
table generators as well. The macros wrap the
usual internal Csound functions as called via the
global environment structure.

To prove that the mechanism works, many of
the opcodes were remade as loadable code. The
final decision as to which opcodes will be in the
base and which loadable is not settled, but the
overall structure of Csound is now changed from
the architecture of figure 1 to that of figure 2.
With this architecture we hope that clearer sep-
aration will make maintenance simpler.

5 Experience

In many ways it is too early to make informed
judgements on the new Csound. On the other
hand the system has been in a running state for
many months, and on at least the Linux plat-
form it is usable. Despite some rough edges it
renders to both file and audio, and there are no
appreciable performance issues.

The use of Libsndfile has been a very posi-
tive experience on all platforms. PortAudio has



caused some problems; with ALSA on Linux
it is acceptable, but there have been latency
problems on Windows and a number of ongoing
problems on OSX, with lack of blocking I/O and
an apparent need for multiple copying of audio
data. There are enough indications from the
PortAudio development community to say that
this will work to our advantage eventually. It is
still too soon to comment on the MIDI compo-
nents.

There are still questions that arise from
graphics and in particular the control of mul-
tiple threads. I believe that the solution is to
use the software bus and outsource graphical
activity to a controlling program. The graph-
ics does work as well as it did on Csound4, but
problems arise with the internal generation of
GUIs for performance systems.

The code freeze has had a number of mi-
nor positive effects; the code has been sub-
jected to coherent scrutiny without pressures
for releases. Multiple identical functions have
been combined, and many small coding im-
provements have been made, for both stylistic
and accuracy reasons.

The current state is close to release. It might
be possible to release before the incorporation of
the parser, but this would be a disappointment
to me. The other aspect that may delay re-
lease is documentation. The manual still needs
updating. Basic information on the system al-
ready exists.

The decision to use SCons has proved excel-
lent. It is working on Windows and OSX as well
as the usual development Linux platforms.

6 Conclusions

In this paper I have described the thoughts be-
hind the creation of the next incarnation of
Csound. Evolution rather than revolution has
been the key, but we are creating an embed-
dable system, a system more extensible than
previously, and with clear component divisions,
while preserving the operations and functional-
ity that our users have learnt to expect. By con-
centrating on an embeddable core I hope that
the tendency to create variants will be discour-
aged, and from my point of view I will not have
to worry about graphics, which interests me not
at all!

While the system has remained a cross-
platform one, development has been mainly on
Linux, and we have seen great benefits from all
the tools there. When Csoundb reaches its dis-

tribution time soon, the musical community will
also see these benefits.

7 Acknowledgements

My thanks go to everyone on the Csound De-
velopment mailing list for all their input, com-
ments and reports, and also to all the Csound
users who made it so clear what they wanted.
Particular thanks are due to Michael Gogins for
his insistence on a sane API, and to Richard
Boulanger who has been a driving force be-
hind me in the development and maintenance
of Csound.

References

Ross Bencina and Phil Burk. 2001. PortAudio
—an Open Source Cross Platform Audio API.
In ICMC2001. ICMA, September.

Ross Bencina and Phil Burk. 2005. PortAudio.
http://www.portaudio.com/.

Richard Boulanger, editor. 2000. The Csound
Book: Tutorials in Software Synthesis and
Sound Design. MIT Press, February.

Roger B. Dannenberg. 2005. PortMIDI.
http://www-2.cs.cmu.edu/ "music/
portmusic/portmidi.

Erik de Castro Lopo. 2005. Libsndfile. http:
//www.mega-nerd.com/libsndfile/.

John ffitch and Julian Padget. 2002. Learning
to play and perform on synthetic instruments.
In Mats Nordahl, editor, Voices of Na-
ture: Proceedings of ICMC 2002, pages 432—
435, School of Music and Music Education,
Goteborg University, September. ICMC2002,
ICMC.

Gabriel Maldonado. 2005. Csoundav.
http://www.csounds.com/maldonado/
download.htm.

Dave Phillips. 2000. The Book of Linur Mu-
sic and Sound. No Starch Press. ISBN:
1886411344.

2005. PortMusic. http://www-2.cs.cmu.edu/
“music/portmusic/.

2005. SCons. http://www.scons.org/.

Barry Vercoe, 1993. Csound — A Manual for
the Audio Processing System and Supporting
Programs with Tutorials. Media Lab, M.I.T.

Barry Vercoe. 1996. Extended Csound. In On
the Edge, pages 141-142. ICMA, ICMA and
HKUST. ISBN 0-9667917-4-2.



