

Overview on Trust in Large FLOSS
Communities

Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi
CASE – Center for Applied Software Engineering

Free University of Bolzano/Bozen
Piazza Domenicani, 3

I-39100 Bolzano-Bozen,
{Etiel.Petrinja|Alberto.Sillitti|Giancarlo.Succi}@unibz.it

WWW home page: http://www.unibz.it

Abstract. The paper presents a survey of mature Free/Libre Open Source
Software communities. The main focus of the survey is the collection of data
related to the practices of these communities related to trust elements in their
products. The survey is carried out using a structured questionnaire about
thoughts and practices followed by Free/Libre Open Source Software
communities. The survey focuses on the analysis of the development processes
adopted by such communities. The results of the survey confirms basic ideas
related to Free/Libre Open Source Software and explains in more detail
specific issues related to trust and trustworthiness of the Free/Libre Open
Source Software development process.

Keywords: FLOSS Communities, Software Quality, FLOSS Development
Process

1 Introduction

The survey presented in this paper analyses a set of Free/Libre Open Source
Software (FLOSS) projects that are used by large communities. The survey focuses
on issues related to the trust that users have in adopting FLOSS products. We are
interested mainly in processes, tools, methods, and approaches adopted to develop
FLOSS products. The survey is part of a four year EU funded project named
QualiPSo (Quality Platform for Open Source Software) aiming at studying
methodologies, technologies, and policies to leverage the Open Source Software
development to sound, well recognised, and established industrial operations [8].

In the last decade, FLOSS products are increasingly being used. This increase is
supported by several factors including the absence of direct license costs and the
availability of the source code that allows users to adjust FLOSS products to their
specific needs. An important drawback of FLOSS is the lack of quality assurance
metrics that prove its validity. In commercial environments, the problem is addressed

48 Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

in a different way. The concept of quality is often related to the certification of the
production process of the producer (e.g., CMMI). This approach can be extended
also to the FLOSS production (in particular, for FLOSS developed supported by
companies). The survey presented in this paper is trying to find out which elements
contribute to the trustworthiness that people have in FLOSS products. Trust is linked
to both characteristics of the final product and the overall development process
followed. In particular, the process is an element that may vary considerably among
different FLOSS projects. The survey collects information about different
approaches and synthesises them to identify benefits and avoid pitfalls of FLOSS
development.

2 Background

In the last decade, intensive research has been carried out on FLOSS. Benchmark
results have provided a list of characteristics that are common in the FLOSS
development process. The most important are the following [1]:

• it is parallel, rather than linear,

• it involves large communities of globally distributed developers,

• it utilizes truly independent peer review,

• it provides prompt feedback to user and developer contributions,

• it includes the participation of highly talented, highly motivated developers,

• it includes increased levels of user involvement, and

• it makes use of extremely rapid release schedules.

Moreover, the whole FLOSS life cycle differs from the classical software
development processes. Mockus at al. [7] and Jorgensen [4] proposed similar models
identifying phases that are present in FLOSS development projects. The Jorgensen’s
model [4] includes the following list of phases: code, review, pre-commit test,
development release, parallel debugging, and production release.

FLOSS development is strongly influenced by software development tools used
by both developers and contributors. In contrast to the diffusion of Computer Aided
Software Development (CASE) tools used by traditional software development,
FLOSS process adopted software tools as issue/bug trackers, mailing lists, forums,
collaboration environments, etc. An important collaborative development
environment – SourceForge [3] – provides an integrated environment where more
than 100.000 FLOSS projects are being stored and developed (even if only a small
portion of them are active projects involving several developers). FLOSS uses also
traditional software engineering tools, however not all tools are available as FLOSS
products. Therefore, in the near future these tools will eventually appear as FLOSS
and will further improve the FLOSS process.

Overview on Trust in Large FLOSS Communities 49

Many researchers have studied the quality and trustworthiness of FLOSS
products and their development processes. Since quality is a fundamental ingredient
of software and a relevant criterion for adopting FLOSS products, the research was
oriented toward the evaluation of the current quality of FLOSS products and how to
improve it. Lipner [5] explored the benefits and possible pitfalls of FLOSS
development. McGraw [6] stated that “openish” products will not improve security
of the software. Schneider [9] stated that source code inspections are just one of
possible approaches to improve software’s quality by discovering bugs. Witten [11]
explored economics of FLOSS products, metrics used to assess it, and models
available.

3 Research design

The survey includes two parts: one related to FLOSS products and the other
related to FLOSS processes. Results presented in this paper deal only with the
second part of the questionnaire.

4 Scope

The survey includes seven well-known FLOSS projects: Apache HTTP Server,
Eclipse, Emacs, Linux Kernel, Mozilla project, GNOME, and Debian.

5 Methodology

The survey uses the approach proposed by Silverman [10]. It requires the design
of a structured and formal research involving two basic and partially correlated
concepts:

• The methodology, that is, the specific technique for gathering data (survey,
interview, questionnaire, case study, etc.).

• The method, that is, whether performing a quantitative or a qualitative
investigation.

Such decisions are based on an evaluation of the goals of the research and the
kind of information required.

Our study focuses on gathering opinions about the FLOSS process and products
adopted in the surveyed communities. Therefore, we have to conduct a qualitative
investigation that involves the analysis of data such as words and sentences instead
of numbers [10]. Our research methodology is based on a semi-structured
questionnaire filled in mainly by analysing projects’ web sources such as web pages,
CVS repositories, mailing lists, and forums. Moreover, some data comes from face-
to-face or telephone interviews.

50 Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

5.1.1 GQM

The overall structure of the research is based on the GQM approach [2], as
follows.

• Goal: Evaluate the actual adoption of FLOSS in the software industry.
• Question: The questionnaire is composed of 53 questions with additional

sub-questions.
• Metrics: Metrics about the level of adoption and the trust in FLOSS

products.

5.1.2 Questionnaire
The questionnaire is organized in 16 sections dealing with different topics related

to the FLOSS development processes. The 16 topics are the following:
1. Personal information
2. Company information
3. Role of the organization with respect to FLOSS
4. Issues that can be taken into account when deciding whether to adopt

FLOSS
5. Trust
6. Quality assurance
7. General questions
8. Roles and responsibilities
9. Architecture definition
10. Development techniques and practices
11. Tools used
12. Features to implement
13. Documentation and bug management
14. Version control and people management
15. Business model
16. Workflows of the processes identified

The answers gathered through face-to-face interviews are collected following the
following steps:

• The respondents are contacted to determine their general interest in the
study.

• The questionnaire is sent to the respondents to verify the actual availability.
• Data is collected by personal or telephone interviews.
• The results of the interviews are sent to the interviewees for a final check.

Only upon a positive feedback from the interviewee, the questionnaire is
considered accepted and the data is processed. Participants are guaranteed anonymity
and the information reported is reviewed so that no individual person or company
can be identified. The final questionnaire was designed iteratively; during the survey
we added just a small number of new questions and in a few cases we have changed
the order of questions to improve the focus on specific topics.

Overview on Trust in Large FLOSS Communities 51

6 Results

In the following subsections we present four topics of the questionnaire: quality
related issues, stakeholders related issues, technology related issues and business
related issues.

6.1 Quality issues

6.1.1 Trust
Important elements to people surveyed are: openness of the whole development

process, openness of the planning process, testing and integration builds, presence of
intermediate milestones and visibility of the planed and the actual development
process. Moreover, communities trust more common elements such as: the quality of
the source code, the correct behaviour of the product, its performance, and often the
security of the developed product. We have found out that communities try to fulfil
classical trust-related criteria first and additionally they attempt to satisfy important
FLOSS-related criteria as well. The same is true when they are testing external
FLOSS products to be adopted by the community.

6.1.2 Quality assurance
Quality elements considered important by FLOSS communities vary

considerably among different communities. The most important elements listed by
communities are the following: the planning process used, the development process
followed, the compatibility of the licenses used by specific subprojects, the bug/issue
reporting and solving procedure, the availability of appropriate documentation, the
simplicity of installation, and a proper integration of different subparts of the final
product.

Answers related to testing processes of FLOSS products, either developed by the
community or adopted by it, is quite homogeneous among the considered
communities. The majority bases the testing process on users and developers that
produce FLOSS products. Almost half of the communities have specific test teams
that provide a defined quality level of the developed products. On the contrary, one
quarter of the communities said explicitly that they do not use any specialized test
team. Part of the communities employs beta testers selected from the group of their
regular users that provide useful bug/issue reports before the product is largely
distributed to the public (Fig. 1).

52 Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

60

60

40

25

20

20

20

0 10 20 30 40 50 60 70 80 90 100

Developers

Users

Quality assurance team

No specific test team

Internal personel

Specific test teams

Beta testers

Fig. 1. Percentage of different stakeholders testing FLOSS products.

6.2 Stakeholders related issues

6.2.1 Roles and responsibilities
The number of developers involved in each surveyed FLOSS project varies from

25 core developers to more than 1000 developers. The roles represented in these
communities are: simple users, developers, committers, and Project Management
Committee (PMC) members. Communities have often an additional management
body as can be a technical or a non-technical board that reviews the work done by
the community and the progress of the project. Half of the communities surveyed are
also supported by a foundation that manages the project and overviews the alignment
of the project evolution with basic directives that the project has to satisfy. There is
not a common hierarchy structure in different communities. Usually, FLOSS
communities do not have many hierarchy levels and they tend to implement a
democratic system where everybody has the possibility to express his opinion.

Roles are not always strictly fixed and users can obtain more privileges by
providing good quality contributions, stay aligned with local policies and written and
not-written rules. In some communities, users can become developers if they provide
good quality code and can become committers if their contributions are significant.
The role of a user depends on the definition of specific roles in different
communities. Often the PMC is responsible for granting new roles and privileges.

6.2.2 Features to implement
New features to be implemented in FLOSS projects are usually proposed in

mailing lists or in bug/issue management systems. Features are usually not ranked in
the surveyed communities. Exceptions are some bug fixes and features related to
impellent architecture modifications. In some communities, new features can be

Overview on Trust in Large FLOSS Communities 53

implemented immediately by developers and contributors, in others, more structured
communities, these suggestions can be included in the future implementation plans
and roadmaps. The majority of surveyed communities have a time plan for new
features to be implemented in the following few months. Usually, plans are available
also on web pages to allow everybody to see which features will be added in the near
future. In this way, users can participate to the implementation process with source
code or documentation contributions.

When changes are proposed, the PMC, the supporting foundation or the
responsible person for a specific module decides which features will be
implemented. Usually, in the more hierarchically structured communities surveyed
there is a specialized development team that implements new features. This team is
composed by developers and committers that are responsible to the PMC or to the
owners of specific modules. In less hierarchical communities, developers and
committers may decide which new features they would like to implement. The
possibility to choose which features a developer will implement can be an important
productivity advantage that FLOSS processes have in comparison to the proprietary
ones.

6.3 Technology issues

6.3.1 The overall architecture
The architecture of the system is defined incrementally or, in few cases, it is

planed from the beginning. This depends on the nature and on the size of the project.
If projects are strongly centralized they usually have a well planed architecture; on
contrary, if projects are a collection of smaller modules, the architecture of the
system is defined by just few leading rules. In the majority of the surveyed
communities, the architecture planning is often the combination of both approaches.

FLOSS projects are often based on very specific standards. It is the case of the
Apache HTTP web server that implements the HTTP open standard. Standards
implemented are in the majority of the cases open and sometimes also supported and
proposed by FLOSS communities. Another important element present in the
surveyed FLOSS communities is the interoperability of the software developed with
other (FLOSS and commercial) products. Open standards and interoperability issues
are usually interconnected.

6.3.2 Tools used
The operating system used to develop FLOSS projects by all the surveyed

communities is either Linux or a Unix-like operating systems. Since the projects
surveyed have started many years ago, the products have been adapted to several
popular operating systems. More than half of them can run on Microsoft operating
systems and many on MacOS.

The most frequently used programming language is not Java as we expected
from the current mainstream FLOSS development, but C/C++. The main reason for
this is the longevity of the projects surveyed that started in the ‘90s when Java was

54 Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

not yet so popular. However, the surveyed communities often use also other
languages such as C#, Perl, Python, Lisp, and Java.

The number of different programming tools used by the surveyed communities is
very large. One FLOSS community reported that they use 820 different tools and
libraries for their development. However, the tools used by the majority of the
communities are source code management tool such as CVS (but also GIT, Bit
Keeper, LXR, etc.), bug/issue tracking tools such as Bugzilla, and mailing lists .

6.3.3 Development techniques and methodologies
Usually, the adopted development techniques are not well described by the

surveyed communities. However, they often explicitly write guiding principles that
are used inside the community. Such principles are for instance Quality Culture,
Collective Reputation, Freedom, Autonomy, and Evolution. Another element present
in the majority of communities is the development process divided into distinct
phases that are clearly defined by the community. Transitions from one phase to
another are open and there are public reviews. Common phases are: Pre-proposal,
Proposal, Incubation, Mature, Top-Level, and Archived.

6.3.4 Documentation
A detailed documentation is a very important part of all the projects developed

by the surveyed FLOSS communities. Usually, they start a subproject that is
responsible of documentation. It can be produced in different forms, most often as
user manuals (separate documents), documentation inserted inside the code (JavaDoc
or similar), developer’s and maintainer’s manuals, and web pages. The creation and
the maintenance of the documentation are open to everybody willing to contribute
with some effort. Contributors can come also from persons that are not programmers.
Documentation is usually protected by a FLOSS consistent license such as Creative
Commons.

6.3.5 Bug/Issue management
All the communities surveyed have mailing lists focused on bugs. The majority

of communities have also an automatic bug/issue tracking system that helps users
and developers to report and manage bugs. More than half of the communities use
Bugzilla as the FLOSS bug/issue-tracking solution.

The bug solving procedure depends on the severity of the bug reported, the size
of the project, the specific community, and some other issues related to specific bug.
The time needed to solve a bug inside communities varies considerably: from one
day for 75% of the bugs, up to 140 days for 90% of the bugs in the Apache Server
community. Other communities report longer response times for not critical bugs.
However, the majority of communities try to provide some answer to critical bugs in
one to three days from the notification.

Overview on Trust in Large FLOSS Communities 55

6.4 Business related issues

The business model driving the FLOSS movement does not include revenues
obtained from selling licenses for the products. However, there are many additional
services, courses, publications, and adaptations that are offered to the market by
companies that in many cases collaborate with FLOSS communities. Moreover,
there are many indirect benefits that are offered to contributors. Some of them are:
the improvement of the reputation of developers, the possibility to get better job
positions, working with people that share the same ideas, advancing of FLOSS
software in comparison with proprietary software, etc. Some FLOSS communities
distribute also grants and prizes that are offered by supporting companies.

A very important aspect that has emerged from various researches done in the
last decade on the FLOSS movement, and also from our survey, is the support
offered by large software companies to the FLOSS movement. Key developers and
leaders in FLOSS communities are often employees of world leading IT companies
such as IBM, Hewlett-Packard, Intel, Red Hat, Sun Microsystems, etc. Developers
are paid to work on the development of FLOSS products. Companies supporting
FLOSS development receives benefits from other sources such as: publicity obtained
by contributing to the community, a deep knowledge of FLOSS that can be sold
along with proprietary products, attracting good young developers, etc.

7 Conclusions

The results of the survey confirm our expectations on the most important
trustworthy elements perceived by FLOSS products developers and users as: the
number of downloads, the longevity and the level of activity in the community. The
survey revealed additionally more in details which characteristics are essential for
FLOSS communities to trust external FLOSS products. The most important aspects
of FLOSS development are, as expected, the openness of the whole development
process and continuous testing of the product. FLOSS communities try to fulfil first
important generic requirements that are guiding also proprietary software
development, and additionally they try to accomplish also specific FLOSS related
requirements.

Important elements that proof the quality of FLOSS products are: the license
used, the quality and completeness of the documentation, and a thorough testing.
FLOSS communities often base their testing on specific groups of developers but
they rely especially on the large community of users that is an essential part of each
FLOSS project. The survey has confirmed also a growing importance that have
traditional world leading software companies in further growing of the FLOSS
movement. Companies contribute intensively to FLOSS communities usually by
paying developers that work for the community. Therefore, many trust related
approaches and procedures are often migrated from companies to FLOSS
communities.

56 Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

Standard software development techniques combined with essential FLOSS
principles form a higher quality and trustworthy hybrid software development
approach. These changes will eventually improve the credibility of FLOSS products
and increase their use in companies and public administrations.

8 Acknowledgment

The authors would like to thank the partners of the QualiPSo project that have
been involved in the survey. In particular, Prof. Sandro Morasca of the Università
dell’Insubria (Italy) who participated to the design of the questionnaire, Prof. Jesus
M. Gonzalez-Barahona and Prof. Gregorio Robles of the University Rey Juan Carlos
(Spain) who collected the data about the GNOME and Debian communities.

9 References

[1] The Leading Linux Resource in the World! http://linux.sys-con.com/, Last
visit December 2007.
[2] V. R. Basilli: Software modeling and measurement: The
Goal/Question/Metric paradigm. Department of Computer Science, University of
Maryland, 1992.
[3] J. Howinson and K. Crowston: The Perils and Pitfalls of Mining
SourceForge. University Academic Department.
[4] N. Jorgensen: Putting it All in the Trunk, Incremental Software
Development in the FreeBSD Open Source Project. Information Systems Journal,
(2001), 11, 321-336.
[5] S. B. Lipner: Security and source code access: Issues and realities.
University Academic Department, 124-125.
[6] G. McGraw: Will openish source really improve security? University
Academic Department, 128-129.
[7] A. Mockus, R. Fielding and J. Herbsleb: A Case Study of Open Source
Software Development: The Apache Server. University Academic Department, 263-
272.
[8] QualiPSo - Quality Platform for Open Source Software.
http://www.qualipso.org/index.php, Last visit December 2007.
[9] F. B. Schneider: Open source in security: Visiting the bizarre. University
Academic Department, 126-127.
[10] D. Silverman: Doing qualitative research. Sage Publications, 2000.
[11] B. Witten, C. Landwehr and M. Caloyannides: Will open source really
improve security? University Academic Department.

