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Abstract
We have developed methods of conditioning non-stationary
Levy-stable geostatistical models1,2 to 3D seismic data.
The technique involves adapting the sequential Levy sim-
ulation method such that the convolutional response of
the realisations acceptably ‘matches’ the seismic amplitude
map. A rejection scheme is used, which requires fast repeti-
tive simulation of gridblock columns and generation of con-
volutional responses. The non–stationarity of the model
means that this cannot be achieved using the conventional
large kriging system. We use a different, but comparably
rapid method, based on storing the relevant parts of a se-
quential simulation calculation for the column. Working
directly with the amplitude traces also has the advantage
of avoiding the ambiguities and non-uniqueness involved
in inverting the traces to acoustic impedance.

The most difficult part of the problem is estimation of
the seismic wavelet, and this is often done non-optimally.
We describe a sophisticated method of estimating the
wavelet, and show that this can yield better than expected
results. Suitable rejection criteria are proposed, based on
reasonable probabilistic models. The application of the
technique is demonstrated with a field example.

Introduction
The use of geostatistical models to characterise uncertainty
in the spatial distribution of petroleum reservoir properties
is now seen as a fundamentally desirable tool in reserves or
forecasting work. Production forecasts can follow a very
wide distribution when reservoir heterogeneity is appre-
ciable and where well data are sparse. For this reason, it
is clear that the conditioning of these geostatistical mod-
els to auxiliary data like seismic and production data can
only help in reducing forecasting uncertainties and thus
the quality of management decisions.

Particularly in areas where well control of the under-
lying random field model is sparse, the sheer density of
low-resolution measurements like seismic data will clearly
constrain the range of variation seen in Monte-Carlo real-
isations of the random field. Nonetheless, it is currently
impractical to condition the kinds of geostatistical models
used in flow calculations to the full range of seismic data.
Both for computational and storage reasons, the models
are usually constrained only to post–stack, post–migrated
data, which may represent only 5% or so of the total vol-
ume of data acquired.

In general, the relationship between remote–sensed
acoustic properties of rocks with poor resolution (seismic
data has resolution ≈ 30 m, at best) and local petrophys-
ical properties with a small scale of support (≈ 1 m) is
complex. Any credible conditioning method must take into
account these very different scales of support. Most anal-
ysis rely implicitly on cross correlations modelled from the
sonic and porosity logs, which implicitly assumes that the
field scale seismic processing is consistent with the sonic
log information.

The complexity of the relationship between seismic
and petrophysical data also means that an analytical
derivation of the posterior distribution of the petrophysical
properties, conditional to the seismic data, is impossible in
general. This conditioning must therefore be carried out
using rejection–based sampling techniques like the Markov
Chain Monte Carlo method: unconditional realisations are
drawn, and rejected on the basis of their ‘proximity’ to the
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observed data. In the case of seismic data, this proximity
is usually determined by computing a ‘synthetic seismic’
from the unconditional reservoir realisation, and compar-
ing this to the true seismic in some suitably meaningful
way.

Such sampling techniques nearly always suffer from
high rejection ratios when the conditioning is strong, so it
is necessary that the algorithm used to draw realisations
of the reservoir properties is extremely effecient. Further-
more, it is important that the forward model used to com-
pute a ‘synthetic seismic’ from a given reservoir realisation
must be simple and computationally rapid. Like other
workers, we use a one–dimensional convolutional model,
which expresses the amplitudes in a seismic trace at a given
common midpoint as a convolution of the reflectivities in
the geological profile immediately below.

To date, models along these lines have been success-
fully applied in the context of MultiGaussian models of
the reservoir properties. A general theory for such mod-
els is given by Eide3, in which the full posterior distribu-
tion for the reservoir properties is formally derived. In
principle, this solution implies that posterior samples can
be drawn explicitly, but the actual form turns out to be
computationally infeasible. Some suggestions for suitable
approximations to the posterior are given, in the context
of a sequential simulation method, and some small-scale
examples are given.

The work of Bortoli et al4 uses the one-dimensional
convolutional model also, but does not appeal to a full pos-
terior distribution like that of Eide3. A rejection method
is used, with the rejection criterion being a threshold cor-
relation coefficient between the true and synthetic seismic
which must be exceeded for the realisation to be accepted.
For reasons to be explained later, we think this is not a
particularly good choice of acceptance criterion, although
it obviously guarantees a certain similarity between the
true and synthetic seismic fields.

The methodology we present in this paper extends this
previous work into a class of non–stationary, non–Gaussian
random field models called Lévy fractal models. Tech-
niques based on stationary models invariably require the
removal of trend terms from the data, and this process can
be very subjective. A less subjective technique would in-
volve modelling the data with a general non-stationary pro-
cesses, of sufficient ‘elasticity’ to accommodate the trends,
but sufficiently parsimonious to enable adequate estima-
tion of its parameters. Extensive analysis of the spatial
behaviour of the distribution of increments in wireline log
data5−9 has shown that the distribution of increments usu-
ally has heavy tails and is well modelled by a Lévy–stable
distribution. The heavy tails in the distribution yield a
high probability of large ‘jumps’ in the spatial field, which
aptly mimic the transitions across facies boundaries. Simi-
larly, the width of this distribution as a function of the lag

r used to form the increments frequently follows a power
law behaviour, which betrays a quality of self-similarity
akin to fractals.

Rapid sequential simulation techniques have been de-
veloped to generate hard–data conditioned realisations
from these models, based on the idea of drawing samples
from the conditional distribution of the increments about a
given point, given fixed values at a set of neighbours10. But
the analytical complexity of these models is such that de-
veloping a full posterior distribution for the reservoir prop-
erties additionally conditional to seismic data, along the
lines of the theory given by Eide3, is not possible or prac-
tical. Conditioning of these sequential methods to seismic
data must therefore use a rejection method, as per Bor-
toli’s work, but the rejection criterion will be established
by drawing on insights from Eide’s work.

The two main challenges in the problem are developing
a statistically meaningful forward model to compute syn-
thetic seismic data from realisations of the random field
model, and secondly, deriving sensible acceptance criteria
to ensure reasonable sampling of the posterior distribution.

The Levy Random Fractal model
The background and motivation of the development

of Levy random field models is more amply presented in
references5,6,10. The sequential algorithm used to draw re-
alisations of the random field is very similar to that used
in conventional sequential Gaussian simulation, with the
following important exceptions. (1) The posterior distri-
bution is developed for the increment between the grid-
block to be simulated and a (presimulated of fixed) neigh-
bour chosen as reference. (2) This posterior distribution is
Levy–stable, with thick tails, not Gaussian. (3) The ran-
dom path used in the sequential algorithm must visit the
most isolated regions of space first, and gradually ‘fill in
the details’ as the simulation proceeds. It has been shown
that this choice of path is necessary to ensure the repro-
duction of the longest length scales of variability implicit
in the fractal model.

For seismic conditioning, the sequential path has to
be modified such that we simulate entire columns of grid-
blocks at a time, until the column is ‘accepted’ and then
proceed on to the next column. Commensurate with point
(3) above, the path has been chosen to favour the most ‘iso-
lated’ columns first, and then visit the nodes along each
column in a sequence that visits the most isolated nodes
first.

It turns out that the posterior distribution for a par-
ticular property at a generic node requires the Cholesky
decomposition and subsequent inversion of a covariance–
like matrix formed from the set of distances to the n near-
est neighbours, typically about 20. The matrix does not
depend on the values of these neighbours. Once this O(n3)
calculation is performed, repeated samples can be drawn



SPE 56823 J. GUNNING AND L. PATERSON SPE 3

in O(n) flops even if the values of the neighbours change.
Hence we can form an algorithm which computes repeat
simulations of a large set of N nodes in O(nN) flops, once
the preliminary O(Nn3) work is performed for the first
simulation. This depends on fixing the path through the
set of N nodes, which in this case corresponds to the ‘un-
known’ nodes of the selected column.

If the sequential path through the column of gridblocks
is varied for each successive realisation, the O(Nn3) pro-
cess of repeating these simulations is unacceptably slow.
If we fix the path, the O(nN) technique described in the
preceding paragraph is applicable, and it works out that
repeat simulations are at least 100 times faster than the
first, which makes relatively high rejection ratios accept-
able.

Apart from the context of seismic conditioning, it is
clear that the technique just described will be useful in
other conditioning problems, where certain subregions of
the reservoir dominate the cost or rejection criteria pro-
posed. A good example of this is the near–wellbore region
in well–test conditioning problems.

Synthetic seismic and the wavelet
The one–dimensional convolutional theory used to model
the relationship between acoustic rock properties at the
short scale and seismic data starts with the relation

S(t) = w(t) ∗ dΦ
dt

, (1)

where S(t) is the amplitude in the trace at time t, and
Φ(t) is the acoustic impedance (density×velocity) at the
depth z corresponding to t, in the vertical profile under-
neath the CMP corresponding to S. The wavelet w(t) is
a smoothing pulse that smears out the detail in dΦ(t)/dt
to yield the amplitude S(t). Because wireline log data is
usually equispaced in depth z, and in cases where the re-
lationship between t and z is approximately linear over
the depth range of interest, we can rewrite the equation
above in depth, with subtle but unimportant changes in
the meaning of the notation:

S(z) = w(z) ∗ dΦ
dz

. (2)

The first problem is to estimate the wavelet w. We
can generalise the problem by looking at Eq. (2) in Fourier
space (z ↔ kz). We have

S(kz) = w(kz)kzΦ(kz) (3)

and so the problem of estimating w(kz) can be seen as
equivalent to the problem of estimating w(kz)kz, i.e. the
derivative in Eq. (2) is immaterial to the problem (this is
an important point, since we do not want to take numerical
derivatives of noisy data). Likewise, the particular prop-
erty represented by Φ is also not essential to the problem;

if it is physically unrelated to S then this will show up in
the ‘regression statistics’. From these considerations, the
problem can be seen to be a particular case of finding an
optimal w to relate S and some property Φ via

S(z) = w(z) ∗ Φ(z). (4)

There are other constraints on the problem. The
wavelet w is likely to be localised in space (typically a few
cycles at ≈ 30 Hz and ≈ 2.3 km/sec gives a few tens of
metres), and will be bandlimited (say a few Hz to 100 Hz).

The localisation is probably the hardest constraint
to impose, so we attack it directly by writing w as a
set of convolutional coefficients ak over some finite range
k = −N ′ . . .M ′ of the discretised data Φ. The convolved
amplitudes S at the logging points Sj = S(zj) are then

Sj =
k=M ′∑
k=−N ′

akΦj+k + ā, (5)

where we include the additional parameter ā to soak up
any zero-frequency offsets. To cast this as a regression
problem, we minimise the squared difference between the
‘true’ seismic S, and the seismic S we would compute by
using our derived aj , ā and the data Φ. We form an error
χ2 over all wells i = 1 . . . Nw and over some subregion of
the depths j = jmin . . . jmax that interests us:

χ2 =
i=Nw∑
i=1

jmax∑
j=jmin


 k=M ′∑

k=−N ′

akΦi,j+k + ā− Si,j




2

. (6)

The second index in Φi,j+k is allowed to wander outside
j = jmin . . . jmax, providing there are data available, other-
wise we pad with a suitable constant (usually 〈Φ〉). Fig. 1
gives a picture of the notation.

Since Eq. (6) is quadratic in the a’s, its minimum is
found in the usual way by differentiating with respect to
the ak, ā and solving the resulting N ′ + M ′ + 2 size linear
system. With N ′,M ′ of the order of a few hundred, this
is not computationally difficult.

When the linear system is solved, it usually turns out
the the wavelet w, represented as the discrete set of coeffi-
cients ak, often looks quite ‘noisy’ (see Fig. 2). This noise
represents high frequency content which cannot physically
be present in the propagating sound wave, so we elimi-
nate it by postprocessing the wavelet coefficients with a
smoothing filter and fine tuning their weights. There are
more rigorous ways of achieving this effect, involving the
addition of bandwidth ‘penalty’ terms to Eq. (6), but these
have not been implemented yet. After the smoothing has
been performed, the resulting wavelet looks more physical
(see Fig. 2).
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Statistical significance of the optimal wavelet. The
regression technique outlined in the previous section is of
surprising power. This derives from the large amount of
freedom in the large number (N ′ + M ′ + 2) of parame-
ters. It is important then not to be misled by the results
of such a regression into believing that strong correlations
exist between the seismic and well–log data. We sketch
here a method of testing the significance of the regression,
using a method akin to the probability calculation used
with degree–of–correlation measures like the Kendall τ co-
efficient (see, e.g. section 14.6 of Numerical Recipes11).

For simplicity, imagine the case of one well and one
seismic trace. We use these to generate an optimal wavelet
and then compute some measure of association rtrue (say
the Pearson correlation coefficient1) between the real seis-
mic trace and the ‘synthetic trace’ obtained by convolving
the well data with the optimal wavelet. Now consider the
null hypothesis that the well logs and the seismic are com-
pletely uncorrelated. We can make ‘fake’ well data that
manifestly satisfy this condition by using the random field
model and the simulation code to simulate well data using
no hard or other constraints. These fake wells ‘look’ like
the true well data, but are completely uncorrelated with
it and the seismic trace. We then run the optimal wavelet
calculation over an ensemble of such fake wells, and com-
pute the same association measure r

(i)
null for each realisation

i. The Monte–Carlo distribution of the deviates {r(i)
null} can

then be compared to the measured rtrue to give an indi-
cation of how probable it is that the observed correlation
is significant. For instance, if the rtrue seems to lie in the
upper 5% quantile of the Monte–Carlo {r(i)

null} distribution,
we might tentatively say we believe the correlation to be
significant with one–sided probability 95%. The generali-
sation to the case of several wells is fairly obvious.

This method has been tested on the Stratton field data
from the Bureau of Economic Geology12, for which, unfor-
tunately, no sonic logs are available. Nonetheless, a statis-
tically significant (at the 5% level ) wavelet can be devel-
oped using Φ as neutron porosity or the SP log.

‘Cross-modelling’ the true and synthetic seis-
mic fields

Typically the wavelet w(z) is obtained from a depth
section significantly wider than the particular reservoir of
interest. The regression routine will only perform sensibly
if there are sufficiently many events in the seismic data,
which means an interval of typically several hundred me-
tres. The interval should not be too wide, so as to preserve
an approximately linear relationship of time and depth.

A typical plot of the synthetic seismic Ssynth = {Sj}
and the true seismic Strue = {Sj} at a well is shown in
Fig.3. The column height of an actual reservoir to be sim-

ulated may be as little as a quarter wavelength on the scale
shown. The problem is to find a meaningful way to relate
these two signals over scales as relatively short as this. If,
for example, we compute the Pearson cross-correlation co-
efficient ρ between the two traces, the statistic ρ varies
significantly, depending on which interval we choose, and
what well we examine. It is clear that ρ is likely to have
a continuous, smooth distribution across the field, so im-
posing a acceptance threshold on ρ is not likely to sample
from this distribution very well. Nor is it possible to de-
velop this distribution from the raw well data alone; some
extra modelling work is required.

It is clear that the two traces in this plot are spa-
tially related, and exhibit very similar spatial characteris-
tics. One can argue that the ‘measured’ seismic is likely
to be the synthetic seismic, plus a data–and–measurement
noise process filtered by the seismic processing and the
earth’s acoustic response to give an overall noise term of
similar bandwidth to the actual signal. From this point of
view, it is reasonable to model the two processes as a con-
ventional joint multi-Gaussian process S = (Strue,Ssynth)
with covariance

Cjoint =
(

C11 C12

CT
12 C22

)
. (7)

Furthermore, the similar spatial character of the true
and synthetic fields indicates that the covariances C11, C22,
C22 are likely to be very similar (the post–filtering oper-
ation in deriving the optimal wavelet can be adjusted to
guarantee this). So as a working approximation (which
can be generalised if required) we will model the joint co-
variance using

Cjoint =
(

C aC
aC (a2 + b2)C

)
, (8)

where a and b are two constants introduced in this way to
guarantee positive definiteness. The covariance C is mod-
elled from the inverse Fourier transform of the spectral
power density of the true and synthetic seismic traces, av-
eraged over all wells. The constants a and b are estimated
from simple one–point covariances.

The usefulness of the representation in Eq. (8) is that,
if one were to generate realisations of the joint process us-
ing the usual Cholesky method13, this would take the form

Strue = L.w1 (9)
Ssynth = aStrue + bL.w2. (10)

Here the wi are vectors of independent N(0, 1) deviates,
and L is the Cholesky factor of C, LLT = C. This last
equation makes it clear that the ratio a/b is a measure
of how ‘similar’ the processes are. If a = 0, they are in-
dependent; if b = 0, they are identical up to a scale fac-
tor. Numerical experiments have shown that, for data like

1any sensible measure can be used. The χ2 error term of Eq. (6) is a good choice.
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that illustrated in Fig.3, we nearly always have a > b and
b <∼ 0.5. Furthermore, realisations of the joint process via
Eq. (10) look very realistic compared to the seismic data
along the wells as depicted in Fig. 3.

Having developed this model, the sampling problem
amounts to the question: given the joint probability den-
sity function described above, what is the ‘probability’ of
the realisation Ssynth, given Strue? Just as there are no
perfect tests of white noise, there is no ideal test for this
question, but it is possible to form physically reasonable
tests. The main point of a suitable test is to assess the
cross–correlation.

From Eq. (10) it is clear that the quantity

Stest = (Ssynth − aStrue)/b (11)

has covariance C, so it is conceivable to test the power
spectrum of this quantity against the power spectrum cor-
responding to C. This is a fairly tough test if b is small,
as Stest will easily contain too much power unless aStrue

is close to Ssynth. A simpler test, based on the same idea,
is to compute the l2 norm (sum of squares) of Stest and
test this against the appropriate distribution. This is a
weaker test, but eliminates the need for spectral density
calculations during the simulation.

The comparison distribution for the l2 norm is built by
Monte-Carlo methods in a setup step. Using FFT meth-
ods, we generate many realisations of a process with covari-
ance C, of length equal to the height of the column to be
tested in the actual simulation. The l2 statistic is formed
for each of these, and an approximate distribution p(l2) is
formed by binning the ensemble of l2’s, and normalizing
such that the maximum of p(l2) is one. The distribution
of p(l2) is, predictably, chi–squared like. The compactness
of this distribution, and hence the rigour of the test, de-
pend greatly on the height of the column to be simulated
relative to the seismic resolution: a longer column means
a tighter distribution p(l2) and hence a more exacting test.
The overall work in this step is at most O(107) flops, i.e.
a few seconds on modern workstations.

During the simulation, the l2 norm of the test vec-
tor Stest is computed, and a second, uniform deviate y is
drawn. If y < p(l2) the realisation is accepted and we pro-
ceed to the next column; if not, another realisation of the
column is drawn and the corresponding synthetic seismic
formed, etc.

To illustrate the rigour of the test, consider the expec-
tation of the l2 norm of Stest when Strue and Ssynth are
drawn from the cross correlated model Eq. (10):

〈l2〉corr = 〈S2
test〉 =

∑
i

λ2
i , (12)

where the λi are the eigenvalues of C. If, however Strue

and Ssynth are drawn from a model with the same auto-
covariances but zero cross-covariance (i.e. the matrix in

Eq. (8) with zero off–diagonal elements), the l2 norm has
expectation

〈l2〉uncorr = (1 + 2a2/b2)
∑
i

λ2
i . (13)

Even for the relatively modest correlations a = b = 0.5,
the ratio of these two expectations 〈l2〉uncorr/〈l2〉corr = 3,
so the test will reject a large proportion of the realisations
from the wrong distribution. Fig. 4 illustrates how very
different the distribution of the l2 norm is if the two signals
are uncorrelated, compared to the correlated case.

An alternative test using l2 norms can be derived from
the question: for what linear combination (Ssynth−a′Strue)
is the ratio 〈l2〉uncorr/〈l2〉corr, as computed using the as-
sumptions above, a maximum? The answer is trivial to
compute, and yields the coefficient a′ =

√
a2 + b2, which

is not too different from a when a/b > 3/2. For the exam-
ple above, with a = b = 0.5, the norm ratio is ≈ 3.4.
Padding issues. One of the irksome aspects of this prob-
lem is that the spatial extent of the seismic wavelet is
usually comparable to the height of the simulation region.
This means that, in forming the synthetic seismic by con-
volution, padding effects pollute the synthetic seismic at
the fringes of the simulation region, where the fringe width
is equal to the appropriate offset N ′ or M ′ of the convolu-
tional coefficients. Since there is little useful information in
the polluted synthetic seismic data, the simulation region
should be extended up and down by a number of gridblocks
equal to the maximum of N ′,M ′. The actual rejection al-
gorithm will then operate only on the central, unpolluted
synthetic seismic, and the ‘fringes’ of the simulation should
be discarded.

Some Examples
We illustrate these ideas with two examples.

Synthetic Lévy motion example. We have constructed
a large two dimensional example of fractional Levy mo-
tion, simulated on a 1024-node (depth)× 70-node (width)
section. This ‘truth case’ fractional Levy motion field is
filtered with a simple low order Ricker wavelet to produce
a seismic field, as depicted in the top two images of Fig. 5.
At the edges of the large field, wells are drilled, and the
wavelet is estimated from seismic and log data along the
wells, with extra noise introduced into the log data for re-
alism. The recovered wavelet is shown inset on Fig. 6,
where the true seismic signal and the synthetic signal ob-
tained with the well logs and the estimated wavelet are
shown on the left wiggle plots.

The spatial extent of the wavelet used was the range
−N ′ = −150 to M ′ = 150 gridblocks, and the simple
cross modelling technique described in the preceding sec-
tion gave the coefficients a = 0.78, b = 0.41. To illustrate
the validity of the ‘intrinsic coregionalisation’ hypothesis
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in modelling the true and synthetic seismic covariances as
C11 = C22 = C12 = C, we performed the following experi-
ment. The power spectrum of Strue, estimated using both
wells and the full height of the original field (1024 points),
was used, with the a, b as above, to produce a Monte Carlo
ensemble of joint realisations. The auto and cross covari-
ances were estimated for each of these realisations, and
the ensemble of results used to compute standard errors for
each of these covariances. The results are shown in Fig. 7.
These indicate that the uncertainties are sufficiently great
that the ‘intrinsic coregionalisation’ model cannot be re-
jected with any appreciable measure of uncertainty. In
summary, because (i) the model is built typically using
only a handful of wells, (ii) over a column height unlikely
to be more than a few tens of seismic wavelengths, and (iii)
because we force the seismic wavelet to give a very similar
spectral density in the true and synthetic wavelets, it is
very difficult to show that the intrinsic coregionalisation
model is wrong.

Having estimated the wavelet, the seismic covariance
C and the parameters a, b, the probability distribution of
the l2 norm of Eq.( 11) is formed by a Monte Carlo sim-
ulation of seismic traces of length equal to the height of
the column to be tested (150 blocks). Because the wavelet
spreads information ±150 blocks either side of this region,
the region actually simulated is 450 × 70. Fig. 8 shows 4
simulations conditioned to the wells, but not the seismic,
and Fig. 9 shows 4 realisations conditioned additionally
to seismic data. Below each of the set of realisations in
these figures is the corresponding synthetic seismic. The
resemblance of the conditioned seismic images in Fig. 9 to
the ‘truth case’ of Fig. 5 contrasts strongly to that of of
Fig. 8, but the synthetic seismics are clearly not ‘overcon-
ditioned’.
Stratton field example. The absence of sonic logs in
this data set means that the correlations between seismic
amplitudes and the non–sonic logs are bound to be weaker
than could be obtained with sonic. Nevertheless, there is a
statistically significant wavelet connecting porosity to am-
plitude (see Fig. 2). The intrinsic coregionalisation model
gives coefficients a = 0.62, b = 0.48, which indicates a
modest degree of independence, and a brief look at the
well data convolutions of Fig. 3 confirms this impression.

We aim to simulate porosity in the region of the C38
reservoir, at a depth of ≈ 1500 m. We construct a cross
section which passes through the vertical wells 9 and 11,
and use a fine grid of 0.3 m [1 ft] × 16.8 m [55 ft] × 16.8 m
[55 ft] blocks, chosen to coincide with the seismic survey
gridding, and the logging interval. Examination of the well
logs shows that a simple, stationary exponential variogram
model is applicable to this field, and such a simulation can
be done as an ‘special’ case of the general Levy simulation
algorithm, with stationary, exponential covariance. The
major uncertainty here (as usual) is the horizontal range

of the covariance. For porosity , we use the covariance
structure C(r) = 0.0017e−3

√
z2+S2

xx
2/23.0 where all nu-

merical coefficients except the anisotropy factor Sx have
been obtained from the vertical variogram. With suitable
stratigraphic adjustments, one can show that wells 9 and
11 correlate quite strongly, with an anisotropy factor of
about Sx = 0.004.

We use this information in a ‘suppressed data’ esti-
mation problem. The hard data in well 9 is suppressed,
the anisotropy factor Sx is increased by a factor of three,
and we simulate the data in well 9 using only hard data
from well 11, but conditioned to the seismic. Three mod-
els were run, each of 200 realisations: (1) unconditioned
to seismic, (2) conditioned to seismic using the covari-
ance modelling described in the ‘cross-modelling’ section,
(2) conditioned to seismic but accepting realisations whose
χ2 = |Ssynth − Strue)|2 is less than the value obtained at
the calibration well (well 11). This last method is simi-
lar to the thresholding on the correlation coefficient used
by Bortoli4, and we include it for comparison purposes.
Fig. 10 illustrates the outcome of this numerical experi-
ment.

The averages of the seismic–conditioned models are
closer to the hidden data than the unconditioned model,
as one would expect, but the effect of χ2 thresholding is
much stronger than the covariance criterion. The thresh-
olding technique shows evidence of ‘overconditioning’: it
improves the estimate in some regions and degrades it in
others. The covariance technique affects the posterior dis-
tribution less strongly, but also with less bias.

The simulations show that the choice of acceptance cri-
terion strongly influences the posterior distribution. The
thresholding technique, because it never accepts half–
reasonable candidates, tends to overcondition the poste-
rior. The covariance modelling shows less dramatic effects,
but is more justifiable from the original data and other
physical grounds.

Future work
The last example highlights the importance of the sam-

pling techniques used in these MonteCarlo rejection meth-
ods. There remains a significant problem in all of these
‘column–based’ modelling approaches, and that is that the
choices made at each column are independent. In reality,
the horizontal correlations in the fine scale model usually
make adjacent columns look fairly similar. This means
that a particular realisation of a column, if it is accepted
with low probability, will tend to force subsequent simula-
tions of nearby columns to be also relatively improbable.
This effect ought to make the probability of acceptance
of the original column lower, but because the algorithm
proceeds on a column by column basis, these consequences
cannot be incorporated into the algorithm as it stands.
The overall effect is to make the synthetic seismic less
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transversely continuous than the true seismic. It is possi-
ble to write down a theory which incorporates these ideas,
but we leave the details of this to a later publication.

Conclusions
We have demonstrated that more complex, non-

stationary random field models like the Lévy random frac-
tal technique can be additionally conditioned to seismic
data. The conditioning depends critically on having a
fast repetitive simulation algorithm and a simple forward
model to compute the ‘synthetic seismic’. The amount
of extra work required to condition simulations to seismic
depends largely on the degree of correlation between syn-
thetic seismics at well logs and the true seismic, and the
number of gridblocks in the column to be simulated rel-
ative to the seismic resolution. Typically we suspect the
extra time to be a factor between 2 and 10.

It is also possible to obtain statistically significant cor-
relations with non–sonic logs, and perform simulations ex-
ploiting this correlation, but this will generally only be
possible if the derived wavelet is optimised for this case.
The extent to which a posteriori distribution is constrained
by the seismic in this case depends strongly on the strength
of the correlation obtained.

Furthermore, we have shown that the a posteriori ran-
dom field distributions are relatively sensitive to the rejec-
tion criteria used in the sampling algorithm. We encourage
other workers using similar algorithms to pay close atten-
tion to this matter, and hopefully stimulate further work in
developing sound but computationally feasible algorithms.

Nomenclature
S(t), S(z),Strue seismic amplitude as a function

of time t , depth z
w seismic wavelet
ak, ā wavelet coefficients
Φ well log property
kz Fourier wavenumber for depth
S,Ssynth Synthetic seismic
χ2 mismatch error in optimisation
C,Cij , i, j = 1, 2 Covariance matrices between true

and synthetic seismic
a, b coefficients in covariance model
l2 sum–of–squares norm of vector
λi eigenvalues of C

References
1. Painter, S., Paterson, L. and Boult, P.: “Improved tech-

nique for stochastic interpolation of reservoir proper-
ties,” SPE Journal (Mar. 1997) 2, 48.

2. Gaynor, G.C., Chang, E.Y., Painter, S.L. and Paterson,

L.: “Application of Lévy Random Fractal Simulation
Techniques in Modelling Reservoir Mechanisms in the
Kuparuk River Field, North Slope, Alaska,” paper SPE
39739 presented at the 1998 SPE Asia Pacific Confer-
ence on Integrated Modelling for Asset Management,
Kuala Lumpur, Mar. 23-24.

3. Eide, A.L.: “Stochastic Reservoir Characterization
Conditioned on Seismic Data,” Geostatistics Wollon-
gong ’96 , Kluwer Academic (1997) .

4. Bortoli, L.J., Alabert, F., Haas, A. and Journal, A.:
“Constraining Stochatic Images to Seismic Data,” Geo-
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j = 1

j = J (i)

j = jmin

j = jmax

well i

area informed by seismic trace

maximum data window

data window of interest

Fig. 1: Geometry and notation of technique for optimising the wavelet w = {ai, ā}. There are Nw wells i = 1 . . . Nw with nearest
seismic traces (depth–converted). We optimise the connection between the well property v and the seismic traces S over all wells
and in the region of interest jmin, jmax.
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Fig. 2: Typical optimal wavelets produced by the regression routine for the Stratton Field data. The regression uses four wells and
a 275 m [900 ft] interval logged at 0.3 m [1 ft] spacing to derive the wavelet. The noisy trace is the straightforward regression
routine, the smooth curve shows the result with smoothing to constrain the bandwidth. Without smoothing, the Pearson linear
correlation coefficients between the true (S) seismic and the computed convolutions S come out as {0.74, 0.84, 0.55, 0.57}, and
after smoothing, we get {0.71, 0.83, 0.54, 0.57}. Adding extra constraints like bandwidth restrictions (i.e. smoothing) always
degrades the correlation (in this case, not very much).
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Fig. 3: Thick section of reservoir showing true seismic amplitude and ‘synthetic amplitude’ computed from a convolution of well–log
porosity and an optimal wavelet. Conditioning directly to seismic traces requires estimating a realistic wavelet which will make
these two traces closely resemble each other (the optimisation has been performed over a 275 m [900 ft] interval).
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Fig. 4: The rejection distribution of the l2 norm in the case of a correlated seismic/synthetic–seismic field with a = 0.63, b = 0.48,
compared to the case if the two fields had the same self correlation but zero cross correlation. Probabilities developed by Monte
Carlo, using a plausible Ricker power spectrum model for the covariance C, averaged on a column height of about 1 1

2 seismic
wavelengths. Rejecting on the cross–correlated distribution of l2 seems a reasonable idea.
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Fig. 5: Example showing large (1024 × 70) fractional Levy motion field with 2 wells ‘drilled’ at the edges, and an inner region for
the actual study. The true field and the seismic in the region are shown expanded in the lower two figures.

Amplitude

Fig. 6: True and synthetic seismic signals obtained at wells. drilled in edges of the large field of figure 5. The synthetic trace is
produced using the optimal recovered wavelet in the right–hand inset. The deviation from the perfectly symmetric Ricker form is
due to the effect of noise.
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Fig. 7: Estimates of the auto and cross covariance function for the true and synthetic seismic signals. The thick solid line is the
estimate of the true seismic covariance, from which a Monte–Carlo ensemble of joint realisations is made, using an FFT method.
The mean and mean±one standard deviation curves of the covariance estimated from this ensemble are shown with the thinner
dashed lines. The thick long–dashed line shows the sample synthetic seismic covariance from the well data, the thick short–dashed
line the sample cross-covariance, normalised by (a2 + b2) and b respectively. Both curves are well within reasonable error bounds
associated with the intrinsic coregionalisation model, so may be satisfactorily modelled using the same covariance matrix.

Fig. 8: Four realisations of the central region of Fig. 5 conditioned only to the well data at the edges.

Fig. 9: Four realisations of the central region of Fig. 5 conditioned both to the well data at the edges and the seismic.
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true seismic
synthetic seismic
hidden well 9 data
mean of uncond. simulations
mean of cond. simulations (cov.)
mean of cond. simulations (chi-sq.)

synthetic seismic
hidden well 9 data
mean of uncond. simulations
mean of cond. simulations (cov.)
mean of cond. simulations (chi-sq.)

Fig. 10: Averages of simulating the hidden well data in well 9 based on well 11 data and seismic. Three methods were used. (1)
Unconditional to seismic, (2) seismic with covariance modelling, (3) seismic with thresholding on χ2 = |Ssynth − Strue)|2. The
thick lines show averages of 200 realisations made using the three methods. Both seismic–conditioned methods do better than
the unconditioned case, but the thresholding method is more dramatically affected. Thresholding on χ2 is obviously a stronger
constraint, but, as illustrated here, can improve estimates in some regions and degrade them in others.


