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Abstract
If G is a finite group and x ∈ G then the set of all elements of G

having the same order as x is called an order subset of G determined
by x (see [2]). We say that G is a group with perfect order subsets or
briefly, G is a POS-group if the number of elements in each order subset
of G is a divisor of |G|. In this paper we prove that for any n ≥ 4, the
symmetric group Sn is not POS-group. Together with the result in [1],
this gives the complete positive answer to Conjecture 5.2 in [3].
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1 Introduction

Throughout this paper, all considered groups are finite and for a group G we
denote by |G| the order of G, while for an element x ∈ G, the order of x is
denoted by o(x). We denote also by N and Z

+ the sets of all non-negative and
positive integers respectively. If m ∈ Z

+ then Gm denotes the direct product
G × G × . . . × G. In a group G, define the following equivalence relation:

x ∼ y ⇐⇒ o(x) = o(y).
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The equivalence class defined by an element x is denoted by x and is called
an order subset of G. Following the work [2], we say that G is a group with
perfect order subsets or briefly, G is a POS-group if the number of elements in
each order subset of G is a divisor of |G|. In [2], the authors study properties
of some abelian POS-groups and they established some curious connection of
such groups and Fermat numbers. In [3], the authors have extended their study
for non-abelian groups and they have obtained some interesting properties for
such groups. Also, in this work, some examples of non-abelian POS-groups
are given. In particular, it is obvious that the symmetric group S3 on three
letters is a non-abelian POS-group. However, the authors conjectured that
for n ≥ 4, An and Sn do not have perfect order subsets, i.e. they are not
POS-groups. Recently, in [1], Ashish Kumar Das have proved this conjecture
for groups An. Our main purpose in this paper is to prove that the conjecture
for groups Sn is also true. As an useful additional information, in Section 2
we give some examples of groups having no perfect order subsets.

2 Examples of groups having no perfect order

subsets

In this section we give some examples of groups not necessarily abelian, having
no perfect order subsets. In the first, we note that the direct product of POS-
groups does not necessarily be a POS-group as the following proposition shows.

Proposition 2.1 For α, t ∈ Z
+, t > 1, (Z2α)t is not a POS-group.

Proof. The order of any element of (Z2α)t is of the form 2i, i ≤ αt. By [2,
Lemma 1], the number of elements of the order 2α is (2α−1)t(2t − 1). Since
t > 1, (2t − 1) does not divide 2αt. Therefore (Z2α)t is not a POS-group.

For 2n ≥ 4, denote by D2n the dihedral group, defined by the following:

D2n := 〈a, b|an = 1, b2 = 1, bab−1 = a−1〉.

Lemma 2.1 If n is an even integer then D2n is not a POS-group.

Proof. In a dihedral group D2n := 〈a, b|an = 1, bn = 1, aba−1 = a−1〉, for
every i, 0 ≤ i < n, we have (aib)2 = 1. So D2n contains n elements of order 2
of this form. Now, if n is even, then an/2 is also an element of order 2. So the
number of elements of order 2 is not a divisor of 2n and it follows that D2n is
not a POS-group.

Lemma 2.2 If there exist at least two odd prime divisors of n then D2n is not
a POS-group.
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Proof. Suppose that n =
∏r

k=1 pαk
k , r ≥ 2, pk are all odd primes. Then, the

number of elements of the order n is ϕ(n) =
∏r

k=1 pαk−1
k (pk − 1). It follows

that
∏r

k=1(pk − 1) is a divisor of 2
∏r

k=1 pk. But, by our assumption this is a
contradiction.

Theorem 2.1 D2n is a POS-group if and only if n = 3α, α ∈ Z
+.

Proof. Suppose that D2n is a POS-group. In view of lemmas 2.1 and 2.2,
n = pα for some odd prime p. Then bp = b 
= 1. It follows that every element
of a order pα is of the form ai with (i, p) = 1 and 1 ≤ i < pα. So, the number
of elements of a order pα is ϕ(pα) = (p−1)pα−1. Since this number is a divisor
of 2pα, it follows p = 3.

Conversely, suppose that n = 3α. Then, the order of any element of D2n is
of the form 2i.3β, where β ≤ α and i ∈ {0, 1}.

If i = 0 then the number of elements of a order 3β is ϕ(3β) = 2.3β−1, which
is a divisor of n = 2.3α. Now, if i = 1 then any element of a order 2.3β must
be of the form akb, 0 ≤ k < n. Then we have

(akb)2 = akbakb = akbakb−1 = ak(bakb−1) = aka−k = 1.

It follows that β = 0. Thus, such elements have the order 2 and there are
exactly n such elements. Hence D2n is a POS-group.

Recall that for n ≥ 3, the generalized quaternion group Qn is defined by
the following:

Qn := 〈a, b|a2n−1

= 1, b2 = a2n−2

, bab−1 = a−1〉.
Generalized quaternion groups are non-abelian non- POS groups. In fact,

we have the following result:

Proposition 2.2 For n ≥ 3, a generalized quaternion group Qn is not a POS-
group.

Proof. Consider a generalized quaternion group

Qn := 〈a, b|a2n−1

= 1, b2 = a2n−2

, bab−1 = a−1〉.
Since bab−1 = a−1, baib−1 = a−i for all i, 0 ≤ i < 2n−1. From the last equality
it follows

(aib)2 = ai(baib−1)b2 = aia−ib2 = b2 = a2n−2

.

Hence (aib)4 = (a2n−2
)2 = a2n−1

= 1. So, there are 2n−1 elements of the order
4 of the form aib, 0 ≤ i < 2n−1. On the other hand, the order of the element
a2n−3

is 4. Hence, the number of elements of order 4 does not divide 2n. So
Qn is not POS-group.
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3 The symmetric groups

As we have mentioned in the Introduction, the symmetric group S3 is a POS-
group. In [3, Conjecture 5.2], the authors conjectured that for any n ≥ 4, the
group Sn is not a POS-group. Our main purpose in this section is to give the
positive answer to this conjecture. In fact, we shall prove the following result:

Theorem 3.1 For any integer n ≥ 4, the symmetric group Sn is not a POS-
group.

To prove this theorem, we need some lemmas.

Lemma 3.1 Let p be an odd prime number. If n = 2p+r with r ∈ {0, 1, . . . , p−
1}, then Sn is not a POS-group.

Proof. Suppose that under our supposition, Sn is a POS-group. Consider
any element α of the order p in Sn. Then, either α is a cycle of the length p or
it is a product of two disjoint cycles of the same length p. For the convenience,
we call α an element of type 1 for the first case and α an element of type 2 for
the second case. Obviously that the number of all elements of type 1 is

Ap
n

p
=

n!

p(n − p)!
=

n!

p(p + r)!

and the number of all elements of type 2 is

1

2
× Ap

n

p
× Ap

n−p

p
=

1

2
× n!

p(n − p)!
× (n − p)!

p(n − 2p)!
=

n!

2p2r!
.

Hence, the number of all elements of the order p in Sn is

d =
n!

p(p + r)!
+

n!

2p2r!
=

2pr! + (p + r)!

2p2r!(p + r)!
n!

Since Sn is a POS-group,

2p2r!(p + r)!

2pr! + (p + r)!

is an integer or

2p2(p + r)!

2p + (r + 1)(r + 2) . . . (p + r)
=

2p3r!(r + 1) . . . (p − 1)(p + 1) . . . (p + r)

p[2 + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)]

is an integer. Therefore

2p2r!(r + 1) . . . (p − 1)(p + 1) . . . (p + r)

2 + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)
(1)
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is an integer. Since

(r + 1) . . . (p − 1)(p + 1) . . . (p + r) ≡ (p − 1)! (mod p),

in view of Wilson’s Theorem we have

2 + (r + 1) . . . (p − 1)(p + 1) . . . (p + r) ≡ 1 (mod p). (2)

From (1) and (2) it follows that

2r!(r + 1) . . . (p − 1)(p + 1) . . . (p + r)

2 + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)
=

2r!A

2 + A

is an integer, where A = (r+1) . . . (p−1)(p+1) . . . (p+r). Since gcd(A, 2+A) =

gcd(A, 2) = 1 or 2,
4r!

2 + A
is an integer, that is a contradiction in view of the

following inequalities:

2+A > (p+1)(p+2)(p+3) . . . (p+r) > 4(p+2) . . . (p+r) > 4(1.2 . . . r) = 4r!.

The proof is now complete.

Lemma 3.2 If n = 3p+r, where p is a odd prime and r ∈ {0, 1, 2, . . . , p−1},
then Sn is not a POS-group.

Proof. Suppose that under our supposition, Sn is a POS-group. Consider
any element α of the order p in Sn. Then, either α is a cycle of the length
p or it is a product of two or three disjoint cycles of the same length p. The
number of elements in each of these cases is

Ap
n

p
=

n!

p(n − p)!
=

n!

p(2p + r)!
,

1

2
× Ap

n

p
× Ap

n−p

p
=

1

2
× n!

p(n − p)!
× (n − p)!

p(n − 2p)!
=

n!

2p2(p + r)!

and

1

6
× Ap

n

p
× Ap

n−p

p
× Ap

n−2p

p
=

1

6
× n!

p(n − p)!
× (n − p)!

p(n − 2p)!
× (n − 2p)!

p(n − 3p)!
=

n!

6p3r!

respectively. Hence, the number of elements of the order p in Sn is

d = n!

[
1

p(2p + r)!
+

1

2p2(p + r)!
+

1

6p3r!

]
.

Since Sn is a POS-group, d must be divided n! and, consequently

k =
6p3.r!(p + r)!(2p + r)!

6p2(p + r)!r! + 3p(2p + r)!r! + (2p + r)!(p + r)!
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is an integer. By setting A := (r + p + 1) . . . (2p − 1)(2p + 1) . . . (2p + r) and
the direct calculation we have

k =
6p3.(p − 1)!(p + 1) . . . (p + r)A

3 + 3A + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)A
. (3)

By applying of Wilson’s Theorem we get

(r + 1) . . . (p − 1)(p + 1) . . . (p + r) ≡ −1 (mod p) (4)

and, consequently we have

A = (p + r + 1) . . . (2p − 1)(2p + 1) . . . (2p + r) ≡ −1 (mod p). (5)

From (4) and (5) it follows that

3 + 3A + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)A ≡ 1 (mod p).

Since

gcd (A, 3 + A[3 + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)]) = gcd(3, A)

and k is an integer, it follows from (3) that

B :=
18(p − 1)!(p + 1) . . . (p + r)

3 + 3A + (r + 1) . . . (p − 1)(p + 1) . . . (p + r)A

is an integer. Now, we claim that

(r + 1) . . . (p − 1)(p + 1) . . . (p + r)A > 18(p − 1)!(p + 1) . . . (p + r).

In fact, this inequality is equivalent to the following one:

A = (r + p + 1) . . . (2p − 1)(2p + 1) . . . (2p + r) > 18r!.

Since p is an odd prime, the last inequality holds as the following calculation
shows:

A = (2p+1)(2p+2) . . . (2p+r)(r+p+1) . . . (2p−1) ≥ (2p+1)(p+1)(2.3 . . . r)

= (2p + 1)(p + 1).r! > 18r!.

Clearly, what we have claimed shows that B is not an integer. This con-
tradiction completes the proof of the lemma.

Lemma 3.3 If n = 4p, where p is a odd prime, then Sn is not a POS-group.
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Proof. Suppose that under our supposition, Sn is a POS-group. Let d be the
number of elements of the order p in Sn. Then we have

d =
Ap

n

p
+

1

2
× Ap

n

p
× Ap

n−p

p
+

1

6
× Ap

n

p
× Ap

n−p

p
× Ap

n−2p

p
+

1

24
× Ap

n

p
× Ap

n−p

p
×

Ap
n−2p

p
× Ap

n−3p

p

= n!

[
1

p(3p)!
+

1

2p2(2p)!
+

1

6p3p!
+

1

24p4

]

=
24p3.(2p)!p! + 12p2.(3p)!p! + 4p.(3p)!(2p)! + p!(2p)!(3p)!

24p4.p!(2p)!(3p)!
.n!

=
24p3 + 12p2(2p + 1) . . . (3p) + 4p(p + 1) . . . (3p) + (3p)!

24p4(3p)!
.n!.

Since d divides n!,

n!

d
=

24p4(3p)!

24p3 + 12p2(2p + 1) . . . (3p) + 4p(p + 1) . . . (3p) + (3p)!

is an integer. By dividing both numerator and denominator of the last fraction
by 6p3 we get

n!

d
=

24p4.(p − 1)!(p + 1) . . . (2p − 1)(2p + 1) . . . (3p − 1)

4 + (2p + 1) . . . (3p − 1)[6 + 4(p + 1) . . . (2p − 1) + (p − 1)!(p + 1) . . . (2p − 1)]
.

By setting

A = (2p + 1) . . . (3p − 1)

and

M = 4 + A[6 + 4(p + 1) . . . (2p − 1) + (p − 1)!(p + 1) . . . (2p − 1)],

we have
n!

d
=

24p4(p − 1)!(p + 1) . . . (2p − 1)A

M
. (6)

In view of Wilson’s Theorem we have

(2p+1) . . . (3p−1) = (2p+1)(2p+2) . . . (2p+p−1) ≡ (p−1)! ≡ −1 (mod p);

(p + 1) . . . (2p − 1) = (p + 1)(p + 2) . . . (p + p − 1) ≡ (p − 1)! ≡ −1 (mod p).

Hence M ≡ 4 + (−1)[6 − 4 + (−1)(−1)] ≡ 1 (mod p). Consequently,
gcd(M, p4) = 1 . Therefore, in view of (6) we conclude that

24(p − 1)!(p + 1) . . . (2p − 1)A

M
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is an integer. Note that, if m is a common divisor of A and M , then m must
divide 4. In particular, gcd(A, M) must be 1, 2 or 4. It follows that

C :=
96(p − 1)!(p + 1) . . . (2p − 1)

M

is an integer. However, we can check that C is not an integer for any odd
prime p. In fact, if p = 3, then

C =
3840

7060

which is not an integer. Now, suppose that p ≥ 5. Then we have

A = (2p + 1) . . . (3p − 1) ≥ (2.5 + 1).12.13.14 > 96

and

M > (p − 1)!(p + 1) . . . (2p − 1)A > 96(p − 1)!(p + 1) . . . (2p − 1).

Hence, in this case C is not an integer too. This contradiction completes
the proof of the lemma.

Now, we are ready to prove the main theorem in this section.

Proof of Theorem 3.1.
For n = 6 and n = 7, the desired result follows from Lemma 3.1 by taking

p = 3, r = 0 and p = 3, r = 1 respectively. For n = 4 and n = 5, note that the
number of elements of the order 2 in S4 and S5 is 9 and 25 respectively. So,
S4 and S5 are both non-POS groups.

Now, suppose that n ≥ 8 and m =
[n

4

]
. According to Bertrand’s Postulate

(see, for example [4, Theorem 5.8, p. 109]), there exists some prime p such
that

m < p < 2m.

Note that
p < 2m = 2

[n

4

]
≤ 2

n

4
=

n

2
.

If
[n

4

]
< p ≤ n

4
, then n = 4p and the conclusion follows from Lemma 3.3.

Therefore, we can suppose that

n

4
< p <

n

2
.

If
n

4
< p ≤ n

3
, then n = 3p + r with r ∈ {0, 1, 2, . . . , p − 1} and the

conclusion follows from Lemma 3.2. If
n

3
< p <

n

2
, then n = 2p + r with

r ∈ {0, 1, 2, . . . , p− 1} and the conclusion follows from Lemma 3.1. The proof
of the theorem is now complete.
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