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Abstract

The most common programming languages and plat-
forms for sensor networks foster a low-level programming
style. This design provides fine-grained control over the un-
derlying sensor devices, which is critical given their severe
resource constraints. However, this design also makes pro-
grams difficult to understand, maintain, and debug.

In this paper, we describe an approach to automatically
recover the high-level system logic from such low-level pro-
grams, along with an instantiation of the approach for nesC
programs running on top of the TinyOS operating system.
We adapt the technique of symbolic execution from the pro-
gram analysis community to handle the event-driven nature
of TinyOS, providing a generic component for approximat-
ing the behavior of a sensor network application or system
component. We then employ a form of predicate abstrac-
tion on the resulting information to automatically produce
a finite state machine representation of the component. We
have used our tool, called FSMGen, to automatically pro-
duce compact and fairly accurate state machines for sev-
eral TinyOS applications and protocols. We illustrate how
this high-level program representation can be used to aid
programmer understanding, error detection, and program
validation.

1. Introduction

Understanding the correctness of sensor network appli-
cations is difficult, since programmers often have to manage
devices and resources at a relatively low-level and be aware
of memory, processing and bandwidth constraints. At the
same time, these applications are often required to run unat-
tended for long periods of time in harsh environments. En-
suring the reliability of sensor network applications is thus
an important problem.

∗This author was supported by the USC Annenberg Graduate Fellow-
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The sensor network community has responded to this
problem in three ways. The first has been to propose
high-level programming techniques that can simplify the
application programmer’s task. These include virtual ma-
chines [22], macroprogramming approaches [20, 26], and
role-based or state-based programming languages [11, 17].
The second has been to develop run-time monitoring (e.g.,
Sympathy [27]) and debugging tools (e.g., Nucleus [30],
Clairvoyant [32]) that can simplify the process of discover-
ing program errors. The third has been to develop compile-
time program analysis tools [28, 9, 8] for catching program
errors before execution.

If history is any guide, none of these approaches is likely
to be a panacea in and of itself. Today programmers in
other domains use a variety of tools ranging from compiler
analysis to profilers and debuggers, even though much work
has gone into raising the level of abstraction from assembly
code to visual programming. Similarly, we believe that for
sensor networks in the future, it will be useful to have an
arsenal of tools to catch or avoid program errors, and our
work is an attempt to add to the existing arsenal.

In this paper, we focus on a program analysis tool for
TinyOS software written in nesC. TinyOS is the most dom-
inant application-development platform today and is likely
to continue to be so in the near future. In the longer term,
even if applications were to be written in a higher-level lan-
guage, there would still likely be a large installed base of
TinyOS software that implements the protocols and subsys-
tems executing on sensor nodes.

Generally speaking, our goal is to infer a user-readable
high-level representation of any component of a TinyOS
program. Such a high-level representation accurately cap-
tures system logic while abstracting away platform-specific
details. This goal is motivated by the following observation:
when programmers write code, there is often a disparity be-
tween programmer intent and the functionality embedded
in the resulting code. Such a disparity can arise, for ex-
ample, when the programmer assumes a certain contract of
an interface where none exists, resulting in a (possibly la-
tent) program error. TinyOS’s event-driven programming
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model [21] can exacerbate this problem, since it makes it
hard for the programmer to understand the exact sequenc-
ing of operations. Our claim is that, when programmers are
presented with a high-level representation of TinyOS com-
ponents they have written, they can much more easily detect
such discrepancies.

By a TinyOS component we refer to a logical compo-
nent which may consist of a single TinyOS module, e.g.
the Surge module for the Surge application, or of a number
of cooperating TinyOS modules, such as the RfmToInt and
IntToLeds modules, which cooperate together in the Rfm-
ToLeds application. A component can implement applica-
tion logic, like the above two examples, or a system func-
tion, like a routing (MultiHopLQI) or a time synchroniza-
tion (FTSP).

Inferring a high-level representation from arbitrary code
is a significant challenge, but we can leverage current prac-
tice in developing TinyOS code: anecdotal evidence sug-
gests that many programmers often design TinyOS software
using finite-state machines (FSMs). Although the nesC pro-
gramming language provides no explicit support for state
machines, programmers track event execution by explicitly
maintaining state information (as we show in Section 2).
Thus, our specific goal in this paper is to infer compact,
user-readable FSMs corresponding to TinyOS applications
and system components. Our paper makes the following
contributions towards this goal.

Novel Program Analysis. The programming languages
community has developed many general-purpose tech-
niques for program analysis. Two of these techniques are
symbolic execution and predicate abstraction. The for-
mer precisely simulates a program’s execution and main-
tains symbolic information about the program, while the
latter maps this symbolic information into predicates that
define distinct program states. Our contribution is two-fold.
First, we have adapted symbolic execution to TinyOS’s
event-driven programming model. This entailed approx-
imating the flow of control of an application, which is
complicated due to the two-level scheduling structure of
TinyOS with events and tasks and due to split-phase op-
erations. To address this issue, we employ a simple model
of event-driven execution that is precise enough to capture
important program behaviors yet abstract enough to be user-
understandable. Second, we have used predicate abstraction
to generate compact, user-readable state machines; prior
work [1, 13] has focused on generating state machine rep-
resentations as an internal step within a larger verification
effort.

Tool Design, Implementation, and Evaluation. We have de-
signed a tool called FSMGen that contains a symbolic exe-
cution framework for TinyOS programs and employs pred-
icate abstraction, together with an aggressive state-machine

minimization technique, to infer user-readable FSMs for
any component of a TinyOS program (Sections 3 and 4).
FSMGen is well-suited to infer the higher-level system logic
and functionality of components such as, for example, how
an incoming message is dealt with in a routing protocol.
However, since we use a relatively coarse approximation
of the TinyOS event-based execution model, it cannot pre-
cisely capture the functionality of low-level interrupt-driven
code, like that of the timer component in TinyOS, or the ra-
dio component. We have applied FSMGen to a variety of
TinyOS programs, generating FSMs for components rang-
ing from simple applications like RfmToLEDs, Surge, and
TestNetwork to a routing protocol of moderate complexity
(MultiHopLQI) and a fairly complex time synchronization
protocol (FTSP). We qualitatively discuss the performance
of the tool and show how the inferred FSMs reveal surpris-
ing (and, we believe, previously unknown) aspects of some
of these components (Section 5).

2. Overview

In this section we provide an overview of our approach to
inferring finite state machines for TinyOS components. We
begin by discussing the suitability of FSMs as high level
program representations of TinyOS components, provide a
definition of an FSM for TinyOS components, and highlight
our contributions using a simple example.

2.1. FSMs as abstractions of TinyOS com-
ponents

The event-driven programming model enforced by
TinyOS is qualitatively different from the thread-based pro-
gramming models that most programmers are familiar with.
To understand and reason about their TinyOS applications
or system components, written in nesC, anecdotal evidence
suggests that programmers often use a finite-state machine
(FSM) based design approach. In such an approach, pro-
grammers design applications/protocols as finite state ma-
chines and then embed these within nesC code. A TinyOS
program may thus consist of multiple FSMs, interacting
with one another, each representing the functionality of a
single logical component. The programmer maintains state
information explicitly as program variables. On receipt of
an event, an event handler performs the appropriate action
depending on the current state and transitions to a new state
by updating variables. Indeed, the developers of TinyOS
recognized the relationship between FSMs and the event-
driven programming model, as this excerpt from their pa-
per [15] shows:

. . . in that the requirements of an FSM based de-
sign maps well onto our event/command struc-
ture.
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1 event result_t Timer.fired() {
2 if (initTimer) {
3 initTimer = FALSE;
4 return call Timer.start(
5 TIMER_REPEAT, timer_rate);
6 }
7 timer_ticks++;
8 if (timer_ticks %
9 TIMER_GETADC_COUNT == 0) {

10 call ADC.getData();
11 return SUCCESS;
12 }
13 task void SendData() {
14 if (..) {
15 if ((call Send.send(..) != SUCCESS)
16 atomic gfSendBusy = FALSE;
17 }
18 }
19 event result_t ADC.dataReady
20 (uint16_t data) {
21 atomic {
22 if (!gfSendBusy) {
23 gfSendBusy = TRUE;
24 gSensorData = data;
25 post SendData();
26 }
27 }
28 return SUCCESS;
29 }
30 event result_t Send.sendDone(...) {
31 atomic gfSendBusy = FALSE;
32 return SUCCESS;
33 }

Figure 1. FSM embedded within Surge code

This relationship to FSMs is evident in TinyOS appli-
cation code. Consider, for example, the snippet of code
in Figure 1, taken from the Surge application in TinyOS.
Surge periodically (on the Timer.fired event) tries to
get readings from a sensor. On receipt of the data from
the sensor (on the ADC.dataReady event), Surge routes
it back to the base station (using the Send.send func-
tion). The variables initTimer and gfSendBusy rep-
resent the explicit state of the Surge application, as main-
tained by the programmer. In the event handler for the
ADC.dataReady event, if gfSendBusy is TRUE, that
implies that a packet is currently being sent, and hence the
programmer does not try to send another packet. How-
ever, if gfSendBusy is FALSE, the programmer sets
gfSendBusy to TRUE and uses the Send.send com-
mand to send the data back to the base station. When the
event Send.sendDone is triggered, i.e. the data has been
sent, the programmer resets gfSendBusy to FALSE.

In addition to this state explicitly maintained by the pro-
grammer, an application’s high-level FSM is dependent on
the set of external events that can be signalled at each point.
For example, in Surge, before the command Send.send
is called, the program is in a state where the external event
Send.sendDone cannot occur, since Send.send and
Send.sendDone form a split-phase operation. When the
command Send.send is called, the program moves into
a new state, where the set of possible external events in-
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Timer.fired
ADC.dataReady
Send.sendDone

initTimer = FALSE

initTimer = TRUE

gfSendBusy = FALSE
ADC.dataReady enabled

Send.sendDone enabled
gfSendBusy = TRUE

Waiting for Send.sendDone
ADC.dataReady enabled

Figure 2. FSM derived manually for Surge

cludes Send.sendDone. Here, by external events, we
refer to events which are triggered from outside the compo-
nent whose functionality is being examined. These may be
events which form part of a split-phase operation, like the
Send.sendDone event in the above example and hence
are triggered indirectly by a command in the component, or
events that are not triggered (directly or indirectly) by any
action performed within the component, e.g. an event indi-
cating the reception of a packet.

Thus, the state of execution of TinyOS components is
a combination of explicitly maintained program variables
and the set of external events possible at that point in exe-
cution. This suggests the following hypothesis, which we
validate in this paper: armed with limited domain-specific
information about external events, it is possible to infer a
user-readable finite-state machine corresponding to a given
TinyOS application or system component written in nesC.

2.2. Deriving FSMs from TinyOS programs

In this section, we present an overview of our technique
for inferring FSMs for various components from TinyOS
programs. Figure 2 depicts an FSM for the Surge appli-
cation. This FSM was manually derived from the Surge
application code, by focusing on the Surge component.

Each state is intuitively defined by a combination of the
explicitly maintained state information of the component
and the set of enabled external events at that point. For
example, the initial state of the FSM (denoted by the dou-
ble circle) represents the situation when initTimer is set
to TRUE, and the Timer.fired event is enabled. When
the event handler for Timer.fired is invoked with the
program in state 0, initTimer is set to FALSE and we
transition to state 1.

Each edge is labelled with an event, along with an op-
tional predicate about the associated event handler’s exe-
cution. For example, the transition from state 1 to 2 only
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occurs when the Timer.fired event occurs and the call
to ADC.getData() within the associated event handler
returns SUCCESS. If the Timer.fired event occurs and
the call to ADC.getData() returns FAIL, the program
remains in state 1. In Figure 2, for the sake of simplicity,
we have not labelled the edges with predicates, since the
states they connect provide sufficient intuition.

One approach to inferring FSMs in the literature [2] is
to dynamically monitor a component to capture the order
of events and the associated values of program variables
when these events occur. This information is then fed to
a machine learning algorithm to infer the states and state
transitions. However, a dynamic approach is inherently in-
complete, since an application can have an infinite number
of execution traces. Therefore, the results can easily repre-
sent the particular runs of the application that occur during
monitoring but fail to capture other program behaviors.

We have pursued an alternate approach based on static
analysis of an application. Static analysis has the advantage
that it can conservatively consider all possible program ex-
ecutions, including corner cases that could easily be missed
in a dynamic approach. Inferring FSMs statically requires
two key challenges to be addressed:

• How can we obtain precise information about a compo-
nent’s execution without running the application? This
challenge is exacerbated by the TinyOS execution model,
with its asynchronous execution of tasks and the possibil-
ity of hardware interrupts at any point.

• How can we automatically identify the relevant state in-
formation of a component whose FSM we intend to ex-
tract, and how can we represent the component’s behav-
ior in terms of this state information once it is identified?

We address these challenges by adapting and extending two
techniques from the programming languages literature.

First, we precisely track the behavior of a component
whose FSM we are interested in, via symbolic execution of
its TinyOS program. This static analysis technique employs
a constraint solver to precisely simulate the program’s ex-
ecution, maintaining symbolic information about the val-
ues of program variables. Unlike a dynamic analysis, sym-
bolic execution conservatively considers the behavior of all
possible program executions while pruning many infeasi-
ble paths from consideration. We have designed and im-
plemented a generic framework for symbolic execution of
TinyOS programs. The next section describes this frame-
work in detail.

Second, we use a technique called predicate abstraction
to map the program information as tracked by symbolic ex-
ecution into a finite set of predicates that capture the im-
portant state information for the component of interest. The
predicates are automatically derived from the branch con-
ditions in the system logic of the component. We discuss
this technique in detail in Section 4. In addition, we use an

adapted version of a well-known FSM minimization tech-
nique (the Myhill-Nerode algorithm [25]) to merge “simi-
lar” states, resulting (as we show later) in user-readable fi-
nite state machines.

3. Symbolic Execution for nesC/TinyOS

Symbolic execution is a program analysis technique that
statically approximates the behavior of a program. Infor-
mally, the technique involves simulating the execution of
a program without actually running it, maintaining at each
point information about the value of each variable. Because
of its generality, symbolic execution has a wide variety of
applications for reasoning about programs. We show in the
next section how to use the results of our symbolic execu-
tion to automatically derive finite-state machines for user-
specified components from TinyOS programs.

Our symbolic execution framework is built as an inter-
procedural analysis in the CIL [24] front end for C. Our
framework takes as input, the C file generated as part of the
building process for a TinyOS application using the nesC
compiler. The framework simulates execution of this pro-
gram starting from main. We assume the user designates
certain modules (and hence the functions in those modules)
as interesting, meaning that they are part of the component
being analyzed. As we discuss below, uninteresting func-
tions are not traversed during the symbolic execution, but
are instead treated conservatively.

Symbolic execution is necessarily approximate. For ex-
ample, it is not possible in general to know the exact value
of each variable at every program point. Instead the sym-
bolic execution maintains a symbolic store, which maps
variables to symbolic values, which are values that can re-
fer to symbolic constants, denoted ci. For example, at some
point we may know that x has the value cx and y has the
value cx + 5. Further, it is not possible in general to know
which path a program will take at a branch point (e.g., a
conditional or loop), so the symbolic execution framework
must simulate multiple paths. At each program point, the
current path is represented by a set of predicates (which
can include symbolic constants) that are assumed to be true.
The predicates are simply the branch conditions that led to
this point on the path.

While symbolic execution has been implemented for C
[31, 10], to our knowledge ours is the first symbolic execu-
tion framework to handle the unique features of nesC and
TinyOS. We first describe the basic technique of symbolic
execution, which is relatively standard. Next we describe
the ways in which we extended symbolic execution to han-
dle nesC- and TinyOS-specific features. Finally we describe
the constraint solver that we use as part of the symbolic ex-
ecution, in order to prune infeasible execution paths.
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3.1. Basic Symbolic Execution

Let a symbolic state be a pair of a symbolic store and a
set of predicates representing the current path. The result of
symbolic execution is the determination of a set of symbolic
states for each point in the program, representing the possi-
ble runtime states that could arise during execution at that
point. In the rest of this subsection we discuss how sym-
bolic execution handles standard C language constructs.

Assignments To symbolically execute an assignment x :=
e, we evaluate e in the current symbolic store to some sym-
bolic value v and update the symbolic store so that x maps
to v. If the left-hand side is an array update a[ea], then the
framework tries to evaluate ea to a numeric constant in the
current symbolic store. If it is able to do so, then that array
element is updated appropriately. Otherwise, all informa-
tion about the entire array is conservatively removed from
the symbolic state. Assignments through pointers are han-
dled similarly.

Conditionals The framework invokes a constraint solver
to determine the value of the conditional’s guard expression
e in the current symbolic state. If the solver determines that
the guard is true, then symbolic execution proceeds on the
“then” branch, and on the ”else” branch if the solver deter-
mines that the guard is false. If the solver cannot determine
e’s value, then the current symbolic execution bifurcates.
The framework adds e to the set of predicates assumed to
be true and continues traversal of the “then” branch. Sepa-
rately, the framework instead adds !e to the set of predicates
assumed to be true and continues traversal of the “else”
branch. We use a work queue to keep track of pending paths
to be traversed.

Function calls The function call’s actual argument ex-
pressions are evaluated to symbolic values in the current
symbolic store. If the function being called is part of an
interesting module, then the symbolic store is updated with
a mapping from the function’s formals to the symbolic val-
ues of the actuals, and traversal proceeds inside the function
body. When the traversal eventually hits a return state-
ment (or the end of the function), control transfers back to
the caller, and the returned value (if any) is handled like an
assignment statement.

If the function is not designated as interesting, then we
do not traverse the function body. Instead we use a precom-
puted summary of the function body (which we compute
before beginning the traversal), which indicates variables in
the caller’s scope that might be invalidated by the call, in
order to conservatively “kill” facts in the current symbolic
state. Our framework currently does not deal with recursive
functions.

Loops As with conditionals, the framework invokes the
constraint solver to determine the value of the loop’s ter-
mination condition. If the value is true, then traversal con-
tinues after the loop. If the value is false, then traversal
continues inside the loop (and returns to the top of the loop
upon reaching the end). In this way, we precisely simu-
late bounded loops (e.g., simple for loops), which we have
found to be the common case in TinyOS applications. If the
solver is unable to precisely evaluate the termination condi-
tion, then we simply traverse the loop exactly once. This is
done in order to identify nesC tasks and events that are trig-
gered within the loop (see the next subsection). This sim-
ple approach loses information about potentially signaled
events, but it has not been a large problem in practice. To
continue symbolic execution conservatively after the loop,
we invalidate all information in the resulting symbolic state
about variables that are potentially modified within the loop
body.

3.2. Handling features of nesC and TinyOS

The nesC language and TinyOS platform pose several
challenges for performing accurate symbolic execution. We
discuss the key features of these tools and how our symbolic
execution framework handles them.

Tasks TinyOS tasks are a form of asynchronous function.
Posting a task pushes a pointer to the task into a task queue
maintained by the TinyOS runtime. Tasks from this queue
are dequeued and executed (in FIFO order) whenever there
is nothing else running.

Our symbolic execution framework mirrors this ap-
proach. We augment each symbolic state with a task queue.
When we encounter the posting of a task during traversal,
we simply treat it as a no-op and proceed to the next state-
ment. However, we add the task to the queue. Once this
path of execution has been completely simulated, we pop
tasks off the queue in FIFO order and simulate the execu-
tion of each in succession. Of course, the simulation of a
task may in turn cause more tasks to be added to the queue
recursively. Simulation continues until the task queue is
empty.

Events Our symbolic execution framework must track the
events that can fire at any point during the program, in or-
der to properly simulate program execution. There are two
main flavors of events in TinyOS, and we handle each in a
different manner.

First, many events are simply triggered by a direct call
from within the program (often from within a task). These
events are treated as ordinary function calls, with the traver-
sal continuing inside the corresponding event handler.

Second, at each program point, our symbolic execution
framework maintains a set of possible external events that
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may fire. It would be too unwieldy to consider the possi-
bility of these events being handled at each program point.
Instead, our framework assumes that such events will only
be processed once a prior event handler and all posted tasks
have completed their execution and the application is “wait-
ing” for a new event. At that point, our symbolic execution
framework explores all possible orders in which the enabled
external events may be processed. While this approach can
miss potential execution paths, if the programmer ensures
that no interrupt handler unwittingly modifies any variables
used within a task that it can interrupt, the resulting sym-
bolic state after some missing execution path will be identi-
cal to that of some execution path that our model does con-
sider. Possibly for this reason, we have not noticed the loss
of precision in practice.

Maintaining the set of enabled external events requires
tracking two kinds of external events, as described in Sec-
tion 2. External events that are not triggered within the pro-
gram, but instead can occur at any time, are always consid-
ered in the set of enabled events. Apart from these, events
forming part of a split-phase operation are considered in the
set of enabled external events only if the command trigger-
ing them is executed.

We assume that the user provides our framework with
the set of split-phase event pairs, in order to complete our
knowledge about external events. In our experiments, we
only needed to provide at most five such event pairs. When
a call to a split-phase operation (e.g., Send.send) is en-
countered during traversal, we traverse the corresponding
handler as described above. Upon returning to the caller,
we invoke the constraint solver to determine the value of
the result. If we determine that the result indicates suc-
cess, then we add the corresponding external event (e.g.,
Send.sendDone) to the set of enabled external events. If
we determine that the result indicates failure, then the ex-
ternal event is not added to the set. If the value of the result
cannot be determined, then we simulate both possibilities.

3.3. Constraint Solver

As mentioned above, we use a constraint solver to de-
termine the values of predicates during the traversal, in or-
der to prune infeasible paths. Rather than building our own
customized tool, we use an off-the-shelf constraint solver,
CVC3 [29]. This tool incorporates decision procedures for
a variety of logical theories, including propositional logic,
linear arithmetic, bit vectors, arrays, and structures.

To determine the value of a predicate e in a given sym-
bolic state, our framework automatically mirrors the sym-
bolic state as axioms that are provided to CVC3. For ex-
ample, if the symbolic store maps y to the symbolic value
cx + 5, then we declare variables y and cx in CVC3 along
with the axiom y == cx +5. Similarly, each predicate in the
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symbolic state’s set of assumed predicates is translated into
a CVC3 axiom.

Finally, the predicate e is translated to CVC3 and posed
as a query. If CVC3 indicates that e is valid in the context
of the given axioms, then we know that e has the value true
at this point. Otherwise, we pose !e as a query to CVC3. If
CVC3 indicates that !e is valid in the context of the given
axioms, then we know that e has the value false at this point.
Otherwise, we consider the value of e to be unknown.

4. Deriving State Machines with FSMGen

Figure 3 describes the overall structure of FSMGen, our
tool for automatically inferring FSMs for TinyOS applica-
tions or system components. In addition to the TinyOS pro-
gram, FSMGen requires domain-specific information about
commands and events that are split-phase, as mentioned
earlier, since this information is not derivable from the code.
FSMGen also requires the user to annotate modules to be
considered interesting for the component whose FSM they
want to extract, and to list the events they want included
in the resulting state machine. FSMGen interacts with the
symbolic execution framework described in the previous
section to obtain symbolic states at various program points
of interest. It also reuses that framework’s constraint solver
to perform predicate abstraction, which maps each sym-
bolic state to a state of the resulting FSM. Finally, FSMGen
employs a minimization procedure to make the FSM com-
pact and user-readable.

We first describe how FSMGen derives and uses a finite
set of predicates as the basis for each state in the FSM. We
then describe the algorithm that FSMGen uses to build the
FSM, utilizing the symbolic execution framework and pred-
icate abstraction. Finally, we describe FSMGen’s algorithm
for minimizing the state machine produced by the previous
step.
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4.1. Predicate Abstraction

As described in Section 2, each state in the FSM should
represent a set of predicates about the program state. We use
a simple but effective approach to deriving the appropriate
predicates to employ.

First, we collect the set of predicates used as guards in
conditional expressions within modules declared interest-
ing. Intuitively these predicates are important since they
determine the flow of control through the interesting mod-
ules, thereby also determining how program state is updated
and which events are signaled. Since the states in the FSM
are global to the entire application, we remove from this set
any predicate that does not refer to a global variable or a
formal parameter of a function.

Second, we introduce one additional predicate for each
split-phase operation provided by the user, which tracks
whether we are in the middle of such an operation
(e.g., send has been signaled and we are waiting for a
sendDone event). These predicates effectively track the
set of enabled external events at any program point.

Let us denote this set of predicates as {e1, . . . ,en}. These
predicates induce an FSM with 2n states, one for each pos-
sible valuation to the n predicates. FSMGen employs our
symbolic execution framework to determine the relation-
ships among these states, as described below. A key piece of
FSMGen’s algorithm is predicate abstraction, which maps
a symbolic state obtained from symbolic execution to the
corresponding FSM state. Given a symbolic state, we em-
ploy the constraint solver as described earlier to obtain the
valuation of each of the predicates in {e1, . . . ,en}. Since in
general some of these predicates might not be known to be
either definitely true or definitely false in the given symbolic
state, predicate abstraction in fact maps a symbolic state to
a set of FSM states in which the program might be.

4.2. Generating the FSM

To begin, FSMGen uses the symbolic execution frame-
work to analyze the main() function of the program. Pred-
icate abstraction is applied to each of the returned symbolic
states, and the resulting FSM states form the initial states
of the FSM. Each FSM state is put on a work queue. Fur-
ther, for each FSM state, FSMGen records the associated
symbolic states and the list of enabled events at this point,
both of which were obtained from the symbolic execution
framework.

After this initialization phase, the main loop of FSMGen
begins. An FSM state is removed from the work queue, and
the symbolic execution framework is asked to simulate each
enabled event, starting from each recorded symbolic state.
For each such query, the symbolic execution framework re-
turns a list of new symbolic states as well as the new set

of enabled events. FSMGen employs predicate abstraction
on each symbolic state and adds a transition to the FSM
from the original FSM state to each resulting FSM state, la-
belled with the simulated event. The label also includes any
new predicates that are part of the symbolic state returned
from the symbolic execution framework, which represent
the conditions under which the state is reached when that
event is invoked. If this transition does not already exist in
the FSM, then the new FSM states are added to the work
queue. The algorithm continues in this way until the work
queue is empty.

We choose to start symbolic execution from the recorded
symbolic state rather than the FSM state, for each state in
the work queue, in order to have access to the extra informa-
tion provided in the symbolic state. This extra information
allows us to statically prune away transitions which may
never be taken at run-time, and hence generates more accu-
rate transitions. However, we only put the resulting FSM
state onto the work queue if this FSM transition does not
already exist, even if the symbolic state has changed. This
choice can cause us to miss possible edges in the FSM. An
example of this limitation was observed for the FTSP proto-
col described in Section 5. We are currently exploring ways
to balance this tradeoff between the precision and complete-
ness of our algorithm.

4.3. Minimizing the FSM

Finally, we employ a variant of the Myhill-Nerode FSM
minimization algorithm on the FSM resulting from the
above algorithm. The basic idea of that algorithm is to iden-
tify equivalence classes of FSM states that can be merged
without loss of information. The algorithm works by ini-
tially assuming that all states belong to one equivalence
class. It then looks at each pair of states (s1,s2) to see if
they can in fact belong to the same equivalence class. In
the Myhill-Nerode algorithm, this is the case if they agree
on their outgoing edges. For example, if s1 has an outgoing
edge labelled l to state s3, then s2 must also have an outgo-
ing edge labelled l to a state in the same equivalence class
as s3. A label in our context is a pair of an event and the
associated conditions under which this edge is taken.

Our algorithm proceeds similarly, except that we place
one additional requirement on each pair of states: If they
have incoming edges from equivalent states labelled with
the same event, then the labels must also agree on the as-
sociated conditions. Myhill-Nerode does not constrain in-
coming edges, since this does not affect the language ac-
cepted by the FSM. However, in our setting we care not only
about the language accepted by the FSM, but also about
what predicates hold at each point during program execu-
tion (i.e., which state we are in). We have found this new
requirement on incoming edges to be a useful heuristic for
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minimizing FSMs while retaining important state informa-
tion. However, it also causes less minimization than would
otherwise be performed, so we allow the user to disable it.

5. Results

In this section, we describe our evaluation of FSMGen.
Our evaluation is qualitative and aims to demonstrate
the practicality of FSMGen, the compactness and user-
readability of the resulting FSMs even for some sophisti-
cated programs, and the utility of FSMGen in highlighting
interesting and sometimes unexpected features of popular
TinyOS applications and protocols. In addition, we dis-
cuss various aspects of symbolic execution, predicate ab-
straction, and minimization that manifest themselves in the
generated FSMs.

We used FSMGen to infer FSMs for many TinyOS appli-
cations and system components. The selected TinyOS pro-
grams covered a range of complexity, from simple applica-
tions like RfmToLeds, to complex protocols like FTSP [23].
FSMGen took at most 15 minutes to analyze all but one pro-
gram. We discuss this exception later in the section. None
of our inferred FSMs exceeds 16 states.

RfmToLeds Figure 4 depicts the FSM inferred by
FSMGen for the RfmToLeds application in TinyOS-1.x.
This application listens for packets containing a byte-sized
value. When it receives such a packet, the application ac-
tivates mote LEDs in the appropriate binary pattern. Our
FSM captures this functionality accurately. State 0 is the
initial state where the program waits to receive a packet.
On receiving the packet, depending on the value contained
therein, it moves into one of the others states, turning on/off
the appropriate LEDs.

Throughout this section, our graphical depictions of the
FSMs include state and edge labels that are slightly simpli-
fied, using some information from the application code for
expository purposes. For example, the labels on each state
in Figure 4 indicating the corresponding LED configuration
in fact correspond to conditions on edges in the FSMGen-
generated FSM. Figure 5 zooms in on the two transitions
between states 0 and 4, showing the actual edge conditions
in the FSM output by FSMGen. Here, value is a local
variable within the event handler for Receive.receive,
which depends on the packet received. We emphasize that,
to a programmer familiar with the actual code, the output of
FSMGen is highly readable.

This application also illustrates another feature of
FSMGen. There exists a correct, but less informative, 2-
state FSM for this application: in the initial state, the pro-
gram waits for a packet, and a second state in which it ac-
tivates LEDs. FSMGen can generate this more compact

Receive.receive
IntOutput.outputComplete
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LEDs = 001

LEDs = 011

LEDs = 111

LEDs = 000

LEDs = 100

LEDs = 101

LEDs = 110

LEDs = 010

Figure 4. FSM for the RfmToLeds Application

4

No condition

0

(value & 1) && (value & 2) && !(value & 4) 

Receive.receive
IntOutput.outputComplete

Figure 5. A state transition as generated by
FSMGen for the RfmToLeds FSM

FSM using the unmodified Myhill-Nerode minimization al-
gorithm described in Section 4.

Surge Figure 6 shows the FSM generated for the Surge
example that we had described in Section 2. When we
compare this with the manually-produced FSM in Figure 2,
we notice that most of the states and transitions in the two
FSMs match, but the FSM generated by FSMGen has two
extra states, 4, and 6. Interestingly, once the program has
moved into either states 4 or 6, it stays in one of those states.
These two states and the associated edges represent a path
of execution that we did not expect to encounter.

To understand this execution path, we examined the ap-
plication code. The only way for the program to move into
state 4 is via the edge from 2 to 4 on the ADC.dataReady
event. This transition is taken in the task sendData when
the value returned by the call Send.getBuffer is 0.
When this happens, the program exits the task without send-
ing any data, but does not reset gfSendBusy to FALSE,
so the program incorrectly assumes that data is being sent,
and remains waiting for sendDone.

It this a program error? Quite possibly. Surge uses Mul-
tihopLQI, which provides the getBuffer interface. In the
current implementation getBuffer never returns 0, so the
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initTimer = FALSE
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Figure 6. FSM for the Surge Application

edge from state 2 to 4 would never be taken. However, the
programmer seems to have anticipated the fact that if the
underlying implementation were to change, getBuffer
might return 0, and added a check for the return value in the
code. But in forgetting to reset the gfSendBusy variable
to FALSE, the programmer has introduced an anomaly (at
best, and a latent bug, at worst) into Surge, one that was not
readily apparent upon manual inspection of the code.

MultiHopEngine MultiHopEngine is the component
which acts as a packet forwarding engine for the MultiHo-
pLQI and MintRouting routing protocol implementations
in TinyOS-1.x. This component provides a Send inter-
face for the programmer to send packets to it. It then for-
wards these packets to the SendMsg interface, which sends
them over the network to the next hop in the routing tree.
Also, it forwards packets received from the network over
the ReceiveMsg interface to the SendMsg interface. Un-
like our prior examples, MultiHopEngine is not a stand-
alone TinyOS application, but a system component. Fig-
ure 7 represents the FSM generated by FSMGen for Multi-
HopEngine.

We can see that FSMGen is able to generate a compact as
well as accurate FSM for MultiHopEngine. It is able to cap-
ture the behavior of the component when the Send.send
command is called in state 4 by the application that uses this
component. In state 0, the self-loops for the Send.send de-
note cases in which the message is not sent either because
the packet size exceeds TOSH DATA LENGTH, or the node
on which the application is running does not have a parent
in the routing tree, or an attempt to send the packet on the
radio fails. Only when the radio SendMsg.send succeeds
does the component move into state 1 , where it waits for the
SendMsg.sendDone event to occur.

MultiHopEngine provides a Receive interface for ap-

1

2

34

Send.send
ReceiveMsg.receive
SendMsg.sendDone

Msg send failed

Send.send called 

0

Remote msg forwarded

SendMsg.sendDone
enabled

SendMsg.sendDone enabled

Figure 7. FSM for MultiHopEngine

plications. An application programmer expects that an ap-
plication running on the root node could use the Receive
interface to receive packets sent up the tree. In fact,
as we discovered by examining the FSM inferred by
FSMGen, the MultiHopEngine implementation does not
satisfy this expectation. We noticed that all edges for
the ReceiveMsg.receive event in the FSM have a
condition involving the calling of the SendMsg.send
event, i.e. SendMsg.send is always called within the
ReceiveMsg.receive event handler. This implies that
for all packets received at any node, the packet is sent out on
the network interface, never up to the application. Indeed,
upon examining the application code, we found that at the
root node, the packet is sent to the UART. A regular con-
tributor to the TinyOS community expressed surprise at this
finding, and we have verified that the TinyOS 2.x forward-
ing engine does not exhibit this behavior. We suspect that
MultiHopEngine is always used with the root connected to
a base station, and never with an application at the root node
wired to MultiHopEngine.

FTSP To see how FSMGen performed on extremely com-
plex programs, we ran it on the code for FTSP, a popular
time synchronization protocol [23]. The code for FTSP con-
tained around 46 branching conditions, of which 19 were
part of the predicate abstraction. The FSM for FTSP before
minimization had 255 states, and after using the unmod-
ified Myhill-Nerode algorithm for more aggressive mini-
mization, has 16 states (Figure 8).

We have verified that the FSM reflects the expected be-
havior but will refrain from discussing it since that requires
a detailed description of the FTSP protocol. However, an
interesting feature of the FSM is that all states have edges
to state 6 on the event ReceiveMsg.receive, on the
condition that although the node should be synchronized,
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Figure 8. FSM for FTSP

the packet it receives has an error greater than the allow-
able error. This condition basically implies that the node
has become unsynchronized and needs to clear its table of
timestamp entries. Remarkably, FSMGen produces a single
“error” state for this, even though this state is not evident
when inspecting the code.

This FSM also illustrates a limitation of our symbolic
execution framework, that we described in Section 4.2. In
FTSP, when a node does not receive a beacon within a fixed
number of timer events (five in the current implementation),
the node sets itself as root and starts sending out beacons.
Thus, the value of the predicate controlling this change in
state, will only change after the Timer.fired event is
fired for the fifth time. However, FSMGen simulates the
Timer.fired event in this state only twice before stop-
ping since it realizes that no new states are being introduced.
Hence FSMGen is unable to capture this transition.

The FTSP example also illustrates another facet of
FSMGen. It took nearly 24 hours for generating the FSM
for FTSP. For us, this is not a cause for concern, for two
reasons. First, FSMGen is not intended to be a frequently-
used interactive tool. Rather, we expect programmers will
use it occasionally when they make large-scale changes to
system logic, or as part of a regression testing suite. Sec-
ond, the bottleneck in FSM inference is symbolic execution,
and well-known optimizations exist to scale this up to large
programs [31]. We intend to implement these in a future
version of the tool.

TestNetwork The TestNetwork application comes as part
of the TinyOS-2.x distribution. It periodically sends pack-
ets up a collection tree rooted at the base station, using
the Collection Tree Protocol (CTP). The sending rate is
configurable via dissemination. We chose this applica-
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Send.sendDone
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Figure 9. FSM for TestNetwork

tion to demonstrate that FSMGen can easily be extended
to TinyOS-2.x.

We generated an FSM for TestNetwork, which can be
seen in Figure 9. While in TinyOS-1.x, the radio and
other services are started using the simple start() func-
tion provided in their StdControl interface, in TinyOS-
2.x, this StdControl interface has been replaced by the
SplitControl interface. Thus, in TinyOS-2.x the start
calls for Radio, Serial and other such devices form part of
a split-phase operation. For example, calling start for
the Radio component has to be followed by a startDone
event whose argument is set to SUCCESS. If the argument is
set to FAIL, that implies that the radio has not been started
and that no packets can be received yet. By contrast, in
TinyOS-1.x, after calling start we could safely assume
that the radio was operational. Hence, we needed to add this
domain-specific information to FSMGen in order to gener-
ate FSMs which captured this. We again used the aggres-
sive version of our minimization algorithm to generate this
FSM, since although the size of the TestNetwork code is
reasonably small, we wanted to track the transitions due to
six different events, the largest number of events in any of
the programs we have used for this paper.

In Figure 9 we can see that the startup process for the
application is captured quite nicely. Also, for transitions on
Timer.fired we see that the program checks its state to
see if the radio is busy, and then also checks to ensure that
the Send.send function was called successfully. This is
quite similar to the Surge application in TinyOS-1.x. The
TestNetwork also receives packets over the radio, and if it
has free space in its memory pool and the sending queue,
pushes them in the queue to send over the serial port. If it
has no space, it simply drops them.

We note here that for states 3 and 5, the
Receive.receive event causes the program to
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transition to other states if there is space in the message
pool. However, for states 4 and 6, the program always
remains in the same state upon a Receive.receive
event. We verified by understanding the state machine and
looking at the code, that there should be no difference in
how Receive.receive is handled by any of the above
states. This inconsistency is due to the fact that we disable
our requirement on incoming edges during minimization
and hence lose some information in the process. Ideally,
for 4 and 6, if there was no space to store the packets, the
program should have transitioned to a new state. However,
using aggressive minimization was important here, as
otherwise the number of states would have increased to
20. Thus there is a clear and obvious tradeoff between the
size and readability of the state machines, and the overall
functionality captured by FSMGen.

Summary. Thus, overall, FSMGen after being tested on
a number of applications and other components, performed
quite well, and was in a couple of cases, even able to cap-
ture inconsistencies in code written by others. It managed
to generate a respectable state machine for a complex com-
ponent like FTSP, and also worked well for TestNetwork, a
TinyOS-2.x application with a large number of events.

6 Related Work

A number of works have supported and inspired our
hypothesis that FSMs are good high-level abstractions of
event-driven sensor network programs. Kasten et al. [17]
present the design of OSM, a programming language that
allows the programmer to directly implement sensor net-
works as finite state machines. Kim et al. [18] propose
SenOS, a state-machine-based execution environment for
sensor networks. We tackle a different problem than both
these works, in that rather than trying to build a new
programming architecture or operating system based on
FSMs, we attempt to abstract programs written in the cur-
rently popular sensor network programming architectures
into FSMs.

Other work requires FSM specifications to perform val-
idation of sensor network programs. For example, Archer
et al. [3] use FSMs to represent correct usage specifications
of TinyOS interfaces, enforcing these specifications at run
time. Lighthouse [28] uses FSM specifications in order to
statically analyze dynamic memory usage in SOS [12] ap-
plications. Both of these systems require FSMs to be pro-
vided by the user. Our work could be used to infer FSMs as
input to these and other kinds of static and dynamic analysis
tools for sensor networks.

Tools for program analysis of sensor network programs
have also been recently developed. cXprop [9] is an abstract

interpreter built over CIL [24], designed for TinyOS. It al-
lows users to define their own value-propagation analyses
in the spirit of conditional constant propagation, using ab-
stract value domains. cXprop contains a symbolic execution
module, which manages the abstract values in the program
state. cXprop uses a conservative concurrency model for
nesC/TinyOS in order to track the state of shared variables.
In contrast, we use an optimistic approximation of the con-
currency and execution model of TinyOS, since our final
goal is different from that of cXprop. Safe TinyOS [8] is a
tool built using cXprop, which provides memory safety for
TinyOS.

Within the programming languages community, there is
a large body of related work on trying to derive FSMs from
programs. Ammons et al. [2] profile multiple executions of
an application and then employ machine learning on the re-
sulting execution traces to infer an FSM. Static techniques
are closer to our work. In particular, works by Alur et al. [1]
and Henzinger et al. [13] employ forms of symbolic exe-
cution and predicate abstraction to infer FSMs. However,
the goal of these works is to derive a temporal specification
for a single component, which indicates the sequences of
function calls that do not cause the component to crash (or
throw an exception). This temporal specification can then
be fed to automatic verification tools for checking clients of
the component [6, 14]. Our differing goals lead to different
design decisions. For example, they drive the construction
of an FSM according to the ways in which the component
can throw an exception, while we drive the construction of
an FSM according to the application’s control flow. Also,
we perform minimization to make the resulting FSM user-
readable, while this is not a concern for those works. Fi-
nally, we handle the event-driven and asynchronous con-
structs of TinyOS, while these works are implemented for
mainstream languages (Java and C).

Symbolic execution is a very general technique and can
be used for many different kinds of program reasoning. The
paper by King et al. [19] is one of the earliest papers on
the subject and describes the basic technique. Two recent
systems employing symbolic execution similar to ours are
ESP [10] and ARCHER [31]. ESP uses symbolic execu-
tion to check that code obeys a given temporal specifica-
tion, and ARCHER uses symbolic execution to check for
memory access errors in C programs. Similarly, a number
of works [5, 4, 7] use predicate abstraction techniques in or-
der to map an infinite (or very large) state space to a finite
one. Typically this abstraction is used in order to perform a
form of model checking on the resulting state space. None
of these systems handles the novel features of TinyOS.

Finally, Jhala et al. [16] describe a formal algorithm and
associated complexity results for inter-procedural dataflow
analysis of programs with asynchronous calls/events. They
also present some preliminary experience using the algo-
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rithm to verify safety properties of programs. Their work
could form the basis of a more formal analysis of our al-
gorithm for symbolic execution of asynchronous programs,
since symbolic execution can be viewed as a path-sensitive
form of traditional dataflow analysis.

7. Conclusion

In this paper, we have tackled the problem of inferring
compact, user-readable FSMs for applications and system
components from TinyOS programs. Our FSMGen tool
uses symbolic execution and predicate abstraction to stat-
ically analyze implementations in order to infer FSMs.

Our FSMGen tool uses a coarse approximation of the
event-driven execution model of TinyOS, and hence the re-
sulting FSM may not represent all possible execution paths.
Through experiments, however, we have shown that this op-
timistic analysis provides FSMs that are both user-readable
and detailed. We have tested FSMGen for a number of ap-
plications and system components and found that the in-
ferred FSMs capture the functionality of the target applica-
tions quite well, and reveal interesting (potential) program
errors. We suspect however, that this model may not be ap-
plicable to low-level interrupt driven code.

As future work, we plan to implement several optimiza-
tions to improve the efficiency of FSMGen and to apply
the tool to larger TinyOS programs. We intend to investi-
gate various widening techniques to improve how FSMGen
deals with loops in TinyOS programs. We also plan to ex-
plore other uses of FSMGen. By improving our approxi-
mation of the TinyOS execution model, we might be able
to detect scenarios, unforeseen by the programmer, which
lead to race conditions in the execution of tasks and events,
as described in Section 3.2. Also, FSMGen’s output could
be used for automatic program verification; the Lighthouse
memory checker, for instance, expects an FSM as input.
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