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ABSTRACT 
This study proposes an agent-based model where adaptively 
learning agents with local vision who are situated in the 
Prisoner’s Dilemma game change their strategy and location as 
well. Besides both the copying-highest-scoring strategy and the 
tie dissolution among defectors as the instrumental rationale, 
two other heuristics are considered: following-the-majority in 
the influence process; and the tie dissociation between 
cooperators and defectors in the selection process. Under the 
overall setting which is not favorable to cooperation, it turned 
out that cooperative culture is less likely to emerge and its 
transmission is more unstable when more agents stick to follow 
the trend on the fixed network. Given the same set of conditions 
but with the small amount of social plasticity, cooperative 
culture is much more likely to emerge and sustain on a 
hierarchical network where the average clustering coefficient is 
higher and the average path length is still similar compared to 
those of the equivalent random network when the small degree 
of freedom from defectors is allowed to defectors only; much 
higher and slightly longer, respectively, when cooperators also 
have that freedom.  
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1. INTRODUCTION 
There has been growing scholarly concern in institutions and 

institutional analysis across the social science disciplines over 
the past decades, but it seems that there are still divergent views 
on two interrelated issues: First, how to conceptualize 
institution? Is that institutional system or shared belief? Second, 
how to bridge the macro-micro gap in view of the structure-
agency duality?  

     One answer is the macro approach with a structural 
functionalistic flavor. This approach places institutions in the 
classical systems theory and attributes causal forces to reified 

structure independently from agent’s course of actions. It 
assumes the particular tendency at the global level such as 
differentiation and integration as the master trend of socio-
cultural evolution: differentiation of the society engenders the 
problem of cooperation or coordination among human agents, 
but regulatory norms function to hold it together. The system-
dynamics simulation has a strong affinity with this macro-
oriented evolutionary theorizing. In contrast, agent-based 
simulation modeling of evolutionary games on social dilemmas, 
although it has only rarely been the focus of attention among 
sociologists, has great potentials for inquiring into how 
institutions as shared beliefs or regularities of behavior emerge 
and maintain at the global level as the outcome of local 
interactions among heterogeneous agents with bounded, 
retrospective, and algorithmic rationality, without assuming a 
set of normative values as the system-level parameter. 

Agent’s adaptive learning, not to mention social interaction 
and economic exchange, proceeds in social networks, however. 
In this sense, spatiality has been a missing link in the analysis of 
the behavior-institution co-evolution [16]. Institutional structure 
(e.g., cooperation, coordination, solidarity) and relational 
structure (e.g., segregation, hierarchy, small-world networks, 
scale-free networks) have been studied under the distinctive 
categories: dynamics on networks (i.e., emergent order) and 
network dynamics (i.e., emergent structure), respectively [9]. 
Suffice to say here: it is hard to handle territoriality with the 
system dynamics approach in which random interaction is 
implicitly assumed; and local variables (e.g., clustering) cannot 
be distinguished from global ones (e.g., density). 

2. LITERATURE REVIEW 
Recent research on spatialized evolutionary Prisoner’s 

Dilemma game [1, 2, 6, 10, 11, 14, 17, 18] has rekindled the 
attention to the network embeddedness: social structure matters. 
Nevertheless, there seem to be still several drawbacks: some 
assume random matching at the global level; the space in most 
approaches is the lattice; most works focus more on dynamics 
on networks (i.e., strategy change on exogenous networks) 
while bypassing the question of where networks come from; 
some others deal with the selection process through voluntary 
participation, exit, or viscosity, but this is an indirect approach 
to network dynamics; and some others adopt stochastic 
modeling of network dynamics, but agents are hyper-rational. 
For instance, agents in the scale-free network model should be 
able to calculate the number of others’ links across the 
population, but human agents are neither statisticians nor 
mathematicians. It would be more reasonable to model how 
networks change as the outcome of local interaction among 
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actors when their vision is restricted by local information as 
common knowledge. 

Given this discussion, [6, 18] is the exemplary reference for 
my study since they conducted simulation experiments of the 
Prisoner’s Dilemma game on endogenous networks to explore 
the behavior-institution co-evolution. They found out that 
cooperators can coexist with defectors on a small-world network 
with the relatively high clustering coefficient, once those who 
choose to defect for the next round are allowed to break one of 
ties to one of neighbors who defected at the last round and then 
make a new friend in a random manner, given the influence rule 
by default that unsatisfied agents copy the highest-scoring 
strategy at the last round in their local neighborhood. They 
maintain that agents play the different roles on that network 
such as leaders (i.e., satisfied agents in the core), conformists 
(i.e., unsatisfied cooperators around leaders), and exploiters (i.e., 
defectors with larger payoff in the periphery). It should be 
added that they observed little change in the average path length 
and introduced another new parameter, the extent to which local 
selection of a new partner happens among the neighbors of the 
neighbors, to get the higher clustering coefficient than that of 
the equivalent random network. Suffice to stress here that some 
studies [8, 11] got the similar network which is conducive to the 
robustness of cooperation, but it looked like a scale-free 
network. 

As another substantial issue, instrumental rationality together 
with the material reward is predominant in existing studies 
including [6, 18], with limited attention to psychological one. 
However, agents might want to coordinate their choices with the 
dominant one when the payoff structure is not built-in them. 
Indeed, the Coordination game is another core model of social 
dilemma [7]. In this aspect, the generalized Tit-for-Tat in the N-
person Prisoner’s Dilemma game indicates another type of 
heuristic (i.e., following-the-majority): each actor calculates the 
fraction of its neighborhood that cooperated at the last round, if 
this fraction is greater than a cut-off point, cooperate, and 
otherwise, defect [14]. Also, people might want to change their 
location for affectual reasons, as is implied in Schelling’s model 
of residential segregation [12]. Collins puts forward the theory 
of interaction ritual market to contend that the common 
denominator for social interaction is emotional energy, not 
material reward [3-5]. Only defector-defector ties can be 
severed in [6, 18] because there is no material incentive for 
them to keep the relationship while cooperator-cooperator ties 
are reinforced and the net force in cooperator-defector ties is 
balanced. However, cooperators are likely to decrease 
heterophilous ties (i.e., to increase homophilous links indirectly 
through breaking ties to defectors) and more likely to do when 
they do not have clear ideas of the external material reward.  

3. THE MODEL 

3.1 Algorithms 
N of cooperators and defectors are distributed at a certain 

ratio on a random network. Agents embedded differently in their 
local neighbors are supposed to gain differential economic 
capital (i.e., flow) per round based on the classical payoff matrix 
where 1 for Reward for Mutual Cooperation, α for Temptation 
to Defect, and 0 for both Sucker’s Payoff and Punishment for 
Mutual Defection. Given that the level of relative deprivation is 

1, if an ego’s economic capital is less than the local maximum, 
she feels unsatisfied; otherwise, satisfied. Satisfied agents 
change neither their strategy nor their location. Synchronously, 
unsatisfied agents change their strategy first, and then their 
location. 

Unsatisfied agents copy the strategy of the local neighbor of 
the greatest wealth (i.e., stock, not flow) or follow the strategy 
which was in the majority at the last round. When more than 
two neighbors happen to have the same maximum, one of them 
is randomly selected. Similarly, one strategy is randomly chosen 
if the local strategy distribution is bimodal. Which one between 
copying-the-highest and following-the-trend depends on what 
random integer number is generated. For example, if the percent 
of following-the-majority is 0 (or 100), always highest-copying 
(or majority-following). Given it is 10, if the random number is 
less than 10, majority-following; otherwise, highest-copying. 
Because the random number generator is based on the uniform 
distribution, the chance is that 10% of those who feel unsatisfied 
follow the trend while 90% copy the highest in the long run.  

At a certain level of social plasticity [6, 18] (i.e., the degree 
of social mobility), rewiring is manipulated if it is above 0; 
otherwise, the influence procedure only. If it is 100, unsatisfied 
agents modify their strategy first, and then always change their 
location. In the same way above, when the level of plasticity is 
set as 10, if the random number is less than 10, unsatisfied ones 
change their strategy and then their location; otherwise, their 
strategy only. It should be added here: isolates may be generated 
in the middle of location change. Since either of influence 
processes cannot be applicable for those who do not have the 
local neighborhood, they always feel unsatisfied, but they keep 
their strategy at the last round for the next round. The same 
principle of plasticity is applied to their location change, 
however. 

If the tie dissociation from defectors is allowed to cooperators 
as well as defectors, whether unsatisfied agents choose 
cooperation or defection for the next round, both can refuse the 
interaction with, if any, one of local neighbors that defected at 
the last round; otherwise, only one who will choose defection 
can break one of ties to, if any, one of defectors. It should be 
addressed that agents remember who was who at the last round 
in their local, but they do not have any ideas about who outside 
their neighborhood will be who at the next round. They make a 
new link to them randomly given this local vision. This 
assumption of no preference is reasonably applicable to the tie 
formation whether agents are isolates or not. Right after both the 
procedures of influence and selection, all of information is 
updated at the end of each round. 

3.2 Key Assumptions 
My current model shares most assumptions with [6, 18]: I 

will be able to include stochastic elements in the near future, for 
examples, by making the probability of strategy change 
proportional to the difference between an ego’s score and the 
local maximum and/or the probability of tie dissolution differ 
from one to another person depending on the duration of 
friendship or the strength of ties; any targeted agent, regardless 
of her preference, always accepts a new partner. The issue of 
whether undirected ties between two actors can be broken 
unilaterally could be circumvented through considering the 
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direction of attraction and repulsion indirectly, though; why and 
under what conditions agents do not rely on the instrumental 
rationale: affectual (e.g., they want as many homophilous ties as 
possible for emotional stability) or herd-like (e.g., when the 
payoff structure is not recognizable, agents might regard the on-
going game as an N-person coordination game)? Also, which 
heuristic is manipulated depends on what random number is 
generated, not on different types of algorithmic responses to 
different environments in which agents are embedded; my 
model is not about growing network; no cost for either strategy 
change or location change in a strict sense. The parameter of 
social plasticity takes such cost into account indirectly since it 
indicates the rate at which the network structure evolves, as 
compared to the timescale of strategy change; and synchronous 
updating is employed to test the findings in [6, 18]. 

4. METHODS 
I took advantages of NetLogo 4.0 [15]. Given the 

experimental design (see Table 1), 100 runs for each setting, 
which amounted to 700 runs in total. In comparison to [6], the 
initial setting is not that favorable to cooperation: the population 
size (50 instead of 10,000); α as the defection award (0.8 instead 
of 0.2 through 0.8); and the proportion of cooperators (0.5 
instead of 0.6). Indeed, it is reported that when α is 0.6 and the 
level of plasticity is 1%, only 6% get trapped in all-defector 
networks for N=10,000, while 80% get trapped for N=1,000 [6], 
which means that the smaller population, the higher chance of 
all-defector network. The initial density (mean: 0.151; standard 
deviation: 0.00608), the initial average degree (mean: 7.391; 
standard deviation: 0.298), and the level of relative deprivation 
(1.0) were controlled. 
 

Table 1. Summary of Experimental Design 

ID Copy-
highest 

Follow-
majority 

DD 
broken? 

CD 
broken? Plasticity 

1 100 0 N/A N/A 0 

2 90 10 N/A N/A 0 

3 80 20 N/A N/A 0 

4 100 0 Yes No 10 

5 100 0 Yes No 20 

6 100 0 Yes Yes 10 

7 100 0 Yes Yes 20 

 
5. PRELIMINARY FINDINGS 

5.1 Institutional Order: 1 through 3 
I found out that the more following-the-trend the less chance 

that cooperative culture survives. The association between the 
two was significant in the χ2 test (Type I Error=0.02), but the 
mean difference of the proportion of cooperators (Fig.1a) and 
the number of rounds needed for an equilibrium where 
cooperators and defectors coexist or it ends up with all-defector 
networks (Fig.1b) across the different level of following-the-

trend is not significant at the alpha level of 0.05 according to the 
ANOVA test because of the big within-variance. 
 

 

 
Figure 1: a) Proportion of cooperators. b) Number of rounds 
needed for an equilibrium 

 

5.2 Institutional Order and Social Structure: 
4 through 7 

Whether cooperation as shared belief sustains or not was 
independent with the level of social plasticity according to the 
χ2 test at the alpha level of 0.05. Given two factors, social 
plasticity and the type of rationale for location change, the 2-
way ANOVA test at the same alpha level indicates that the 
proportion of cooperators (Fig. 2a) increases and their culture 
diffuses faster (Fig. 2b) significantly when cooperators also 
have the small degree of freedom from defectors. It is not the 
case when defectors alone have that freedom. 
 

 

 
Figure 2: a) Proportion of cooperators. b) Number of rounds 
needed for an equilibrium. For both, left bars at each level 
of plasticity for the dissolution of CD-link as well as DD-link 
whereas right bars for the dissolution of DD-link only. 

Once cooperators also can exit from defectors in their 
neighborhood, a network evolves with the significantly higher 
clustering coefficient (Fig. 3c) and the slightly longer path 
length (Fig. 3d) compared to both those when defectors alone 
can exit from defectors (Fig. 3a and 3c) and those when t=0 (i.e., 

a) 

b) 

a) 

b) 
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the equivalent random network), without the help of additional 
parameter in [6, 18]. Together with the above result (Fig. 2), it is 
confirmed here that cooperative culture is more robust on the 
highly clustered network (Fig. 3a and 3c), but it is hasty to tell 
the path length effect (Fig. 3b and 3d). The overall result calls 
into question whether small-world networks are conducive to 
prosocial norms because the higher clustering less vulnerability 
of cooperation whereas the shorter path length the more 
effectively defection-prone culture traverses across the network. 
Also, hierarchical structure does not look like a small-world 
network given that the average path length does not change or 
becomes longer, not shorter. It might be a scale-free network, as 
is contended in [8, 11]. However, an in-depth analysis should be 
done of whether the overall regression residual of the log-log 
plot of degree distribution is small enough and how much that 
network is hierarchical through the blockmodeling technique. 

 

 

 

 

 
Figure 3: a) Average clustering coefficient. b) Average path 
length. Both from Exp 4 and 5. c) Average clustering 
coefficient. d) Average path length. Both from Exp 6 and 7. 
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