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Abstract

Buckling strengths, in terms of compressive strain, of single-, double- and triple-walled carbon nanotubes (CNTs) are investigated to

study the effects of slenderness ratio (SR) via the molecular dynamics (MD) simulations with the Tersoff potential. Under constant ratio

of slenderness, the CNTs with small SR behave like a continuum shell object. For large SR’s, multi-walled CNTs exhibit the

characteristics of the Euler columns. In addition, smaller nanotubes possess higher buckling-resistance. The buckling strength of multi-

walled nanotubes is controlled by the size of their outermost shell.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery of carbon nanotubes about 15 years
ago [1], research in the mechanics of carbon nanotubes
(CNTs) and their buckling behavior has been intensive.
The buckling behavior of the nanotubes is usually utilized
as a probe to characterize their mechanical properties. For
example, from molecular dynamics (MD) simulation of the
mechanical properties of the nanotubes, the Young’s
modulus and Poisson’s ratio of a single-walled carbon
nanotubes (SWCNTs) are found to be 5.5 TPa and 0.19,
respectively [2]. Recent MD simulation studies on varia-
tions of Young’s modulus of SWCNTs can be found in [3].
Note that Young’s modulus of SWCNTs has been
determined via thermal-noise vibrational experiments to
e front matter r 2007 Elsevier B.V. All rights reserved.
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be about 1.8 TPa [4]. Experimentally, nanoindentation tests
on vertically aligned carbon nanotubes have shown the
Young’s modulus of the nanotube’s wall to be on the order
of 5TPa, and the Young’s modulus obtained from bending
and axial deformation is on the order of 1TPa [5]. In the
literature, there are also many MD simulation results on
multi-walled nanotubes. For example, Sears and Batra [6]
study the buckling of double-walled carbon nanotubes
(DWCNTs) and three-walled carbon nanotubes (TWCNTs)
with continuum finite element truss models and MD
simulations with the MM3 interatomic potential. Liew
et al. [7] studied four-walled carbon nanotubes with the
Brenner potential [8]. All of these research did not study
the effects of slenderness ratio on the buckling behavior of
the nanotubes.
In this paper, we perform MD simulation to study the

buckling behavior of single- and multi-walled carbon
nanotubes under unaxial compressive displacement load-
ing. Several nanotubes are studied here, including the ð3; 3Þ,
ð5; 5Þ, ð10; 10Þ, and ð15; 15Þ SWCNTs; ð5; 5Þ@ð10; 10Þ and
ð10; 10Þ@ð15; 15Þ DWCNTs; and ð5; 5Þ@ð10; 10Þ@ð15; 15Þ
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triple-walled carbon nanotube (TWCNT). After calculat-
ing the strain energy density of the nanotubes with various
slenderness ratio (defined later), we perform a correlation
study to identify the effects of slenderness ratio on buckling
strain. Further, we discuss the changes in buckling modes
as a result of changes in the relationship between the
nanotubes’ lengths and slenderness ratios.

2. Simulation

The mechanical problem of the buckling of the single- or
multi-walled carbon nanotube is depicted in Fig. 1. The
carbon nanotube has a diameter of D, twice of its radius
(R), and unconstrained length Lu. On both the top and
bottom of the tube, there are four atomic layers of carbon
fixed to simulate the clamped–clamped boundary condition
in the context of continuum mechanics. The compression
process is performed through moving the displacement of
the top end downwards. The bottom end is held fixed
throughout simulation. We adopted a displacement rate of
10�12 nm=fs downwards, and define the unconstrained
length (Lu) of the nanotubes to be the total length (L)
minus the fixed lengths.

Similar to the standard notation, Ch ¼ na1 þma2, in the
literature to describe the chirality of the nanotube, we
define base vectors b1 ¼ a1 þ a2 and b2 ¼ a1 � a2, which
are suitable for the armchair-type carbon nanotubes to
facilitate our definition of the slenderness ratio. Analo-
gously, we further define C ¼ Nb1 þMb2, and thus the
slenderness ratio can be defined as SR ¼ N=M, which is
Fig. 1. Schematic of the carbon nanotube under compression via

displacement control at the top end. The bottom end is held fixed

throughout simulation. On either the top or bottom end, four atomic

layers of carbon are held fixed to simulate the clamped-clamped boundary

condition. The carbon nanotube has a diameter of D, twice of its radius

(R), and unconstrained length Lu.
proportional to the radius-to-length ratio (l ¼ R=Lu). To
get a sense of the relationship between the slenderness and
radius-to-length ratios, we note that SR ¼ 1 translates to
l ¼ 0:276. Note that the diameter of a carbon nanotube
can be computed as D2 ¼ 3a2ðm2 þ n2 þmnÞ=p2, where
ðm; nÞ is the chirality of the carbon nanotube and the
symbol a ¼ 1:44 denotes the interatomic C–C bond length.
Here we perform MD calculations to obtain the relation-
ship between strain energy density and applied compressive
strain for the SWCNTs ð3; 3Þ, ð5; 5Þ, ð10; 10Þ, ð15; 15Þ,
DWCNTs ð5; 5Þ ð10; 10Þ, ð10; 10Þ@ð15; 15Þ, and a TWCNT
ð5; 5Þ@ð10; 10Þ@ð15; 15Þ. Buckling strains (or called critical
strains) can be inferred from the jumps in the strain energy
density.
The empirical Tersoff potential [9–11] was employed to

derive the interatomic forces among the carbon atoms of
the CNTs. This particular potential model is chosen since it
provides quick estimates and significant insights into the
thermo-mechanical behavior of the nanotubes without the
need to consider chemical reactions. The motion of each
carbon atom was governed by Newton’s laws of motion, in
which the resultant force acting on each atom was deduced
from the energy potential related to its interactions with
neighboring atoms within a prescribed cut-off radius. The
conventional Leap-Frog algorithm [12] was employed to
derive the new position and velocity of each atom based on
the data obtained in the previous step. Our simulation time
step was Dt ¼ 1 fs, and an equilibrium configuration was
searched with a verlet list. Further, the nanotube was
maintained at the specified temperature (1K throughout)
using a rescaling method [13]. The effects of boundary
constraints have been shown insignificant in affecting
buckling strains, provided with the buckling kinks form
near the middle along the nanotubes length.

3. Results and discussion

The radii of the ð3; 3Þ, ð5; 5Þ, ð10; 10Þ and ð15; 15Þ carbon
nanotubes are 0.206, 0.344, 0.688 and 1.031 nm, respec-
tively. For SR ¼ 1, their corresponding unconstrained
lengths (Lu) are 0.748, 1.247, 2.494 and 3.741 nm, and the
numbers of atom in Lu are 42, 110, 420 and 930. The
DWCNT or TWCNT are the combination of the four
types of SWCNTs. As for using the Tersoff potential to
simulate carbon nanotubes, we remark that due to the
assumptions in the Tersoff potential, simulation results at
large strains may not be reliable and will not be shown in
the present analysis. Although the quantitative validity of
the Tersoff potential in large strains can be examined by a
comparative study with ab initio calculations, it is
conceivable that the Tersoff potential is suitable for
buckling studies up to the first buckling mode discussed
here.
The relationship between buckling strain and the

slenderness ratio is shown in Fig. 2 for all the carbon
nanotubes studied here. It can be seen that the effects of the
slenderness ratio diminishes as the radius of the CNTs
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Fig. 2. Buckling strain vs. slenderness ratio for different armchair types of

single-walled and multi-walled CNTs. The effects of the slenderness ratio

diminishes as the radius of the CNTs increases. There is only one data

point for the (10,10)@(15,15) DWCNT. For small-radius CNTs, changes

in the slenderness ratio imply changes in buckling modes from local kink

formation to globally lateral buckling.
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Fig. 3. Buckling strain vs. unconstrained length (Lu) under a specified

slenderness ratio. Labels show overlapped data points from different

CNTs. For example, the (10,10) single-walled CNT shares the same

buckling strain as the ð5; 5Þ@ð10; 10Þ double-walled one. Comparisons

between single- and multi-walled CNTs show that the size of the outer

shell of the tube determines its buckling strength. When SR equals to 1 or

2, the trend of buckling strain vs. unconstrained length is typical for

cylindrical shells in the context of continuum elasticity. For large SR’s, the

trend is close to that of the buckling of the Euler solid column, indicating

changes in buckling modes. At Lu ¼ 100, the lower diamond indicates the

ecr for the ð5; 5Þ@ð10; 10Þ DWCNT, and the upper one is for the (10,10)

SWCNT. The open square is obtained from the (5,5) SWCNT.
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increases, indicating changes in buckling modes. For small
SR, the nanotubes are short, and their buckling is
dominated by local kink formation. For large SR, global
buckling is favorable, and deformation mode is lateral
bending. For DWCNT or TWCNTs, their buckling strain
is the same as their outer shell alone. For example, the
(10,10) SWCNT has similar buckling strength as the
ð5; 5Þ@ð10; 10Þ DWCNT, and ð15; 15Þ, ð10; 10Þ@ð15; 15Þ
and ð5; 5Þð10; 10Þð15; 15Þ show the same buckling strain
for SR ¼ 1. Therefore, for multi-walled carbon nanotubes,
the inner shells do not increase the overall buckling strain
of the cylindrically composited tubes. There is a small
difference between the ð10; 10Þ SWCNT and ð5; 5Þ@ð10; 10Þ
DWCNT.

Under a specified SR, we show buckling strain in terms
of unconstrained length in Fig. 3. Note that since SR is
fixed for a specific case, different Lu indicates different tube
radius. Labels show which type of the CNTs that the data
points belong to. For example, the ð10; 10Þ SWCNT shares
the same buckling strain as the ð5; 5Þ@ð10; 10Þ double-
walled one. More, the ð15; 15Þ SWCNT, ð10; 10Þ@ð15; 15Þ
DWCNT and ð5; 5Þ@ð10; 10Þ@ð15; 15Þ TWCNT exhibit the
same buckling strength, confirming the results from the
study of the effects of SR in Fig. 2. In other words, multi-
walled CNTs show that the size of the outer shell of the
tube determines its buckling strength. When SR ¼ 1 or 2,
the trend of buckling strain vs. unconstrained length is
typical for cylindrical shells in the context of continuum
elasticity [14]. For large SR’s, due to changes in buckling
modes from local to global, the trend of the relationship
between buckling strain and Lu is close to that of the
buckling of the Euler solid column, which predicts different
Lu’s correspond to the same buckling strain. The slope of
the linear curve fit among the solid diamonds (i.e. the
dashed line) is �4:45� 10�4 Å

�1
, indicating the nanotubes’

behavior approaches that of a solid column. At Lu ¼ 100,
there are three data points, indicating the outermost shell
of multi-walled CNTs dominate their buckling strain.

4. Conclusions

Based on the results of our MD simulation, smaller
nanotubes have higher buckling resistance. Moreover, the
buckling strength of carbon nanotubes increases when the
size of tubes decreases for small SR. This phenomenon is a
direct result of changes in buckling modes from local to
global buckling. For small SR’s, smaller CNTs exhibit
steep reduction in buckling strength with respect to Lu.
However, for large SR’s, the buckling strain tends to be
independent on Lu. This change in the relationship between
buckling strain and unconstrained length is due to changes
in buckling modes. Nanotubes with large SR behave more
like the Euler column. For multi-walled nanotubes, their
buckling strength is dominated by the size of their
outermost shell.
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