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Abstract. Building a production-quality refactoring engine or similar source

code transformation tool traditionally requires a large amount of hand-written,

language-specific support code. We describe a system which reduces this over-

head by allowing both a parser and a fully rewritable AST to be generated au-

tomatically from an annotated grammar, requiring little or no additional hand-

written code. The rewritable AST is ideal for implementing program transfor-

mations that preserve the formatting of the original sources, including spacing

and comments, and the system can be augmented to allow transformation of C-

preprocessed sources even when the target language is not C or C++. Moreover,

the AST design is fully customizable, allowing it to resemble a hand-coded tree.

The amount of required annotation is typically quite small, and the annotated

grammar is often an order of magnitude smaller than the generated code.

1 Introduction

To many programmers, the Refactor › Extract Method menu item is “just another fea-

ture” of an IDE, one with the same visual precedence as Edit › Copy or File › Print.

However, to the IDE developer, these features are not at all comparable: Building a

refactoring tool is a substantial development effort. Moreover, it requires a substantial

amount of infrastructure, most of which is usually written by hand.

The central data structure in a refactoring engine is usually a rewritable AST, that is,

an abstract syntax tree whose nodes can be added to, rearranged, removed, and replaced

to perform textual transformations on the underlying source code. Nearly all of a refac-

toring engine’s components depend on the AST, so it must be implemented before any

significant program transformations or analyses. And, unfortunately, it is a component

that is often very time-consuming to code by hand.

This paper describes a system that generates an abstract syntax tree from a gram-

mar. The grammar can be annotated to customize the AST design, and then it is used

to generate AST node classes as well as a parser which constructs ASTs comprised

of these nodes. The generated ASTs are rewritable in the sense that refactorings and

other source code transformations can be coded by restructuring the AST, and the re-

vised source code can be emitted, preserving all of the user’s formatting, including

spacing and comments; there is no need to develop a prettyprinter. The system can even

be extended to handle preprocessed code. Moreover, while the generated AST nodes



2

are usually comparable to hand-coded AST nodes, they can be customized, replaced,

or intermixed with hand-coded AST nodes. This AST generation system has been im-

plemented in a tool called Ludwig and has been used to generate rewritable ASTs for

several projects, most notably Photran, an open source refactoring tool for Fortran.

The remainder of this paper is organized around our three major contributions. §2

describes how to annotate a parsing grammar to produce a satisfactory AST. Although

many AST generators already exist, our system of annotations is new and is fundamen-

tally different from (and arguably more concise than) all of the existing AST specifi-

cation languages. §3 describes how to augment an AST to allow both rewriting and

faithful reproduction of the original source code. Although it is fairly straightforward,

this process (“concretization”) also appears to be new. §4 discusses modifications nec-

essary to support preprocessed source text. This is the first work, to our knowledge, that

addresses supporting C preprocessor directives in arbitrary languages; here, our major

contribution is in how we handle conditional compilation. §5 gives empirical results on

the ASTs we generate; our work is compared and contrasted with related work in §6,

and the paper concludes in §7.

2 Abstract Syntax Annotations

The grammar supplied to a parser generator defines the concrete syntax of the language,

which is almost always different from an ideal abstract syntax. For example, consider

the following grammar for a language where a program is simply a list of statements,

and a statement is either an if-statement, an unless-statement, or a print-statement.

‹program › F ‹program › ‹stmt › | ‹stmt › (1)

‹stmt › F ‹ if-stmt › | ‹unless-stmt › | ‹print-stmt › (2)

‹ if-stmt › F  ‹expr ›  ‹stmt ›  (3)

|  ‹expr ›  ‹stmt ›  ‹stmt ›  (4)

‹unless-stmt ›F  ‹expr › ‹stmt › (5)

‹print-stmt › F  ‹expr › (6)

|  ‹expr ›   (7)

‹expr › F  |  | - (8)

There are several ways to generate an AST directly from the grammar. Clearly, such

an AST will not have an ideal design, but it is useful as a starting point; in this section,

we will define six annotations which allow us to refine the AST’s design. The AST

nodes we generate will be classes comprised of public fields, although adapting our

technique to generate properly-encapsulated classes or even non-object-oriented ASTs

(e.g., using structs and unions in C or algebraic data types in ML) is straightforward.

One obvious method for generating an AST directly from the grammar is to

– generate one AST node class for each nonterminal, where

– this class contains one field for each symbol on the right-hand side of one of that

nonterminal’s productions.

For example, the AST nodes corresponding to ‹print-stmt › and ‹stmt › would be the

following, where Token is the name of a class representing tokens returned by a lexical

analyzer.
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class PrintStmtNode {

public Token print ;

public ExprNode expr;

public Token to ;

public Token stderr ;

}

class StmtNode {

public IfStmtNode ifStmt ;

public UnlessStmtNode unlessStmt;

public PrintStmtNode printStmt ;

}

When these classes are instantiated in an AST, irrelevant fields will be set to null.

2.1 Annotation 1: Omission

This method for generating ASTs has several things wrong with it. One of the most
obvious is that keywords like  and  are almost never included in an AST. We will
indicate that these tokens can be omitted or elided by striking out their symbols in the
grammar.1 For example,

‹print-stmt ›F  ‹expr ›

|  ‹expr ›  

would generate a PrintStmtNode with only two fields: expr and stderr.

Generalizing this slightly, we will establish the following rules.

– If a symbol on the right-hand side of a production is annotated for omission, no

field is generated for that symbol.

– If a nonterminal on the left-hand side of a production is annotated for omission, no

AST node class is generated for that nonterminal.2

2.2 Annotation 2: Labeling

Determining the names of AST classes and their fields from the names of nonterminal

and terminal symbols in the grammar is often sufficient, but sometimes these names

need to be customized. This can be done by explicitly labeling symbols in the grammar

and interpreting these labels as follows.

– Labeling the nonterminal on the left-hand side of a production determines the name

of the AST node class to generate.

– Labeling a nonterminal or terminal symbol on the right-hand side of a production

determines the name of the field to which that symbol corresponds.

The idea of labeling symbols is simple, yet it is extremely powerful, having several uses

and implications.

1 In our implementation, we represent the same in ASCII by prefixing the symbol with a hyphen

and a colon, as in -:print.
2 The ability to omit entire AST node classes is useful when only a partial AST is desired. For

example, the Eclipse JDT [10] and CDT [9] both contain a “lightweight” AST which describes

high-level organizational structures (classes, methods, etc.) but not statements or expressions.
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Labeling to Distinguish Fields Labeling is the only annotation that is strictly required,
at least in certain cases. IfStmtNode is one example. The problem is production (4):

‹ if-stmt ›F  ‹expr ›  ‹stmt ›  ‹stmt › 

Since the symbol ‹stmt › appears twice in the same production, we need two fields so
that the node can have separate fields for the then-statement and the else-statement.
We will accomplish this by adding distinctive labels to these symbols in the grammar,
rewriting productions (3) and (4) to generate distinct fields for the two occurrences of
‹stmt ›.

‹ if-stmt ›F  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt › 

|  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt › 

elseStmt
︷ ︸︸ ︷

‹stmt › 

This will generate the following node instead.

class IfStmtNode {

public ExprNode expr;

public StmtNode thenStmt;

public StmtNode elseStmt;

}

Labeling to Merge Fields Just as we can give symbols distinct labels to create dis-

tinct fields, we can also give several several symbols the same label to assign them

to the same field . . . as long as they occur in different productions. One example of

this appears above: Since both occurrences of ‹stmt › were given the label thenStmt,

the thenStmt field will be populated regardless of whether production (3) or (4) was

matched.

Labeling to Rename Fields Labeling can also be used to avoid illegal or undesirable

field names. For example, were the  token not omitted, it would generate a field named

if, which is illegal in Java, so it could be labeled ifToken instead. Similarly, ‹expr ›

might be labeled guardingExpression to make its corresponding field name more de-

scriptive.

Labeling to Distinguish, Rename, and Merge Node Classes Just as labeling the

symbols on the right-hand sides of productions allows us to distinguish, rename, and

merge fields, labeling the nonterminals on the left-hand sides of productions allows us

to distinguish, rename, and merge AST node classes.

The text of the label assigned to a left-hand nonterminal determines the name of the

AST node class generated for that nonterminal. By assigning a distinct label to each

left-hand nonterminal, we ensure that a different AST node class will be generated for

each nonterminal. By assigning the same label to several left-hand nonterminals, they

can all correspond to the same AST node class.

But when is it useful to have just one node class correspond to several nonterminals?
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Sometimes a grammar uses several nonterminals to refer to the same logical entity.

This is probably most common in expression grammars, as we will see later, but we

can illustrate it with our sample grammar. Note that our sample programming language

contains two conditional constructs: an if-statement and an unless-statement. Suppose

we want to represent both of these with a single node, ConditionalStmtNode. We will

label the left-hand nonterminals with this name

ConditionalStmtNode
︷    ︸︸    ︷

‹ if-stmt › F  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt › 

|  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt › 

elseStmt
︷ ︸︸ ︷

‹stmt › 
ConditionalStmtNode
︷          ︸︸          ︷

‹unless-stmt ›F  ‹expr ›

elseStmt
︷ ︸︸ ︷

‹stmt ›

in order to generate a ConditionalStmtNode class with the same three fields as before

(cf. page 4). When an if-statement is matched, the expr and thenStmt fields will be set,

and the elseStmt field may or may not be null.When an unless-statement is matched,

expr and elseStmt will be set, but thenStmt will always be null.3

2.3 Annotation 3: Boolean Access

Consider the print-statement, defined in productions (6) and (7). Suppose that a print-

stmt can write either to standard output or standard error, depending on whether or not

the to stderr clause is present. Although we can omit the  and  tokens from the

PrintStmtNode class, we cannot also omit the  token without losing the semantic

distinction between the two variants of the print-statement. The token  is not

important per se; what matters is whether or not it was present at all.
We will annotate a symbol with “(bool)” to indicate that its field should be of type

boolean rather than of type Token.When the corresponding token is present, the field’s
value will be set to true; otherwise, it will be set to false. Accordingly,4

‹print-stmt ›F  ‹expr ›

|  ‹expr › 

(bool)

︷ ︸︸ ︷



will generate the node class

class PrintStmtNode {

public ExprNode expr;

public boolean stderr ;

}

whose stderr field can be tested to determine whether the print-statement is intended

to write to standard output or standard error.

3 This is based on the intuition that unless E S is equivalent to if E then no-op else S .
4 Again, our implementation uses a straightforward ASCII equivalent: (bool):stderr. Also,

one should note that some obvious extensions of this annotation are possible, such as ones to

assign an integer or an enum value.
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2.4 Annotation 4: List Formation

Recursive productions are idiomatically used to specify lists. In our example grammar,

the productions on line (1) indicate that a program is a list of one or more statements. In

an AST, it is usually preferably to replace these recursive structures with an array, list,

or whatever iterable construct is most common in the implementation language.
We will annotate left-hand nonterminals with “(list)” to indicate that the productions

for that nonterminal describe a list.
(list)

︷       ︸︸       ︷

‹program ›F ‹program › ‹stmt › | ‹stmt ›

Now, there is no need to generate a ProgramNode class: In its place, we can simply use

a List<StmtNode>.

2.5 Annotation 5: Inlining

To illustrate our next annotation, suppose the productions defining an if-statement had
been written as follows. Note that the syntax of the if-statement has not changed: The
grammar is just slightly different.

‹ if-stmt › F ‹ if-then-part › ‹endif-part ›

| ‹ if-then-part › ‹else-part › ‹endif-part ›

‹ if-then-part ›F  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt ›

‹else-part › F 

elseStmt
︷ ︸︸ ︷

‹stmt ›

‹endif-part › F 

Compare these to productions (3) and (4) in the original sample grammar. In this

version,  ‹expr ›  ‹stmt › has been “factored out” into its own nonterminal, ‹ if-then-

part ›. This is commonly done to minimize duplication in the grammar. However, left

alone, it adds unnecessary nodes to an AST. In this case, there will be three AST nodes,

all devoted to defining the structure of an if-statement: IfStmtNode, IfThenPartNode,

and ElsePartNode.5

To create the same nodes as before, we would like to do away with IfThenPartN-
ode and ElsePartNode and instead have their fields—expr, thenStmt, and elseStmt—
placed directly into the IfStmtNode class. In other words, we would like to inline these
nodes: In the IfStmtNode class, rather than declaring an IfThenPartNode field, we will
simply insert all of the fields that would be in an IfThenPartNode instead. We will de-
note this with an “(inline)” annotation

‹ if-stmt › F

(inline)

︷           ︸︸           ︷

‹ if-then-part › ‹endif-part ›

|

(inline)

︷           ︸︸           ︷

‹ if-then-part ›

(inline)

︷       ︸︸       ︷

‹else-part › ‹endif-part ›

‹ if-then-part ›F  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt ›

‹else-part › F 

elseStmt
︷ ︸︸ ︷

‹stmt ›

‹endif-part › F 

5 Notice that we have omitted ‹endif-part ›, since its AST node is unnecessary.
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which gives us the desired AST node. Notice that we have now omitted ‹ if-then-part ›

and ‹else-part ›: Since their contents are always inlined, there is no reason to generate

these node classes.

class IfStmtNode {

public ExprNode expr; // Inlined from IfThenPartNode

public StmtNode thenStmt; // Inlined from IfThenPartNode

public StmtNode elseStmt; // Inlined from ElsePartNode

}

2.6 Annotation 6: Superclass Formation

Idiomatic Form The productions in line (2) illustrate another common idiom in BNF
grammars:

‹stmt ›F ‹ if-stmt › | ‹unless-stmt › | ‹print-stmt ›

states that an if-statement is a statement, an unless-statement is a statement, and a print-
statement is a statement. In object-oriented languages, this is-a relationship is generally
modeled using inheritance. Instead of generating a Stmt node with fields for the various
types of statements, we can instead make Stmt an abstract class (or interface, in Java
or C#) which is subclassed by IfStmt, UnlessStmt, and PrintStmt. We will indicate this
preference by a “(superclass)” annotation on the left-hand nonterminal.

(superclass)

︷ ︸︸ ︷

‹stmt › F ‹ if-stmt › | ‹unless-stmt › | ‹print-stmt ›

This generates the following.6

interface StmtNode { /∗empty∗/ }

class IfStmtNode implements StmtNode { ... }

class UnlessStmtNode implements StmtNode { ... }

class PrintStmtNode implements StmtNode { ... }

Non-idiomatic Form As in the preceding example, the (superclass) annotation is gen-

erally applied to a nonterminal whose productions are all of the form A F B, for

nonterminals A and B. But it is also possible to apply this annotation when the produc-

tions do not have this form. To do this, we must explicitly label each production with a

node class name. For example,
(superclass)

︷    ︸︸    ︷

‹ if-stmt ›F

 ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt ›  } IfThenNode

|  ‹expr › 

thenStmt
︷ ︸︸ ︷

‹stmt › 

elseStmt
︷ ︸︸ ︷

‹stmt ›  } IfThenElseNode

allows us to have two different nodes for an if-statement, one for the if-then form and

another for the if-then-else form.

6 In our implementation, the interface/abstract superclass contains no fields or methods, as

shown here. Later in this paper, we describe several ways to customize generated nodes. This

empty interface is often an excellent candidate for customization, since certain behaviors may

be common among the various subclasses.
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interface IfStmtNode { /∗empty∗/ }

class IfThenNode

implements IfStmtNode {

public ExprNode expr;

public StmtNode thenStmt;

}

class IfThenElseNode

implements IfStmtNode {

public ExprNode expr;

public StmtNode thenStmt;

public StmtNode elseStmt;

}

It should be noted that the labeling principles discussed in §2.2 apply to production

labels as well. For example, two productions (or a production and a nonterminal) can

be given the same label to assign them to the same node class.

2.7 Customization

In our experience, these annotations—omission, labeling, Boolean access, list forma-

tion, inlining, and superclass formation—allow satisfactory AST nodes to be generated

for most constructs in most languages. However, it is sometimes desirable to “tweak”

some of the generated AST node classes or to mix them with non-generated nodes. Our

implementation [24] provides several means to customize the generated AST; the reader

is referred to its documentation for details. In our experience, the two most important

customizations are the following.

– The user must be able to add methods to the generated node classes. For ex-

ample, it may be desirable to add a getType() method to expression nodes or a

resolveBinding() method to identifier nodes. Our implementation follows a best

practice described by Vlissides [35, p. 85]: The system generates an AST node

class, and the user places additional methods in a custom subclass (or superclass).

– The user must be able to write custom AST nodes when necessary. Sometimes,

the “obvious” grammatical representation of a language construct does not satisfy

the constraints of the parser generator; this can result in productions which deviate

wildly from the conceptual structures of the constructs they are intended to repre-

sent. In these cases, the user must be able to hand-code an AST node for that con-

struct. Being able to intermix hand-coded and generated nodes is critical, because

it provides the user with the flexibility of hand-coding when it is needed while alle-

viating the tedium and cost of developing and maintaining an entirely hand-coded

infrastructure.

2.8 An Example

We will conclude this section with a fairly complex example: Using annotations to

construct an AST for an expression grammar.
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IExpression
(superclass)

︷ ︸︸ ︷

‹expr › F

lhs
︷ ︸︸ ︷

‹expr ›

isPlus
(boolean)

︷︸︸︷



rhs
︷ ︸︸ ︷

‹ term › } BinaryExpr (1)

| ‹ term › (2)
IExpression
(superclass)

︷ ︸︸ ︷

‹ term › F

lhs
︷ ︸︸ ︷

‹ term ›

isTimes
(boolean)

︷︸︸︷



rhs
︷   ︸︸   ︷

‹ factor › } BinaryExpr (3)

| ‹ factor › (4)
IExpression
(superclass)

︷   ︸︸   ︷

‹ factor › F

lhs
︷   ︸︸   ︷

‹ factor ›

isExp
(boolean)

︷︸︸︷



rhs
︷      ︸︸      ︷

‹primary › } BinaryExpr (5)

| ‹primary › (6)
IExpression
(superclass)

︷      ︸︸      ︷

‹primary › F ‹constant › (7)

|  ‹expr ›  (8)

‹constant ›F - (9)

| - (10)

The preceding grammar is a stereotypical example of an unambiguous grammar

for arithmetic expressions. From lowest to highest precedence, it incorporates addition

(left-associative), multiplication (left-associative), exponentiation (right-associative), and

nested expressions. Annotations are used as follows.

– Superclass Formation. Production (1) indicates that a superclass, IExpression, will

be generated, and that expressions of the form ‹expr ›  ‹ term › will be parsed

into a node called BinaryExpression which implements IExpression. Production (2)

indicates that the AST node class for ‹ term › will also implement IExpression; how-

ever, since the AST node class for ‹ term › is IExpression, this has no effect. Like-

wise, production (7) indicates that Constant, the AST node class for ‹constant ›,

will implement IExpression. Production (8) indicates that the AST node for ‹expr ›

should implement IExpression, but, again, this is trivially true.

– Labeling. Labels are used to name the fields in BinaryExpr; they are used to assign

the same AST node class, IExpression, to ‹expr ›, ‹ term ›, ‹ factor ›, and ‹primary›;

and they are used to assign productions (1), (3), and (5) to the same node class,

BinaryExpr. The parentheses delineating a nested expression in (8) are omitted, so

they will not be included in the AST.

– Boolean Access. The tokens , , and  are assigned Boolean fields in the

BinaryExpr node class.7

Ultimately, this results in the following node classes.

interface IExpression { /∗empty∗/ }

7 This was primarily for illustrative purposes. We could have given productions (1), (3), and (5)

different labels to have separate nodes types for addition, multiplication, and exponentiation

expressions.
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class BinaryExpr implements IExpression {

public IExpression lhs ;

public IExpression rhs ;

public boolean isPlus ;

public boolean isTimes;

public boolean isExp;

}

class Constant implements IExpression {

public Token integerConstant ;

public Token realConstant ;

}

3 Rewritable Abstract Syntax Trees

We will next present how to generate rewritable ASTs, which allow source code to be

modified simply by adding, changing, moving, and removing nodes in the AST.

Traditionally, source code is modified either by prettyprinting a modified AST or

by computing textual edits from an AST. Prettyprinting is a popular choice for source-

to-source compilers and academic/research source code transformation tools (including

Stratego/XT [34, 7], TXL [5], ASF+SDF [33], and many academic refactoring tools):

Prettyprinting is straightforward to implement, and preserving comments and source

formatting is usually a non-goal. On the other hand, commercial refactoring tools (in-

cluding the Eclipse JDT [10] and CDT [9], NetBeans [2], and Apple Xcode [3]) gen-

erally use textual edits: AST nodes are mapped to offset/length regions in the source

file, and the source text is changed by manipulating a text buffer directly (by specifying

text to be added, removed, or replaced at particular offsets) or indirectly (by manip-

ulating AST nodes and computing text buffer changes from the AST modifications).

Prettyprinting is easier to implement but sacrifices output quality; textual edits produce

“better” results at the expense of a significantly more complicated implementation.

Our solution fuses these two approaches: We will add “missing pieces”—dropped

tokens, spaces, comments, etc.—back into the AST, but they will not be visible in its

public interface. This will allow us, internally, to reproduce the original source text

exactly using a simple traversal. Moreover, they will be tied to individual nodes in such

a way that they move with the nodes when the AST is modified.

3.1 Whitetext Augmentation

If an AST contains every token in the original text, in the original order, the original

source code can be reproduced almost exactly. The only pieces missing are what we

refer to as whitetext: spaces, comments, line continuation characters, and similar lexical

constructs. In order to reproduce the original text exactly—including whitetext—we

propose the following.

– Rather than discarding whitetext, the lexical analyzer must “attach” all whitetext to

exactly one token: either the token preceding it or the one following it.

– Most whitetext is attached to the following token.

– However, whitetext appearing at the end of a line is considered to be part of the pre-

ceding token, along with the carriage return/linefeed following it. Any additional

whitetext beyond the carriage return/linefeed is attached to the following token.
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The latter part of this heuristic ensures that any trailing comments on a line, as well as

the carriage return/linefeed itself, are associated with the preceding token, while any

subsequent indentation is associated with the token on the next line.

3.2 AST Concretization

Note that our heuristic uses tokens to partition the original source text: Every character

in the original text is also present in a token, every character in a token is also present

in the original text, and there is no overlap between tokens. Moreover, the characters

retain their original source text order.8

Since a whitetext-augmented token stream partitions the original source text, it can

be used to reproduce exact source text. Thus, it should also be possible to reproduce

source text from an AST . . . as long as every token is present, in the original order.

Reviewing our list of AST annotations, we can see that this is not necessarily the case:

1. Tokens may be omitted.

2. Node classes may be omitted.

3. Nodes may be replaced with Boolean values.

4. A node’s children are assigned to named fields; however, since several productions

may be assigned to a single type of node, there is not necessary a single order in

which these children can be traversed to preserve the original order. (For example,

consider the node generated for the productions AF ab | ba.)

We can overcome these problems with the following, respectively.

1. Rather than omitting tokens from node classes, store them in a private field, mak-

ing them accessible for source text reproduction while remaining absent from the

node’s interface.

2. When an omitted node class is used (and not inlined), simply store a string contain-

ing the node’s original text or, equivalently, a list/array of tokens.

3. Rather than storing a Boolean value, store the original node/token, and provide a

Boolean accessor method for that field.

4. If there is a single order in which children can be traversed to preserve the original

token order, there is no problem; if no such order exists, then the node must include

a field indicating the appropriate traversal order.

One method to determine an order for printing a node’s children is the following. Each

production generating a particular node defines a partial order on some of that node’s

children. The union of these partial orders is a relation describing the ordering of all

of the node’s children. We may treat this relation as a directed graph and topologically

sort it using an algorithm that also detects cycles [6, p. 546]. If no cycles are found,

the sorted graph gives a correct (total) order for printing the node’s fields; if cycles are

found, no such order exists.

8 This assumes that there is at least one token in the original file. If the original source consists

solely of whitetext—say, a C program that contains only a comment—this must be treated as

a special case.
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3.3 AST Rewriting

When the above changes are made, it is possible to reproduce the exact source code

from which an AST was created simply by traversing the tree and outputting each token

and its associated whitetext. However, such a tree is also ideal for rewriting. When

a node is moved or removed within the tree, every token under that node—omitted

or not—is moved with it, as are any comments and line endings associated with that

node. Suppose, for example, that an IfStmtNode is moved to a new location in the AST:

When the modified AST is traversed to reproduce source code, the entire if-statement—

including the  token, the line ending, and any comments—will appear at the new

location within the source code.9

4 Representing Preprocessed Text

So far, we have ignored one mundane but highly nontrivial aspect of source code

transformation: handling preprocessed code. Many tools—including sed, m4, and even

Perl—can serve as preprocessors, making the topic impossible to treat in full general-

ity. Thus, we will focus on one of the most commonly used tools: the C preprocessor.

Its capabilities are stereotypical, so the conceptual model we develop is applicable, for

example, when handling  lines in Fortran or simple sed substitutions as well.

We will assume that the reader is already familiar with the C preprocessor; a good in-

troduction is provided in the GCC documentation [31], while the C and C++ language

specifications [18, 19] provide normative references and are the source of the C prepro-

cessor terminology in this section.

We will follow the pseudo-preprocessing model of [14]: We will assume that a

customized version of the preprocessor will feed the lexical analyzer. While a normal

preprocessor simply executes preprocessing directives and outputs either a stream of

text or a stream of tokens, our “pseudo-preprocessor” will keep track of what output

originated from what directives, passing this information on to the lexer (and parser)

so that it can be incorporated into the AST. Retaining information about preprocessor

directives in the AST is essential both for analyzing preprocessed code and for repro-

ducing the original (un-preprocessed) source code from the AST.

The C preprocessor has three aspects to consider: substitutions, control lines, and

conditional compilation.

4.1 Substitutions

Trigraphs,10 backslash-newline sequences, #include directives, and macro expansions

are all essentially textual substitutions, i.e., the logical text for some tokens may differ

9 One should note that the if-statement will retain its indentation from the previous location. If

the level of indentation needs to be adjusted, this must be done manually by modifying the

whitetext of the tokens under the affected node.
10 A trigraph is a sequence of three characters that takes the place of another character. For

example, ??( is equivalent to {.
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from the physical text in the unpreprocessed file. These can be handled using a tech-

nique essentially similar to Garrido’s [14], marking the affected tokens with the token’s

original text (or original preprocessor directive) from the unpreprocessed file and print-

ing this, rather than the token’s logical text, during source reproduction.

4.2 Control Lines

Control lines include macro definitions (#define and #undef), the line control directive

(#line), #error, #pragma, and the null directive (# followed by a newline).11 We will

treat these as whitetext, but how we do so depends on the application. When source

reproduction is the only goal, they can be treated as strings and affixed to tokens like

spaces and comments. When some analysis is required, it is useful to represent them

with nodes in the AST. One must note that inserting a directive in the middle of a

statement

int

#define MACRO

some_function() {}

is perfectly legal; directives do not necessarily appear at statement boundaries. This

may be particularly true when languages other than C and C++ are preprocessed using

the C preprocessor. So in general, no assumptions can be made about where directives

will or will not need to be placed in an AST.

One means to include nodes for these directives in the AST is to make tokens’

associated whitetext a sequence of strings and preprocessor directives. The preprocessor

directives can be treated as children of tokens during a traversal; this makes it possible

to include them, for example, when implementing the Visitor pattern [12].

4.3 Conditional Compilation and Multiple Configurations

Conditional compilation is by far the most challenging feature to handle in a source

code transformation tool. Consider the following example.

if (

#if defined(A) || defined(B)

variable

#else

function() < 1 && variable

#endif

< 2) x = 3;

We cannot treat conditional directives as whitetext (as we did for control lines) because

doing so results in the token sequence

if (variable function() < 1 && variable < 2) x = 3;

which will not even parse.

11 The #include directive is also a control line but is treated uniquely for our purposes.
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Conceptually, conditional inclusion allows for variation in the AST depending on

the preprocessor’s configuration, that is, the set of macro definitions under which it is

operating: The structure of the AST under one configuration is not necessarily the same

as for another. If we intend to reproduce the original source code from an AST, we

must be able to construct a single AST which captures all of the AST variations that

may occur under all feasible configurations.

Representation Garrido’s [14] technique for handling conditional compilation in-

volves modifying the grammar to specify where conditionals may appear and then

inserting a pass between lexical analysis and parsing which ensures that conditional

directives appear only at these locations: If a conditional directive appears at an unex-

pected location, it is moved forward or backward as necessary, and tokens are copied

into each branch of the conditional. This process is called completing the conditional.

Although reasonable, it is language-specific, heuristic, and becomes complicated in the

presence of nested conditionals. It also requires modifying the grammar and adding

AST nodes for conditional compilation directives.

Our solution for representing multiple-configuration sources, which is intended to

be language-agnostic and grammar-independent, is based on [32, p. 5], which uses

a similar structure to represent ambiguities in parse trees for natural language. Fig-

ures 1(a) and (b) show the individual ASTs that would be constructed for the preced-

ing example under each preprocessor configuration. Notice that the smallest subtree

that differs between the two is the expression under the if-statement node. Figure 1(c)

shows a “multiple-configuration” AST which combines the previous ASTs by inserting

an “ambiguous” expression node whose children are the individual expression nodes

guarded by the various preprocessor configurations.

(a) (b) (c)

Fig. 1. (a) The AST for the configuration defined(A) || defined(B). (b) The AST for the

configuration !(defined(A) || defined(B)). (c) The multiple-configuration AST. The dot-

ted node represents an “ambiguous” expression whose children are each guarded by a different

preprocessor configuration.

This representation can be constructed by modifying an LA(1) shift-reduce parser

(most likely an LALR(1) [8] parser). A detailed discussion is beyond the scope of this

paper; a more substantial treatment by the present authors is in preparation. The follow-

ing method is oversimplified—its positioning of ambiguous nodes in the AST is often
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less than ideal—but it nevertheless conveys the gist of our technique.12 The parser pro-

ceeds as usual until it reaches an #ifdef directive in the token stream. The parser clones

itself so that a different copy of the parser can process each branch of the #ifdef. Each

clone independently processes the tokens under its branch of the conditional, stopping

when it is about to shift the token following the #endif. The clones are then compared

for equivalence: If two or more clones are in the same state and have equivalent stack

contents, those clones are merged into a single parser.13 When parsers are merged, the

topmost elements on their stacks are made to be children of an “ambiguous” node (as

in Figure 1(c)), and this “ambiguous” node becomes the topmost element on the stack

of the merged parser. After testing for equivalence and possibly merging parsers, each

subsequent token is fed to all remaining clones, which shift the token and perform any

reductions, stopping when they are prepared to shift the following token. The clones are

again tested for equivalence, merged as necessary, and the cycle continues until only a

single parser remains. In the worst case, this will happen at the end of the input.

An important implementation detail involves cloning parsers and testing for “equiv-

alence” of parse stacks. When a parser is cloned, each clone should have an independent

stack. However, there will be AST nodes present on the parser stack prior to cloning,

and these nodes should remain pointer-identical among the clones’ stacks. Now, we can

define two or more parser stacks to have “equivalent” contents when (1) the number of

elements on each stack is the same, (2) the AST nodes on the top of the stacks all have

the same type, and (3) all elements below the top on each stack are pointer-identical

among stacks. This ensures that the merging parsers, as described above, will be viable.

Source Reproduction Conditional completion and ambiguity control complicate source

reproduction slightly, since some tokens may appear at several locations in a multiple-

configuration AST even though they occur only once in the source text. Recall that,

when a parser is cloned, any tokens already on the stack are pointer-identical among the

clones; tokens beyond the #endif are fed to all clones, and, again, should be pointer-

identical. Since the clones may place these tokens under different parents, it follows

that these tokens may have multiple parents in the AST, i.e., the “multiple-configuration

AST” is really a DAG. To reproduce the original source text, the conditional directives

(#if, #endif, etc.) may be attached to tokens as whitetext, as before; during the traversal

of the AST (DAG), a token’s text is printed only once.

The question is, should tokens with multiple parents be printed the first time they are

traversed or the last time? Clearly, any shared tokens preceding the #ifdef should be

printed the first time they are traversed; tokens following the #endif should be printed

the last time. We can achieve this by simply flagging tokens following the #endif that

are fed to multiple clones; during a source reproduction traversal, flagged tokens are

12 Our technique is based on theory stemming from incremental parsing [4], although it appears

that the application of the same essential ideas to preprocessing was independently discovered

and implemented in [29].
13 Why is it safe to merge parsers under these conditions? In mathematical models of deter-

ministic shift-reduce parsers, the transition relation between states is a function of the stack

contents, the current state, and the remaining input: If all of these are identical among parsers,

the parsers’ subsequent behaviors will be identical.
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printed the last time they are traversed (i.e., when they are traversed as a child of their

rightmost parent), while all other tokens are printed the first time they are traversed.14

Multiple-Configuration Macro Expansion Handling multiple preprocessor configu-

rations means also handling the possibility that macros will have several possible ex-

pansions, depending on the configuration. Fortunately, this can be handled similarly

to #ifdefs: The parser “forks” into several clones, each of which handles one expan-

sion, then the clones synchronously handle tokens following the macro call, eventually

merging back into a single parser.

5 Empirical Results

A rewritable AST generator has been implemented in Ludwig, a lexer and parser gen-

erator which is available for download [24]. Ludwig’s AST generator has been used in

several projects; most notably, it has been used to generate the parser and rewritable

AST in Photran [28], an open-source integrated development environment and refactor-

ing tool for Fortran. Fortran 95 has an exorbitant amount of syntax—Photran’s gram-

mar is nearly 2,500 lines long (a similar annotated grammar for Java 1.0 is just over

600 lines)—which has made it an ideal candidate for AST generation. At the time of

writing, Photran contains 329 AST node classes comprising 33,081 lines of code; the

AST base classes, parser, and semantic actions comprise another 25,909 lines. In total,

then, its 2,500-line annotated grammar generates nearly 59,000 lines of code.

Photran’s parser was used to construct fully-concretized ASTs for 209 files from

the source code for IBEAM [17], a massively parallel astrophysics framework based on

the University of Chicago’s FLASH code [1]. The results are summarized in Table 1.

Note that the source file sizes were positively skewed (skew = 2.99) but fairly well-

correlated with the number of AST nodes (r = 0.77), as one would expect in Fortran.

(This would not necessarily be the case in C, which uses preprocessing much more

heavily. In general, the data in Table 1 are intended to be informative, not representative,

as they depend on the Fortran language, Photran’s AST structure, and even IBEAM’s

coding conventions.)

The third section of Table 1 is perhaps the most interesting: A rough, implementation-

independent approximation of the size of an AST was computed by assuming that each

interior node requires 32 bytes of overhead and each token requires 64 bytes. The non-

concretized AST size is intended to approximate the size of an AST similar to one used

in a compiler, one which contains neither hidden tokens nor whitetext; it is computed as

32NI+64NN+CN with variables defined according to Table 1. The transformation base-

line assumes that the smallest possible AST is one in which every node has a fixed size,

no hidden tokens are stored, and no text is stored (rather, each node contains an offset

and length into a source file); to use this AST for source transformation, one would gen-

erally store the entire file (and any preprocessor-included files) in memory in addition

14 Observe that a single flag will suffice regardless of the level of #ifdef nesting and number of

parent nodes due to the lexical positioning of shared tokens.
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to the AST, and so the total amount of memory required is 32NI + 64NN +C. The con-

cretized AST includes all source text in tokens and thus is computed as 32NI+64NT +C.

The final two rows show the relative increase in memory requirements of a concretized

AST over a non-concretized AST or the transformation baseline. One should note that

the median increase in size due to concretization is relatively small—20% over a non-

concretized AST and 14% over the transformation baseline—and even the largest con-

cretized AST was estimated at less than 2 MB, a minimal demand on modern systems.

Description Median Mean St. Dev. Min. Max.

AST nodes 2,612 5,203 7,992 15 50,084

Interior nodes (NI) 2,065 (79%) 3,931 6,198 8 41,003

Tokens (NT ) 558 1,272 1,840 7 11,871

Hidden 169 (6%) 409 615 0 4,099

Not hidden (NN) 409 (16%) 863 1,232 7 7,772

Characters (with includes) (C) 4,861 9,663 12,953 33 81,373

in non-hidden tokens’ text (CN) 1,606 (33%) 3,993 5,826 27 42,612

in hidden tokens’ text 223 (5%) 483 719 0 4,380

in whitetext 2,904 (60%) 5,187 6,884 6 46,521

Approximate AST size (bytes)

Non-concretized AST 91,581 184,998 280,902 731 1,718,789

Transformation baseline 95,438 190,669 287,026 737 1,739,467

Concretized AST 108,780 216,858 325,216 737 1,942,877

Increase from non-concretized 20% 27% 16% 1% 98%

Increase from baseline 14% 15% 5% 0% 38%

Source file size (bytes) 4,114 7,926 10,891 33 69,472

Table 1. Summary of data collected from 209 Photran ASTs. The first section of the table de-

composes the nodes of the concretized ASTs by type. The second describes the partitioning of

characters among tokens. The third estimates AST sizes as described in §5, and the fourth gives

the size of the original source files in bytes.

6 Related Work

There is an abundance of work on abstract syntax as well as work on handling the C

preprocessor in the context of C and C++. The present work is distinguished by (1) its

annotation-based approach for the definition of abstract syntax (as opposed to a more

traditional declarative approach), (2) its language-agnostic handling of the C prepro-

cessor, and (3) its focus on practical issues, including layout retention, customizability,

and exposure as an API.

The Zephyr abstract syntax description language [36] is essentially a declarative lan-

guage for “tree-like data structures” and resembles declarations of algebraic data types

(à la ML). Wile [37] advocates a particular grammar notation (WBNF) which makes

some aspects of abstract syntax (e.g., iteration, optionality, precedence, and nesting)
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more explicit and suggests a heuristic process by which Yacc grammars can be con-

verted and abstract syntax derived automatically. Among existing tools, ANTLR [27],

LPG [23], and JavaCC/JJTree [20] all include AST generators; LPG’s is derived directly

from the concrete syntax, while ANTLR and JJTree rely on declarative specifications

embedded in the grammar.

Our approach differs in many ways from all of these. For example, Zephyr is not

integrated with a parser generator; ANTLR’s ASTs allow a limited form of source

rewriting [27, Ch. 9] but have a dramatically different structure than the ASTs we de-

scribe; and no existing AST generator can generate ASTs for C-preprocessed sources.

However, the most prominent distinction of the present work is its annotation-based

approach. Zephyr, ANTLR, and JJTree require the user to fully specify an abstract

syntax. LPG constructs a primitive abstract syntax from the concrete syntax automati-

cally. In contrast, our approach allows a default abstract syntax to be constructed from

the concrete syntax and subsequently refined using annotations. This places less of an

annotation burden on the programmer than requiring a fully explicit abstract syntax def-

inition while simultaneously allowing more flexibility than a fully-inferred definition.

One drawback of the annotation-based approach is that the structure of AST nodes is

not immediately obvious, particularly when (inline) annotations are used; to remedy

this, in Ludwig, we are developing a GUI which allows the user to view AST node

structures as the grammar is being annotated.

Our heuristic for attaching whitetext to tokens in order to facilitate rewriting also

appears to be new, although the fundamental idea of including whitetext in syntax trees

appears elsewhere. Sellink and Verhoef [30] suggest placing whitespace and comments

into a parse tree by (automatically) modifying the grammar to include a “layout” non-

terminal prior to each occurrence of a token; Lämmel [21] includes such information as

annotations in the parse tree.

To our knowledge, our work is also the first to treat language-independent handling

of C-preprocessed code at length. An empirical confirmation of the importance of the C

preprocessor is [11]. The conditional completion problem is defined in [14], and a solu-

tion similar to ours appears in [29]. Garrido [13–15] treats refactoring C-preprocessed

code in detail; [25] takes a different approach, requiring a semi-automated replacement

of C preprocessor directives with a syntactically embedded macro language.

Finally, inasmuch as the present work addresses the topic of language-independent

refactoring (and language-independent program transformation), one should note that

there is a great body of literature in these areas, and commonality extends beyond just

syntactic and lexical issues. For example, Lämmel [22] suggests that refactorings have

both language-independent and language-dependent components and can be built by

parameterizing a transformation with language specifics, while Mens et al. [26] inves-

tigate the viability of graph rewriting as a formalism for specifying refactorings.

7 Conclusions

We have proposed six grammar annotations—omission, labeling, Boolean access, list

formation, inlining, and superclass formation—that allow an abstract syntax for a lan-

guage to be defined based on its concrete syntax. A tool can use such an annotated
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grammar to generate both a parser and a rewritable AST. Concretizing the AST allows

it to preserve the formatting of the original code even after rewriting. Furthermore, an

AST generator based on our method can couple the generated parser/AST-builder with

a pseudo-preprocessor to allow representation and manipulation of preprocessed code.

Our AST generator has been implemented in a tool called Ludwig [24] and has been

used to generate the rewritable AST in a refactoring tool for Fortran; the annotated

grammar was more than an order of magnitude smaller than the generated code, and the

overhead of concretizing ASTs was very reasonable.

Much future work is possible. The present authors are working on a complete de-

scription and formalization of the AST generation algorithm: It is easy to develop an

annotated grammar that does not “make sense” (for example, if a node indirectly inlines

itself, or if a field has an ambiguous type, or if a node is simultaneously declared as a

superclass and a list), so an AST generator must be able to detect errors and supply the

user with an informative message rather than failing or generating invalid code. Gram-

mars for mainstream programming languages other than Fortran should be developed

in order to better assess our choice of annotations and the overhead of concretization.

Constructing multiple-configuration ASTs efficiently using recursive descent parsers

remains an open problem. To our knowledge, no one has addressed refactoring in

the presence of other preprocessors (e.g., m5) in detail; it is intriguing to consider the

possibility that a programmer could chain together an arbitrary sequence of pseudo-

preprocessors for refactoring, just as one would chain together several tools prior to

compilation in a Makefile. Most importantly, very few programming languages cur-

rently have production-grade refactoring tools available; we hope that our work will en-

able researchers and practitioners to implement and investigate refactorings for a variety

of languages, allowing programmers using those languages to see the same productivity

gains that others already have.
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2. Bečička, J., Hřebejk, P., Zajac, P. (Sun Microsystems): Using Java 6 compiler as a refactor-

ing and an anaysis engine. 1st Workshop on Refactoring Tools (2007)

3. Bowdidge, R. (Apple Computer): Personal communication.

4. Celentano, A: Incremental LR parsers. Acta Inf. 10, 307–321 (1978)

5. Cordy, J.: The TXL source transformation language. Sci. Comp. Prog. 61, 190–210 (2006)

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. 2/e. MIT Press

(2001)

7. De Jonge, M., Visser, E., Visser, J.: XT: A bundle of program transformation tools. Proc.

Lang. Descriptions, Tools and Applications 2001. Elec. Notes in Theoretical Comp. Sci. 44,

211–218 (2001)

8. DeRemer, F.: Practical translators for LR(k) languages. PhD thesis, MIT (1969)



20

9. Eclipse C/C++ Development Tools. http://www.eclipse.org/cdt

10. Eclipse Java Development Tools. http://www.eclipse.org/jdt

11. Ernst, M., Badros, G., Notkin, D.: An empirical analysis of C preprocessor use. IEEE

Trans. on Software Eng. 28, 1146–1170 (2002).

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of reusable

object-oriented software. Addison-Wesley (1994)

13. Garrido, A., Johnson, R.: Challenges of refactoring C programs. Proc. Intl. Workshop on

Principles of Software Evolution 6–14 (2002)

14. Garrido, A.: Program refactoring in the presence of preprocessor directives. PhD thesis,

University of Illinois at Urbana-Champaign (2005)

15. Garrido, A., Johnson, R.: Refactoring C with conditional compilation. Proc. 18th IEEE Intl.

Conf. on Automated Software Eng., 323–326 (2003)

16. Hopcroft, J., Motwani, R., Ulman, J.: Introduction to automata theory, languages, and com-

putation. 2/e. Addison-Wesley (2001)

17. IBEAM. http://www.ibeam.org

18. ISO/IEC 9899:1999: Programming Languages – C.

19. ISO/IEC 14882:2003: Programming Languages – C++.

20. JJTree. https://javacc.dev.java.net/doc/JJTree.html

21. Kort, J., Lämmel, R.: Parse-tree annotations meet re-engineering concerns. Proc. Source

Code Analysis and Manipulation 2003, 161–172.

22. Lämmel, R.: Towards generic refactoring. Proc. ACM SIGPLAN Workshop on Rule-Based

Prog., 15–28 (2002)

23. LPG http://sourceforge.net/projects/lpg/

24. Ludwig. http://jeff.over.bz/software/ludwig

25. McCloskey, B., Brewer, E.: ASTEC: A new approach to refactoring C. Proc. 13th ACM

SIGSOFT Intl. Symp. Found. Software Eng., 21–30 (2005)

26. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings with graph

transformations. J. Software Maint. and Evolution 17, 247–276 (2005)

27. Parr, T.: The definitive ANTLR reference: Building domain-specific languages. Pragmatic

Bookshelf (2007)

28. Photran. http://www.eclipse.org/photran

29. Platoff, M., Wagner, M., Camaratta, J.: An integrated program representation and toolkit for

the maintenance of C programs. Proc. Conf. Software Maint., 129–137 (1991)

30. Sellink, M., Verhoef, C.: Scaffolding for software renovation. Proc. Conf. Software

Maint. Reeng., 161–172 (2000)

31. Stallman, R., Weinberg, Z.: The C preprocessor. http://gcc.gnu.org/onlinedocs/cpp.pdf

32. Tomita, M.: Generalized LR parsing. Springer (1991)

33. Van Den Brand, M., Van Deursen, A., Heering, J., De Jong, H., De Jonge, M., Kuipers,

T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The

ASF+SDF Meta-Environment: a component-based language development environment.

Compiler Construction 2001. LNCS 2027, 365–370 (2001)

34. Visser, E.: Stratego: A language for program transformation based on rewriting strategies.

Rewriting Techniques and Applications. LNCS 2051, 357–361 (2001)

35. Vlissides, J.: Pattern hatching: Design patterns applied. Addison-Wesley (1998)

36. Wang, D., Appel, A., Korn, J., Serra, C.: The Zephyr abstract syntax description language.

USENIX Workshop on Domain-Specific Langauges (1997)

37. Wile, D.: Abstract syntax from concrete syntax. Proc. 19th Intl. Conf. on Software Eng.,

472–480 (1997)


