
A Systematic Framework for Structured Object-Oriented
Security Requirements Analysis in Embedded Systems

Sojan Markose, Xiaoqing (Frank) Liu, and Bruce McMillin
Computer Science Department

Missouri University of Science and Technology
1870 Miner Circle

Rolla, MO 65409-0350
fliu@mst.edu

ABSTRACT
The primary goal of this paper is to develop a structured object-
oriented security requirements analysis methodology for the
elicitation and analysis of security requirements in embedded
systems. There are several approaches to elicit, analyze and
specify security requirements in embedded systems ranging from
formal mathematical models for proof of certain security
properties to informal methods that are easily understood.
Applicability of formal security models is limited because they
are complex and it is time consuming to develop. On the other
hand, informal security requirements analysis methods are not
integrated with conceptual models in requirements analysis, and
although both external and internal threats have been dealt using
use cases and misuse cases, they provide no process for analyzing
both internal and external threats in a structured manner. This
paper discusses a structured object-oriented security requirements
analysis methodology for the elicitation and analysis of security
requirements in embedded systems. It is capable of identifying
hierarchically both external and internal threats posed by both
external and internal actors of a system level by level. It is
illustrated and validated by security requirements analysis for an
advanced embedded power grid control system.

Keywords
Security requirements, use cases, misuse cases, structured object-
oriented analysis, security goal, and security requirements.

1. INTRODUCTION
Non functional aspects of an embedded system such as security,
safety and reliability should be considered and incorporated in the
system along with the functional requirements throughout its
development process. Among the nonfunctional requirements,
security requirements are of great importance because security
failure of an embedded system may incur important political,
financial and military loses. However security needs of an
embedded system are often considered only after the
implementation begins. We need to analyze security needs early
in the process and integrate counter-measures to security threats
into the system. There is also a need for a method which can
identify security requirements at multiple levels of a system to
deal with both external and internal threats rather than specifying
the security requirements for the system as a whole. The existing
methods for security requirements analysis do not address the
issue of analyzing both internal and external threats in a structured
manner. They only deal with the external mis-users of the system.

A systematic process for a structured object-oriented
security requirements analysis and specification is needed because
objects represent the assets of a system. A Structured object-
oriented methodology can be used to model security requirements.
This paper i) studies a few noticeable research on extending use

cases to elicit and analyze security requirements and ii) introduces
a new methodology where security requirements elicitation and
analysis is done in a structured manner using HOOMT[7,8] and
misuse cases.

2. RELATED WORK
Security requirements are usually specified to prevent any
activities that may pose a threat to either the stakeholders or the
system itself. Researchers believe that activities that pose a threat
to the system can be effectively described using use cases by
extending it to represent misuses and mis-users. These extended
use cases are called misuse cases and are helpful in documenting
negative scenarios which can be used to improve security by
preventing them [3]. Sindre et al. developed a method to elicit
security requirements using misuse cases [3]. In this method use
cases and misuse cases are specified in a single diagram. In
addition to the “include” and “extends” relations between use
cases in UML, new relations called “prevents” and “detects” were
introduced in this method. Ian Alexander developed a method for
security requirements analysis using misuse cases in the context
of trade-off analysis [4]. An ‘exception’ is considered to be an
undesired event that could cause a system to fail and misuse case
analysis is the best way to find possible ‘exceptions’. To analyze a
trade-off in this method between the use cases and misuse cases
two relationships; “threatens” and “mitigates” were introduced.
Two more relations “aggravates” and “conflicts with” are also
introduced. John McDermott and Chris Fox proposed an abuse
case model to capture and analyze security requirements. They
define abuse case as ‘a specification of a type of complete
interaction between a system and one or more actors, where the
results of the interaction are harmful to the system, one of the
actors, or one of the stake holders in the system’ [5]. The authors
also pointed out that because it is not sure where flaws will occur,
an abuse case describes a family of undesirable interactions [6].
The above misuse case based approaches have provided a solid
guideline for security requirements analysis. However, several
important issues remain to be resolved, such as the integration of
analysis of misuse cases and negative scenarios with conceptual
models which describes assets of a system, such as object models;
and the analysis of both external and internal threats in a
structured process.

3. OUR APPROACH
The primary objective of this research is to develop a systematic
framework for structured object-oriented security requirements
analysis to elicit and analyze security requirements in an
embedded system. The proposed framework is expected to
improve the existing methods introduced in the previous section
by developing a structured object-oriented security requirements
analysis process to identify both internal and external threats level

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.92

75

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.92

75

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.92

75

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357586492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by level. The system structure is modeled by a high-order object
model based on a High-order Object-oriented Modeling
Technique (HOOMT) [7, 8]. The HOOMT provides a structured
object-oriented design methodology which is based on
hierarchical model development. The term ‘decompose’ in this
research represents a process that reveals the sub-components at a
lower level of an object, use case, misuse case, security use case
or a security requirement.

Figure 1 illustrates a structured object-oriented security
requirements process. In the first step a context object diagram is
developed which shows the interactions between the high-order
system object and the external objects. In the second step, at each
level of decomposition, use cases are specified to identify the
main functionalities of an object. In the third step, misuse cases
and mis-users which can cause harm to the functionalities that
have been represented by use cases are identified. At all levels,
mis-users can be either external actors or internal actors. There are
various relations through which use cases and misuse cases can be
related. In this paper we elicit and analyze the security
requirements of a FACTS Power System. In order to present an
example and describe the elicitation and analysis process, we are
considering three actions namely ‘disable’, ‘distort’, and
‘disclose’. The use cases and misuse cases are related using these
three actions i.e. ‘disable’, ‘distort’, and ‘disclose’ respectively.
The ‘disable’ relates a use case and a misuse case where the
misuse case completely disables a functionality represented by a
use case. The ‘distort’ relates a use case to a misuse case where
the misuse case distorts the functionality represented by the use
case. Finally, the ‘disclose’ relates a use case and a misuse case
where the misuse case discloses important information about the
entities that get benefited by a functionality of the system
represented by a use case. In the fourth step security use cases are
derived which act as countermeasures to the misuse cases. These
security use cases are related to the misuses cases using ‘prevents’
and ‘mitigates’ relations. The ‘prevents’ relates a security use case
and a misuse case where a security use case completely stops a
negative scenario represented by a misuse case from happening.
The ‘mitigates’ relates a security use case and a misuse case
where a security use cases reduces the threat of a misuse case.
Finally at step five security requirements are derived from
security use cases. The security use cases and security
requirements are related using a relation called ‘satisfy’. The
‘satisfy’ relates a security use case and a security requirement
where the security use case satisfies the derived security
requirement. At each subsequent level of decomposition all the
above five steps are repeated until a stage is reached where all the
objects are primitive and further decomposition is impossible or
unnecessary. At the end of this structured object oriented security
requirements process, we obtain a set of security requirements
which are capable of securing the target system at each level of
abstraction.

A detailed process for the hierarchical development and
analysis of misuse cases based on high-order objects models and
use case diagrams is shown in Figure 2. At the top level a context
object diagram is developed which shows the interactions between
the high order system object and its external objects. Starting from
the top level, security use case diagrams are developed
corresponding to the misuse case diagrams. These security use

cases are related to the misuse cases using ‘mitigates’ and
‘prevents’ relations. At each hierarchical level security
requirements are derived from security use cases.

The decomposition process continues until a stage is
reached where the objects are primitive and corresponding use
cases and misuse cases are fully explored, Figure 3 represents a
detailed process for the hierarchical development and analysis of
security requirements based on misuse case diagrams and security
use case diagrams. These security use cases are related to the

Figure 1: Structures object-oriented security requirements
process

767676

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

Figure 2: A detailed process for the hierarchical development and analysis of misuse cases

security requirements using the ‘satisfies’ relation. The
decomposition process is continued until a stage is reached
where each misuse case at all levels is prevented or mitigated
using security use cases and finally corresponding security
requirements are derived. As an addition to the proposed
systematic framework, a ‘misuse sequence diagram’ is
introduced that will help to better explain a misuse case
scenario. Figure 4 represents a misuse sequence diagram, which
shows the sequence of message passing that takes place in a
misuse case scenario. It describes a misuse case initiated by a
mis-user where the mis-user blocks some of the data sent by one
of the objects. Object 1 sends data to Object 2 which in turn
sends it to Object 3. The Object 3 sends back the

acknowledgement to Object 1 through Object 2. The mis-user
object, represented by a shaded rectangle, blocks some of the
data from reaching the destination. Misuse sequence diagrams
can be helpful in deriving security requirements because they
help to better explain misuse cases.

4. APPLICATION EXAMPLES
This section is used to describe the application examples on
which the proposed systematic framework is implemented. It is
based on development of a simulated FACTS power system,
where a number of FACTS devices are incorporated into a
power grid network to act as a distributed, fault-tolerant, and
real-time constrained embedded control system.

777777

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

Figure 3: A detailed process for the hierarchical development and analysis of security requirements

Control of power networks is a tedious task because of its sheer
size. They are vulnerable to contingencies like line failure. A
combination of such contingencies may lead to a cascading power
failure. The family of “Flexible Alternating Current Transmission
System” (FACTS) devices shows promise for use as network-
embedded controllers [1, 2]. There is an ongoing research to
incorporate a number of FACTS devices into a power grid
network to act as a distributed, fault-tolerant, and real-time
constrained control system. The ‘Structured Object-Oriented
Security Requirements Process’ is implemented on the FACTS
power system to identify the misuse cases and mis-users that can
cause harm to the power system and finally derive security
requirements. The high-order object model for the target system
was previously developed as part of a research on object-oriented
co-analysis/co-design of the FACTS power system [8]. Figure 5

shows the context object diagram for the FACTS power system.
The context object diagram shows the interactions between the
high-order system object which in this target system is the
‘FACTS Power System.’ and external objects ‘Contingency’ and
‘Service Provider’. The context object diagram is then further
decomposed into a set of components and their relationships in the
following high-order object diagrams. The ‘FACTS Power
System’ system object is decomposed into its high-order objects
such as ‘Facts device’, ‘Placement’ and ‘Power transmission
system’ in Figure 6. Figure 7 represents the ‘Use case-Misuse
case’ diagram of the corresponding level of hierarchy respectively.
Once the use cases for each object namely ‘FACTS device’,
‘Placement’ and ‘Power transmission system’ are developed, we
obtain the security requirements also.

787878

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

Figure 4: Misuse Sequence Diagram

Figure 5: Context object diagram for Facts Power System

At the ‘FACTS Power System’ object level four significant
misuse cases are identified such as ‘Physical destruction of
FACTS device’, Physical destruction of power lines’, ‘Change
FACTS device settings’ and ‘Interpretation of exchanged
messages’. These misuse cases are initiated by the misusers
‘Contingency’ and ‘Intentional’. Based on the identified misuse
cases, counter-measures are derived which are represented as
security use cases in Figure 7. Finally security requirements are
developed from the security use cases. Figure 8 shows the top
level security requirements for the target system.

Figure 6: Decomposition of ‘Facts Power System’ object

Figure 7: Use case-Misuse case diagram for ‘Facts Power

System’ object

Figure 8: Security requirements for ‘Facts Power System’

object

797979

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

At the second level ‘UPFC Facts device’ object is decomposed
into following four sub objects, ‘DSP board’, ‘Embedded
computer’, ‘Interface board’ and ‘UPFC Power electronics’.
Figure 9 represents the high-order object model for ‘UPFC Facts
device object’. It shows the relationship between the four sub
objects.

Figure 9: Decomposition of ‘UPFC Facts Device’ object

The ‘UPFC Facts Device’ object has use cases, such as
‘Control_power_line’, Change_set_point’,‘Read _sensor_data’
and ‘Record_settings’. The misusers ‘Contingency’ and
‘Intentional’ initiates three misuse cases such as ‘change set point
of long term control’, ‘Change control point in dynamic control’,
‘Change sensor data in DSP board’ and ‘Modify Updated
Settings’. Counter-measures which are represented as security use
cases in Figure 10, are derived from the use cases.

Figure 10: Use case – Misuse case diagram for ‘UPFC Facts

Device’ object

Finally security requirements are developed from the security use
cases. Figure 11 shows the security requirements for the ‘Facts
UPFC Device’ object level. At the third level ‘Embedded
computer’ object is decomposed into ‘Dynamic control’ and
‘Long term control’ sub objects.

Figure 11: Security requirements for ‘UPFC Facts Device’
object

Figure 12 represents the high-order object model for the
‘Embedded computer’ object. The long term control takes sensor
data from a power grid, and when necessary it computes new
power flows and generations, and then it loads them to
compensate for contingencies (such as line outages) in the power
grid. The function of the dynamic control is to respond in the
short term to fluctuations in the power line attached to the FACTS
device, in addition to providing a smooth transition from the
current power settings to new set points generated by the long
term control. The decomposition also shows the connection of the
long term control to the simulation engine, a connection that
represents the sending of simulated sensor data to the long term
control. The decomposition also shows any changes in generation
settings sent from the long term control back to the simulation
engine to be applied to the simulation.

Figure 12: Decomposition of ‘Embedded computer’ object

One of the major use cases in ‘Embedded computer’ object is
‘compute_next_level_setpoint’. The mis-users ‘Contingency’ and

808080

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

‘Intentional’ initiates three misuse cases such as ‘Randomly lose
flow messages’, ‘Alter all flow messages’, Randomly invert
accept/reject messages’, and ‘Increase edge flow’. Based on the
identified misuse cases, counter-measures are derived which are
represented as security use cases in Figure 13. Finally, security
requirements are developed from the security use cases. Figure 14
shows the security requirements for the ‘Embedded computer’
object level.

Figure 13: Use case –Misuse case diagram for ‘Embedded

computer’ object

Figure 14: Security requirements for ‘Embedded computer’
object

The Figure 15 represents the misuse sequence diagram for the
‘Randomly Lose Flow Messages’ misuse case.

Figure 15: Misuse Sequence Diagram for ‘Randomly Lose

Flow Messages’ Misuse Case

5. CONCLUSION
Security requirements are of great importance these days as many
embedded systems are under threat. Although existing methods
have provided a useful guideline for security requirements
analysis, several important issues remain to be addressed
including integration of security requirements analysis methods
with conceptual models such as object models of system assets,
and analysis of both internal and external threats in a structured
manner. This paper successfully addresses these issues by
proposing a structured object-oriented security requirements
process in which security requirements for the entire system is
derived level by level in a structured manner. This methodology is
capable of analyzing security requirements by identifying threats
posed by both external and internal actors of a system. Object-
oriented nature of this methodology helps in identifying the assets
of a system which are basically the system objects. To test the
applicability, the proposed methodology is successfully
demonstrated and applied to a real time FACTS power system. As
a result misuse cases at three different levels of hierarchy could be
identified. Counter-measures for these misuse cases are identified
as security use cases. Finally security requirements are derived
based on the security use cases. Security requirements derived at
each level of hierarchy when grouped together represents the
security requirements specification for the entire system.
6. ACKNOWLEDGEMENTS
This work is supported in part by NSF MRI grant CNS-0420869
Thanks to Vishal Sadana for improving this paper.

7. REFERENCES
[1] Austin Armbruster, Mike Gosnell, Bruce McMillin, Mariesa
Crow. “Power Transmission Control Using Distributed Max
Flow.” Proceedings of the 29th IEEE Annual International
Computers Software and Applications Conference. Edinburgh,
U.K, June 2005.
[2] B. McMillin, M. L. Crow. “Fault Tolerance and Security for
Power Transmission System Configuration with FACTS
Devices,” Proceedings of the 32rd Annual North American Power
Symposium, vol. 1, Waterloo, Ontario, October 2000.
[3] Guttorm Sindre, Andreas L. Opdahl, “Eliciting Security
Requirements by Misuse Cases.” Proceedings of the 37th
International Conference on Technology of Object-oriented
languages and systems. Sydney, November 2000.
[4] Ian Alexander, “Misuse Cases: Use cases with Hostile Intent,”
Software IEEE. January 2003.
[5] John McDermott, Chris Fox, “Using Abuse Case Models for
security Requirements Analysis.” 15th Annual Computer Security
Applications Conference. Arizona. December 1999.
[6] John McDermott, “Abuse-Case-Based Assurance Arguments.”
17th Annual Computer Security Applications Conference. New
Orleans, December 2001.
[7] X. F. Liu, H. Lin, and L. Dong. “High-Order Object-Oriented
Modeling Technique for Structured Object-Oriented Analysis.”
International Journal of Computer and Information Science
(IJCIS), June 2001.
[8] M. Ryan, S. Markose, Y. Cheng, X. F. Liu, B. McMillin.
“Structure Object-Oriented Co-analysis/Co-design of
Hardware/Software for the FACTS Power System.” Proceedings
of the 29th IEEE Annual International Computers Software and
Applications Conference. Edinburgh, U.K, June 2005.

818181

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on October 7, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

