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On the Plastic Deformation of a 
Tube During Bending 
The objective of  this study is to develop an analytical approach to calculate the 
relationship between the axial curvature of  a bent tube and the resulting deformation 
of  the cross-section. The model accounts for both geometrical and material nonlinear- 
ities. An approximate expression in trigonometric form is introduced for the displace- 
ment field, which reflects the change of  wall thickness and neutral axis shift during 
bending. The total deformation theory is employed as a constitutive relation. The 
solution is found using a minimization approach and the energy principle. A better 
approach for springback prediction might be obtained from the deformation model 
which predicts a more accurate moment of inertia change during bending. 

Introduction 

The ultiimate goal of this study is to improve the precision 
of the real-time control for a tube bending system by predicting 
a more accurate springback angle. Tube bending is frequently 
required in many manufacturing industries. One disadvantage 
of the rotary-draw bending process is that a tube will spring 
back after it is unloaded due to the elastic property of the 
material. To achieve a desired bend angle, the tube must be 
overbent to compensate for the springback. 

Traditionally springback compensation is accomplished using 
the operator's skill and experience. Several test bends are re- 
quired before a correct springback compensation can be found. 
As a result, tube bending becomes a trial-and-error process. 

On a rotary-draw bending machine, the springback of a tube 
has two sources: one is the spring back of the plastically curved 
part of the tube; the other is the spring back due to the elastic 
deformation in the pressure die area. The total springback is 
the sum of these two. In this paper, the former is studied. 

The springback of the curved tube, Os, can be found by integ- 
rating the moment, M, along the arclength of the tube: 

f o M ( l )  dl (1) O~= E1 

During bending the cross-section of the tube will be distorted 
from a circle into an ellipse (ovalization), accompanied by the 
thickening and thinning of the wall thicknesses of the tube on 
the intrados and extrados, which are the inner surface contacting 
the die and the free outer surface. With the redistribution of the 
material, the centroid of the section moves toward the bend die, 
and the neutral axis moves along with it. Figure 1 shows the 
distortion of different cross-sections along the axis of a bent 
tube: the ovalization is zero at the two ends and reaches its 
maximum at the center of the bending area (~ = 0°). The 
ovalization and thickness are exaggerated for clarity. As a result 
of the distortion, the moment of inertia will no longer be con- 
stant along the axis of the tube, but will be a function of the 
deformation which depends on the material properties, tube 
geometric parameters and bending parameters. 

In previous springback predictions (Wang and Stelson, 
1991), the moment of inertia of the tube after bending, I, is 
assumed to be 70 percent of the original moment of inertia, Io, 
which is !in agreement with the empirical result of Lukyanov 
and Zubkov (1968): 
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I = 0.7/0 (2) 

• This rule-of-thumb is rough at best. 
The objective of this paper is to find a relationship between 

the given axial curvature of a tube and the deformation of the 
cross-section of the tube during bending, from which a more 
accurate estimate of the moment of inertia can be obtained. 

Process Description of  Tube Bending 

Rotary-draw bending machines are widely used for tube 
bending since they are versatile and generally more accurate 
than other kinds of bending machines. The tooling for rotary- 
draw bending is shown in Fig. 2. During bending, the clamp 
die holds the tube tightly against the bend die at the leading 
end of the tube. The bend die and clamp die rotate simultane- 
ously while the pressure die moves together with the tube to 
provide a constraint and to reduce the friction between the 
surfaces of the tube and the pressure die. In this way the tube 
is forced to conform to the curvature of the surface of the bend 
die, which is circular. 

When the bending moment is released, the material will tend 
to return to its original shape due to the elastic property of the 
material. This phenomena is called spfingback, and will create 
a slight increase in the radius of curvature of the bent tube and 
a reduction in the bend angle. Springback must be compensated 
for by overbending if an accurate bend angle is to be achieved. 

Deformation Model of a Tube After Bending. The bend- 
ing process of a tube can be simulated by the following mechan- 
ical model shown in Fig. 3: A tube is built-in to a circular 
foundation (the bend die) at its leading end and a bending 
moment, M, is exerted at its trailing end, which bends the tube 
gradually into contact with the bend die. 

In the free body diagram of the tube, a bending moment, M, 
and concentrated loads, Ny and Nz, are exerted at one end and 
a bending moment, M',  and concentrated loads, Nr and N~ are 
exerted at the other end. A distributed contact force, q, is exerted 
on the intrados of the tube. 

Previous Work. In the early part of this century, Bantlin 
(1910) found experimentally that a curved tube is much more 
flexible in bending than a straight tube of the same cross-section. 
Von Karman (1911 ) gave a theoretical explanation of this phe- 
nomenon. Since then, many studies have been conducted on the 
deformation of a tube after bending or related problems. Most 
of the studies focused on elastic deformation. 

Von Karman studied the elastic deformation of a tube with 
a uniform wall thickness due to in-plane bending. The study 
shows that for a curved tube there is a tendency for the cross- 
section to flatten because of the continual change of the direction 
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Fig. 1 The deformations at different cross-sections 

of the stresses which are parallel to the center line of the tube 
and which balance the applied moment .  The analysis is based 
on an application of the principle of  min imum potential  energy 
of the theory of elasticity in Rayleigh-Ritz fashion. 

Brazier (1927)  studied the ovalization of  an infinitely long 
tube with a uniform wall thickness subjected to elastic pure 
bending.  The solution of St. Venan t ' s  beam theory, which 
doesn ' t  consider the distortion of  the cross-section, plus an addi- 
tional displacement  was taken as an approximation of the true 
displacement  when the effect of ovalization is taken into consid- 
eration. The additional displacements are determined by the 
condition that the strain energy of the tube will pass through a 
minimum. An approximate displacement  field is assumed and 
the strain energy and its associated Euler equations are found. 

Seddeik and Kennedy (1987)  investigated the relation be- 
tween the radius of  a bend and the distortions of  square hollow 
structural section members  in the cold, pyramid rol l-bending 
process. The variational principle of  the total potential  energy 
is adopted to predict this relationship. Quadratic terms are intro- 
duced in the strain-displacement relation to account  for geomet- 
ric nonlinearities. The total deformation theory is used as a 
constitutive relation. Zhang and Yu (1987)  investigated the 
elastic-plastic cross-section deformation of  an infinitely long 
tube in pure bending.  The analysis is based on the energy princi- 
ple. The variation of  wall thickness is neglected. Since the tube 
is sufficiently long, the kinematic  boundary condition does not 
enter the analysis. The to ta l  deformation theory is used as a 
constitutive relation. 

Tube in h e r  / ~ - Mandrel 

-1 Ifi,,, 
4 '-----J 

Fig, 2 Tooling of a bending machine 

In the literature, no analysis considers a finite length tube 
and the variation of wall thickness. These effects become sig- 
nificant as the severity of bending increases. Since in manufac-  
turing the above situation is frequently encountered,  it is neces- 
sary to build a model to predict the deformation in this situation. 

Coordinate System. The coordinate system used in the 
analysis is shown in Fig. 4, in which hal f  of  a tube that has 
been bent  into a 180 deg. angle is shown. The cross-section of  

//%N~j~N~ M I q M i 

-- L~m 

Fig. 3 Mechanical model and the free body diagram of a tube in bending 

N o m e n c l a t u r e  

A = area of  the cross-section of s = circumferential  axis of  the e = 
a tube tube ~o = 

Dmax, Dry, = lengths of the major  and S = moment  of area of  the cross- 
minor  axes of  the deformed section of  a tube Kz = 
tube cross section t = local coordinate along the h = 

E = Young ' s  modulus thickness of  the wall 
Io, I = moment  of inertia of the T = tube wall thickness u = 

cross-section before and x, y, z = Cartesian coordinates 17 = 
after bending u, v, w = components  of  the displace- 0 = 

l = axial arclength of  the tube ment  field 
M = bending moment  U = strain energy 0s = 
N = axial load W = work done by extemal  forces p, = 
n = exponential  coefficient of  ot = dimensionless  change of ma- 

the assumed axial curvature jor  axis: ot -- (Dmax - Do)/ ' Pz 
q = contact force distribution Do* 100 percent 

between surfaces of  the /3 = dimensionless  change of mi- ors, ~rz, c r r= 
tube and bending die nor  axis : /3  = (Do - Drain)/ o" - - - -  

r = distance between the tube Do* 100 percent f~ = 
origin and a point  on the 6 = dimensionless  change of  wall ¢ = 
cross-section thickness 

R, D = radius and diameter  of  the e,, ez, er = strain components  ~0b = 
tube e o, e z = strain components  on the mid- ( ,  4, ~7 = 

Re = radius of  curvature of  the die surface 
tube centerl ine 

Rd = radius of  curvature of  the 
bending die 

effective strain 
angular increment  (see Fig. 
4)  
axial curvature of the tube 
exponential  coefficient of 
the displacement  
P o i s s o n ' s  ratio 
total potential  energy 
circumferential  angular co- 
ordinate 
spring back angle 
circumferential  radius of  
curvature of  the tube 
axial radius of  curvature of  
the tube 
stress components  
effective stress 
ovalization 
angular coordinate along the 
tube 
half  of  the bending angle 
coefficients of  the displace- 
ment  field 
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Fig. 4 Coordinate system 

the tube is described by the Cartesian coordinates, x(s),  y(s) ,  
where s iLs the circumferential arc length measured along the 
undefornled middle surface as shown in Fig. 5 and the coordi- 
nates, x, y and z, form a right-hand coordinate system. The 
middle surface is a cylinder which is located at the midpoint 
of the undeformed wall thickness. The origin of the t-axis, 
through which the wall thickness is measured, is located at the 
undeformed middle surface and the orientation of t is normal 
to the middle surface. The cross-section can also be described 
by a polar system (p, 0) which has its origin at o. 1 is the tube 
neutral axis which passes through point o, the origin of the 
x ( s ) ,  y ( s )  coordinates. The axis of the bend die is normal to 
the x-z plane and passes through point o~. 

The center of the undeformed tube cross-section is located 
at point o and the distance between o and a point on the de- 
formed nfiddle surface is represented by r. ~p is the increase in 
the angle between the tangent line which passes through point 
o '  and the x axis due to cross-section distortion. This angle is 
zero when there is no cross-section distortion. The angle ~0, 
which measures the bending angle is measured from the center 
of the bending region. 

The major assumptions used in the study are as follows: 

• The plane which is perpendicular to the axis of the tube 
remains so after deformation; 

• The material of the tube is incompressible and the elastic 
str~dns are neglected in the analysis. The effective stress 
and effective strain are related by a rigid, linear strain 
hardening material model; 

• The deformation is symmetric with respect to both the x- 
z plane and the plane normal to x located at ~0 = 0; 

• The local unloading in the tube wall during bending is 
neglected and Ilyushin's simple loading theorem is satis- 
fiecl; 

• The friction forces between tooling and tube, and elonga- 
tion of the neutral axis of the tube during bending are 
neglected. 

Under the above assumptions, the physical model can be simpli- 
fied further when the principle of minimum potential energy is 
used in the analysis. Since dies are regarded as rigid bodies and 

there isn't any displacement along the direction of the distrib- 
uted contact force, q, the work done by q is zero. Under the 
above assumption, the axial force, N, makes no contribution to 
the external work, W. As a result the displacement will be 
restricted to the plane that is perpendicular to the axis of the 
tube, i.e., the x-y plane. 

On the other hand, although the contact force, q, and concen- 
trated loads, Nx, Ny, will not appear in the expression for the 
external work, their contributions to the deformation are taken 
into consideration by prescribing a nonconstant axial curvature. 
This makes the problem different from a pure bending problem, 
in which the axial curvature is a constant along its axis. 

Displacement Field. Based on the observation of experi- 
mental specimens, it is further assumed that the displacement 
has only a radial component, w is a function of three parameters, 
0, ~O and t, which indicate the location that the displacement, 
w, represents. 

Based on the observations of the experiment samples (refer 
to Fig. 5), the following function is chosen to approximate the 
pattern of the displacement: 

w(O, ~O, t) = R~' cos 20 + R 4' sin 30 - t77' sin 0 

- T / 2 < t < T / 2 ,  0 < q / < ~ b b ,  0-~0--<27r  (3) 

It is found that the above function can well represent the 
deformation of the cross-section if the three coefficients, ( '  4 '  
and 77', are properly chosen. Along the axis of the tube, it is 
prescribed that the axial curvature, K~, varies proportionally to 
the term (cos n ~b): 

Kz = 1/pz = cos"(Tr~b/2~bb)/Rd (4) 

where the coefficient n is obtained from the experiment speci- 
mens. It is found that when n = 0.7, Eq. (4) can best reflect 
the change of the axial curvature of the tube after bending. 
When n = 0, the displacement field degenerates into the pure 
bending case. 

The coefficients of the displacement function, ~', 4'  and rl', 
are assumed to vary proportionally to the term (cos"~b) also, 
or: 

~' = ~ cosn (~'~/2~b) 

4' = 4 cos" (Tr~0/2~b0) 

rl' = ~7 cos" (Tr~b/2~bb) (5) 

Thus, the assumed displacement function becomes: 

w(O, t~, t) = R~ cos" (Tr~b/2~bb) cos 20 

+ R 4 cos n (Tr~b/2~bb) sin 30 - t77 cos" (Tr~b/2~bo) sin 0 (6) 
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Fig. 5 Cross-section deformation pattern 
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where the constants, ~, ~ and 77, will be determined by the 
principle of  minimum potential work. 

In the assumed displacement function (3) ,  the contribution 
of  each term can be shown clearly in the polar system (p, 0). 
A point located at (p, 0) on a cross-section moves t o ( p  + w ,  
0) after deformation. The term (R~'  cos 20) will change the 
cross-section from a circle into an ellipse which is symmetric 
to both x and y axis. After superposition of the term (R~ '  sin 
30), a nonsymmetfic cross-section with respect to y axis is 
formed. The term (r/ ' t  sin 0) will give a wall thickness thicker 
at the intrados and thinner at the extrados and the negative sign 
comes from the defined orientation of w, which is the opposite 
of that of  the t axis. At the two edges of the bending area where 
~t : .~_l~b , we have: 

COSn (Tr~b/2~bb) = 0 or ~ '  = ~ '  = ~7' = 0 and Kz = 0 

while at the middle of that bending area where ~ = 0°: 

COS"(TrO/Z~pb)= 1 or ~ = ~ ' , ~ =  ~ ' , 7 7 = r / '  

and Kz = (1/Rd) 
which agrees with what is observed in experiments. Thus, the 
pattern of  the displacement field chosen is expected to agree 
with what is found in the experiment while the magnitude of the 
displacement will be determined by the principle of minimum 
potential work. 

From Eqs. (3, 4) ,  the distance between the center of  unde- 
formed cross-section, o and a point at deformed middle surface, 
o '  (where t = 0) is: 

r(O, ~b) = R[1 + ~ cos" (Trl~/2~bb) COS 20 

+ ~ cos" (Trq//2Ob) sin 30] (7) 

This distance is R before the tube is bent. 

G e o m e t r i c  R e l a t i o n s  a n d  S t r a i n  Field. As shown in Fig. 
5, consider a small segment of  tube with a length of  dz, along 
which the ovalization can be regarded as uniform. On the middle 
surface, the relation between a small segment of  circumferential 
arc length, ds, and its projections on x and y axis, dx and dy, 
leads to the geometric relation: 

dx 
- -  = (1 + e~ ° )cos (~p  + 0) ds 

dy= (1 + e ° ) s in (qo  + 0) (8) 
ds 

where e ° is the circumferential strain on the middle surface. 
After bending the circumferential radius of  curvature, Ps, of 

the middle surface can be found through a differential geometry 
formula: 

p, = [ (dy]2+ ( ± 7 1 ~ " /  
\d-s, \ds ,  J / [ (dZY~(d~)\~s 2, 

\ ds2 ] ] (9) 

This circumferential radius of curvature was R before 
bending. 

From (8) and (9) ,  we have: 

p , =  (1 + e , ° ) / ( d ~ s ~ +  d ~ )  I (10) 

I [ 2Cdr  _ ",11 = (1 + e~ °) r z + \dO/ rdO2J (11) 

On the other hand, in the polar system (p, 0) the circumferen- 

deformed 
middle surfsca 

Fig. 6 Middle surface before and after deformation 

tial radius of  curvature on middle surface, p,, can be expressed 
a s :  

[ /dr\2-13'2 / f  2 (dr~2_rd2rql  
P'= ] / L  r2+ \a t /  ao2j I (12) 

Physically the term (d qo/ds) is the change of radius of  curva- 
ture on the middle surface after deformation. 

From the above relations, the strain field can be determined: 

e z =  [x + t s i n ( 0  + qo)]/pz = e~ + tsin(O + qo)/pz (13) 

where e, ° is the axial strain on the middle surface. The term sin 
(0 + ~o) can be found through the relation of  a Circumferential 
arc length at the middle surface before and after bending as 
shown in Fig. 6: 

sin (0 + ~o) = sin 0 cos ~o + cos 0 sin ~o 

= ( r  sin 0 + r~ cos O)/(r 2 + r~Z) u2 
The circumferential strain can be determined as follows (Fig. 

7) .  On a cross-section consider an undeformed circumferential 
fiber with a length dl located at (0, t):  

dl= (d~+t )dO= (1 + dO~dSds] (14) 

After deformation the fiber length becomes dl*: 

dl* = (1 + e,°)ds(1 + f ) (15) 

where p, is the circumferential radius of  curvature of the tube. 
The circumferential strain can be found from Eq. (14) and Eq. 
(15):  

es ( o, t ) dl * - d l - e~ + t d~sO ) / (1 + d~sO ) 

_ t ( td ') 
R + t  \e~°+ ds/  (16) 

If  we consider the bending component of  es only, there will be 
no elongation along the circumferential direction on the middle 
surface of the tube, or: 

es ° = 0 

S t r e s s  Field. From the total deformation theory the rela- 
tions between the strain and stress fields are: 

2 ~  
S U = ~ ~ eij 

1 - 2u 
Ekk - -  O'kk (17)  E 
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ds/d0 ~ d l  
p$ 

/ 

Fi!~l. 7 Circumferential arc before and after bending 

where t7 U, eq are deviatoric stress and strain tensors: 

1 
Sij = ~ i j  - -  "30"kk(~ij 

1 
e 0 = e 0 - geu6o (18) 

and g and ~ are effective stress and strain, respectively. The 
effective strain is found through the Prantl's theory: 

2 2 2 2 (19) E = g[es + £z + £r -- e,ez -- eres - -  ezer] 112 

The material behavior is described by rigid linear work hard- 
ening: 

e = a0 + ~1~ (20) 

where ao and at are the material yield stress and strain harden- 
ing coefficient, respectively• The tension and compression tests 
show that the tubes have different flow stress behavior in tension 
and compression. This effect is included in the model. 

From Eqs. ( 1 8 ) -  (20), the stress tensor can be expressed as: 

2 ~  2 ~  1 E 
= - c  o . . . .  + - - - - e k k 6  U (21) 

~0 -3"~ -9 r eaa,j 3 1 - 2u 

Assuming that the shear stresses are negligible, and that the 
elastic part of the strains is negligible (no volume change after 
deformation ) : 

e~ + ez + e , ~  0 (22) 

Substituting Eq. (22) into (21) gives: 

2 a0 + a~g 
O ' z -  - -  £z 

3 

2 ~o + a l e  
O's --  - -  £s 

3 -e 

2 ao + ~lr  
O" r --  _ _  ( - - e z  - -  es ) 

3 

= 24(e~ + e~ 2 + eze,)13 (23) 

Potential Energy. By definition the total potential energy, 
17, is the difference between the strain energy in the tube, U, 
and the work done by the external forces, W. 

• 1II = U -  W (24) 

The strain energy can be found by an integration over the 
volume of the deformed body: 

U = 4 ~ azdez + 
l T/2 

f o  ~ o ' r d ~ r )  + &bdsdt (25)  

where the integration is performed on a quarter of the volume 
due to the symmetry of the problem• The limits, S1 and $2, 
indicate the intrados and extrados of the tube. 

The  only external force which does work to the system is the 
bending moment, M. The external work done by the moment 
is: 

W = 2Mq, b (26) 

Thus, the total potential energy is found to be: 

f0~ f $ 2  f ~ [ 2  ( f ~ z  f ~ s  f l r  r ) H = 4 azdez + ty~de~ + O" dc~r 
s I TI2 

[ d 2 r \ 2  
× r2 + d dsd,- (27) 

Boundary Conditions. The boundary conditions for dis- 
placement have been implied by the prescription of the axial 
curvature of the tube: 

Kz = l / p z  = l /Rd  q, = 0 ° 

~' = ~' =~7' = 0  ~b = ~bo (28) 

The static boundary conditions insure that the external bending 
moments equal the internal moment at the two ends of the 
bending region: 

Mo=M, 

Since a rigid linear work hardening model is used the internal 
moment will be: 

Mi = t7oS = tTo f xdA (29) 
,/A 

C o m p a r i s o n  o f  N u m e r i c a l  and  E x p e r i m e n t a l  Resul ts  

Numerical Solution. The numerical solution is found 
through a minimization approach. The problem is a nonlinear 
programming problem subject to a set of constraints. A polyhe- 
dron search algorithm with a flexible tolerance method is used 
to solve the problem (Himmelblau, 1972). To increase the effi- 
ciency of the approach, the algorithm improves the value of the 
objective function by using the information provided by the 
points which do not satisfy the constraints during the search 

90  Q 

i ~  • eP - Ro 
• " . * R • - • • • 

ls0ol : [ ;  . . . .  ::  : l  o- 
, .  2 "  " ¢ , ~  

• • ÷. -¢ " .  
, .  , .  . .  • ¢ 

2101 . " ,  .*.* * .  • • * * *.*. , '* 330 ° 

270 ° 

Fig. 80va l iza t ion  at the center of the bending region 
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Fig. 9 The position of a tube on the bend die 

process. The algorithm also ensures that the constraints are 
satisfied when the solution is reached. 

The numerical calculation is made on an example of alumi- 
num tube. The geometrical parameters are: 

D o = 2 5 . 4 0 m m  D~ = 19.56mm 
T = 2.92 mm Ra = 50.80 mm 

Three coefficients in the displacement function are obtained 
through a minimization. The values of the coefficients for the 
given radius of the bend die are: 

~ 0.081 rl = 0.112 ~ = 0.0031 

In the calculation, 10 elements are taken along the axis of the 
tube. In each element the axial curvature is taken as a constant, 
which equals the curvature at its center. The deformation of the 
cross-sections on two sides of each element are evaluated. Half 
of the elements are actually used in the numerical computation 
due to the symmetry of the problem. 

After the displacement field is found, the ovalization on dif- 
ferent cross-sections and the changes of the wall thicknesses of 
the tube at different cross-sections and different circumferential 
positions are calculated and summarized in Fig. 8, Fig. 11 and 
Fig. 12. In Fig. 8, the dotted lines represent the inner and outer 
surfaces of the tube before bending; the crossed lines represent 
the inner and outer surface of the tube after bending. 

The results are checked by evaluating the potential energy in 
the neighborhood of the minimum. It is found that there is no 
other minimum inside the neighborhood which represents a 
reasonable displacement field. 

In the present analysis all integrations were performed on the 
undeformed configuration, instead of the deformed configura- 
tion as it should be. The same approximation was also used by 
Seddeik and Kennedy (1987) and Zhang and Yu (1987) since 
much less computation is required. On the other hand, this will 
unavoidably introduce some error into the numerical results. 

After the displacement field is obtained, the moment of inertia 
of the cross-section with respect to y axis can be found through 
an area integration: 

l (y)  = fA [R + w(~,  t9, t) sin O]2dA (30) 

where w($, ~, t) is the displacement determined by the minimi- 
zation. 
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Fig. 11 Ovalization on different cross-sections 

Experimental Results. The bending tests were performed 
on a rotary draw tube bender (Teledyne Pines Co.). An angular 
encoder was attached to the axis of the bending die to monitor 
the bending angle. The machine was operated manually while 
the bending angle can be read out from the screen of a computer 
which collected data from the encoder. The sample tube had 
the same geometry as that used in the numerical analysis. The 
tube was bent into a 60 deg. angle. The bend die has a circular 
shape with a radius of 50.8 mm (2 in). 

Before bending the surface of a tube is clearly marked with 
an orthogonal grid pattern consisting of rings spaced every 5.08 
mm (0.2 in.) along the axis and axial lines spaced every 30 
deg. around the circumference. The radius of curvature along 
the axis of the tube can be approximately found from the follow- 
ing measurements (Fig. 9): 

dg ~ 2  ( ~ 2  -- c-d2) 1 - -  
p ~ = o o ' =  cd~ - - ~ e f  (31) 

where the length of the segments ab, cd, bd, dg and ef  can 
be measured directly. 

From the measurements, the variation of the wall thickness 
and the ovalization can be calculated. The variation of the axial 
curvature is shown in Fig. 10 in which experimental data are 
compared with their theoretical approximation, which is used 
in theoretical analysis: 

Kz = l/pc = COS" (Tr~b/2~b)/Ra 

Comparison of Numerical and Experimental Results. A 
comparison of analytical and experimental results were made 
using the following quantities: 

(i) ovalization: f~ = (Dm~x - D~,)/Do* 100%; 
( ii) dimensionless change of wall thickness: ~ = ( t - T) /  

T* 100% 
(iii) moment of inertia: I = l (y)  

where Dry,x, D~n are the major and minor axes of the deformed 
tube respectively; Do is the original outside diameter; T and t 
are the original and deformed wall thicknesses. Figure 11 and 
Fig. 12 summarize the results of the comparisons. 

After the three constants, ~, ~7 and 4, in the expression for 
the displacement function are determined, the moment inertia 
of the cross-section with respect to the y axis at the middle of 
the bending region can be calculated using Eq. (4): 
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Fig. 12 Comparison of dimensionless change of wall thickness 
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Io = 0.0321 in 4 le = 0.0288 in 4 Ic = 0.0278 in 4 

(Io - l e ) / l o  = 0.1028 (Io -- I~) / Io  = 0.1340 

(le -- l~ ) / l e  = 0.0347 

where Io is the moment of inertia of the original cross-section 
and le, Ic are the moments of inertia of the deformed cross- 
sections fi:om experiment and computation, respectively. 

Discussion on the Comparison. The theoretical results 
give displacement fields which are almost symmetric to both x 
and y axes as a result of the underprediction of the parameter, 
4, in the displacement function, The over simplification of the 
interaction between tube and bend die may be responsible for 
the undeq~rediction. For ovalization, the theory gives an under- 
prediction of about 25 percent at the center of the bend. For 
the change of the wall thickness, the theory also gives a 25 
percent underprediction. 

Although 25 percent differences on average are found in the 
ovalization at the center and the change of wall thickness, only 
about a 2 percent difference is found in the moment of inertia 
in spite of the fact that the moment of inertia depends on the 
fourth power of the cross-section dimensions. 

In the present analysis, the deformation is calculated from 
the given axial curvature of the deformed tube and the actual 
axial curvature is approximated by Eq. (4). Figure 10 shows 
that the p:redicted axial curvature is always smaller than that of 
the experimental data. As a result, the deformation predicted 
by the approximated axial curvature will be smaller than the 
actual deformation. 

Another possible source of error is the assumption of (5). 
Although the function 

K~ = l l p z  = COS °'7 (Tr~/12q/b)/Rd 

Can approximate the change of the axial curvature well, it is 
not necessarily true that the parameter ~, ~ and 77, will change 
along the axial direction in the same way. In the present theory, 
the purpc,se of the above assumption is to reduce the amount 
of the nu,merical computation by searching over three rather 
than four variables for minimizing the energy. 

Conclus ions  and Suggestions for Future W o r k  

The final goal of the study, to improve the precision of a 
real-time controlled tube bending system, requires an accurate 
prediction of the deformation of a tube cross-section after bend- 
ing. A theoretical and experimental investigation of the bending 
of a tube in the plastic region has been undertaken. It has been 
shown that the results of the present theory are reasonable. The 
present theory gives a prediction of the ovalization and the wall 
thickness change which has not been found in previous work. 

The theory could also provide the basis for a real-time control 
strategy where the unknown parameters in the approximate 
model ate estimated based on measurements taken from the 
process. Candidate measurements include forces and displace- 

ments taken from the current or previous bend and springback 
from the previous bend. 

The contribution of the present study is that it provides a 
theoretical basis to predict the deformation after bending. At 
the same time, the theory may form a good starting point to 
give a better prediction with some modifications in the future. 

After analyzing the results from the present study, it is sug- 
gested that in order to achieve a better theoretical prediction, 
the following work might be done: 

(i) More accurate boundary conditions may be prescribed. 
For the rotary-draw bending process, it is suitable to find the 
cross-sectional deformation from the assumed axial curvature 
since we know the shape of the bend die and we know how the 
tube will follow the shape of the die. On the other hand, the 
experimental results show that the tube does not follow the 
shape of the die completely and the proposed boundary condi- 
tion (28) is too simple to reflect the actual case completely. 

At edges of the bending region, the curvature of the bend die 
changes from a constant to zero. The deformation would not 
stop at the edges suddenly due to the continuity of the material. 
Thus, the boundary conditions at the two edges should also be 
reconsidered. 

( i i )  The interaction between the bend die and the tube 
should be taken into consideration. The half circle slot on the 
bend die provides a constraint on the deformation. 

( i i i )  The assumption, Eq. (5), that the deformation will 
vary proportionally to the term 

cos °'7 (Trq//2~bb) 

should be eliminated although it will increase the computation 
time significantly. Instead of using a constant 0.7, a fourth pa- 
rameter, n, should be added into the assumed displacement field 
and its value should be determined in the process of minimiza- 
tion. 

( i v )  The axial load might be taken into consideration. The 
axial load is provided by the friction force between clamp die 
and tube and is balanced by the contact distributed force be- 
tween bend die and tube. 
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