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Abstract Endosomal membrane trafficking requires coordination between phosphoinositide

lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity

and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through

integrating all three systems, functions as a critical node in the protein circuitry underlying

polarized recycling of a5b1-integrin in mouse embryonic fibroblasts, which enables persistent

fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-

phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range

motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L)

and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes

polarized trafficking to the leading edge of migrating fibroblasts. We further determine that a5b1-

integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB

as an unexpected key element in coordinating polarized transport of a5b1-integrin and likely of

other specialized endocytic cargos.

DOI: 10.7554/eLife.20417.001

Introduction
The currently accepted view that plasma membranes of eukaryotic cells are in a state of flux due to

rapid internalization and recycling of membrane proteins received its first experimental support in a

prescient 1976 paper by Ralph Steinman and his colleagues (Steinman et al., 1976). Steinman (later

awarded a Nobel Prize for the discovery of dendritic cells) observed that a surface area equivalent

to the entire plasma membrane was internalized every 2 hr in L-cells, which implied a rate of turn-

over for the bulk plasma membrane much faster than that of individual membrane proteins known at

that time. His non-intuitive conclusion was that the majority of internalized membrane was returned

to the cell surface in the form of small vesicles:

“A plausible morphologic mechanism for membrane recycling is that it involves the production of

tiny vesicles capable of returning large amounts of surface membrane, with very little content, to the

cell surface”
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Steinman’s conjecture of membrane recycling through small vesicles was soon validated with the

discovery of receptor-mediated endocytosis and of the return of endosomal receptors to the plasma

membrane following separation from ligands (Pearse and Bretseher, 1981). Membrane recycling is

now recognized as a fundamental property of nucleated cells required for diverse functions, includ-

ing cell migration, cytokinesis, receptor signaling, and synaptic transmission.

Much progress has been made in elucidating the molecular components required for the highly

selective sorting and trafficking of Steinman’s ’tiny vesicles’, now termed endosomes. These include

identification of numerous small GTPases, as well as of phosphoinositide lipids, together with their

effectors and regulators, which collaborate to determine the endosomal identity (Balla, 2013;

Jean and Kiger, 2012). In addition, diverse molecular motors that promote both long-range and

local endosomal transport have been identified (Granger et al., 2014).

Despite these remarkable findings, it is not clear how the individual activities associated with

endosomes are integrated to promote a highly regulated and precise delivery of particular mem-

brane proteins to specific cellular locations in polarized cells. One plausible mechanism is through

scaffolding proteins capable of simultaneously recruiting and modulating the activity of motor and

signaling complexes at endosomal membranes. For instance, the molecular scaffolds JNK interacting

proteins 1 and 3 (JIP1 and JIP3) promote axonal transport through binding both protein kinases and

the small G protein Arf6 on intracellular membranes. Moreover, JIP1 and JIP3 regulate kinesins

directly and dynein indirectly through interaction with the dynactin complex (Fu and Holzbaur,

2013). The kinesin motor Kif16B provides another example, which, through direct binding of both

PI3P lipids and the small G protein Rab14, promotes the transport of FGFR2-endosomes to the fast-

growing ends of microtubules during early embryonic development (Hoepfner et al., 2005;

Ueno et al., 2011).

AnkB is a member of the vertebrate ankyrin family of plasma membrane-organizing proteins that,

in contrast to Ankyrin-G (AnkG) and Ankyrin-R (AnkR), associates with intracellular organelles

(He et al., 2013; Lorenzo et al., 2014). AnkB promotes axonal transport and growth through cou-

pling dynactin to organelles containing PI3P lipids (Lorenzo et al., 2014). AnkB is broadly

expressed, suggesting it may coordinate organelle transport in multiple cellular contexts. Here, we

eLife digest The membranes that surround animal and other eukaryotic cells are in a state of

flux. Small fluid-filled sacs known as vesicles form from the membrane and move into the cell, while

other vesicles are returning with cargos of chemicals. These processes allow cells to rapidly adjust

the composition of their surfaces for different activities, such as migrating to other parts of the

body. Like rock climbers, migrating cells need to hang onto nearby surfaces as they move and so

vesicles deliver sticky “adhesion” proteins to the front of migrating cells.

At least three different kinds of molecule are involved in delivering vesicles to a particular end of

the cell. Fat molecules known as phosphoinositide lipids act as markers to identify different vesicles,

while proteins called GTPases determine which direction the third type of molecules (known as

molecular motors) will move the vesicles across the cell. However, it is still not clear how these

molecules work together to transport specific cargos to the front of cells during migration.

Now, Qu et al. discover that a protein called ankyrin-B coordinates the directional transport of

specific vesicles within migrating cells. Biochemical experiments in cells isolated from mouse

embryos show that ankyrin-B recognizes vesicles containing specific phosphoinositide lipids and

attaches to them. Ankyrin-B then recruits molecular motors and another protein called RabGAP1L,

which regulates the activity of GTPases, to direct the movements of the vesicles. Microscopy

experiments reveal that this machinery is essential to transport cell adhesion proteins and other

specific cargos to the front of migrating cells.

The next step following on from this work will be to examine how ankyrin-B and RabGAP1L

behave in cells that are still inside the body of the animal. Future experiments will identify other

cargos that use this machinery to reach the cell membrane and investigate how cells recognize and

select these cargos for transport.

DOI: 10.7554/eLife.20417.002
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report that AnkB, through binding to PI3P lipids, dynactin, and the Rab GTPase-regulating protein

RabGAP1L, functions as a master integrator of endosomal transport, which promotes polarized traf-

ficking of PI3P-positive endosomes bearing a5b1-integrin to the leading edge of migrating

fibroblasts.

Results

AnkB promotes long-range transport of PI3P-positive organelles
AnkB promotes fast axonal transport by coupling the motor adaptor dynactin to PI3P-positive organ-

elles in neurons (Lorenzo et al., 2014). Therefore, we hypothesized that AnkB also contributes to

the long-range transport of PI3P-positive organelles in other cell types. We selected primary cultures

of mouse embryonic fibroblasts (MEFs) because these cells express 220 kDa AnkB (Figure 1A), and

are a standard laboratory model that have been extensively studied with respect to organelle trans-

port. We first examined the dynamics of AnkB-positive organelles by tracking the motility of vesicles

expressing 220 kDa AnkB-mCherry in AnkB null (Ank2-/-) MEFs isolated from postnatal day 0 (PND0)

Ank2-/- mice (Scotland et al., 1998). It is important to note that over-expression of 220 kDa AnkB is

lethal for MEFs, and it was critical to express 220 kDa AnkB-mCherry in an AnkB null background.

We observed that a subset of WT AnkB-mCherry-associated organelles exhibited fast long-range

motility, with a net velocity greater than 4 mm/s and a persistence greater than 0.5, which is consis-

tent with long-range, fast microtubule-based transport (Figure 1B).

To examine the role of AnkB’s association with dynactin in organelle motility in MEFs, we tracked

the motion of vesicles expressing the mutant DD1320AA AnkB-mCherry protein, unable to associate

with the dynactin complex (Ayalon et al., 2011). DD1320AA AnkB-mCherry-positive organelles

showed shorter-range motility, reduced net velocity (velocity < 4 mm/s, persistence < 0.5), and

completely lacked a population with fast long-range motion (velocity > 4 mm/s, persistence > 0.5),

which is otherwise observed in Ank2-/- MEFs expressing WT AnkB-mCherry (Figure 1B and Fig-

ure 1—figure supplement 1A). Hence, these results demonstrate that AnkB provides long-range

motility to a subset of organelles by coupling them through dynactin to either dynein or kinesin

motors.

AnkB harbors a highly conserved basic pocket within the second ZU5 (ZU5C) domain that specifi-

cally binds PI3P lipids and is required for AnkB’s association with axonal cargos (Figure 1C, yellow

surface) (Wang et al., 2012; Lorenzo et al., 2014). To examine if AnkB also associates with organ-

elles through PI3P lipids in MEFs, we labeled PI3P lipids using the GFP-2xFYVEEEA1 domain

(Schink et al., 2013). Live microscopy revealed that over 70% of WT AnkB-mCherry-positive vesicles

detected were PI3P-positive, and around 45% of PI3P-positive organelles were associated with WT

AnkB-mCherry (Figure 1D–F and Figure 1—figure supplement 1D). In sharp contrast, mutant

R1194A AnkB-mCherry, which cannot bind PI3P lipids (Lorenzo et al., 2014) (Figure 1C red circle),

failed to localize to PI3P-positive organelles, and was instead diffusely distributed throughout the

cytoplasm (Figure 1D–E).

We next sought to uncover the identity of AnkB-positive structures in live MEFs by coexpressing

WT AnkB-mCherry and organelle markers in Ank2-/- MEFs. Although WT AnkB-mCherry expressed

was preferentially localized to Rab5-positive early endosomes, it also exhibited partial overlap with

Rab11-positive recycling endosomes and LAMP1-positive lysosomes. Moreover, we detected a

restricted association of AnkB-mCherry with puncta at mitochondria ends. In contrast, we observed

almost no localization of AnkB-mCherry to either Golgi or ER membranes (Figure 1F and Figure 1—

figure supplement 1B,D). We also examined the association of PI3P lipids with multiple organelles

in fixed MEFs using the GFP-2xFYVEEEA1 probe and antibodies against endogenous organelle-spe-

cific proteins. As expected (Gillooly et al., 2000; Di Paolo and De Camilli, 2006), PI3P lipids were

enriched in endo-lysosomal membranes (Figure 1—figure supplement 1C,E), which closely resem-

bled AnkB’s subcellular distribution pattern in MEFs (Figure 1—figure supplement 1B,D). Collec-

tively, these results demonstrate that AnkB associates with multiple organelles through PI3P lipids

and promotes their long-range transport through interaction with the dynactin motor protein adap-

tor complex.
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Figure 1. AnkB is a PI3P-lipid effector in MEFs. (A) AnkB immunoblot (IB) of whole cell lysate from WT and Ank2-/- MEFs. (B) Representative tracks of

WT AnkB-mCherry vesicles in Ank2-/- MEFs and mean velocity and persistence of WT AnkB-mCherry and DD1320AA AnkB-mCherry vesicles. Scale bar,

10 mm. Tracks were plotted in an XY coordinate system assuming (0,0) as initial position. (C) Molecular surface representation of the ZU5N-ZU5C-UPA-

DD. The DD1320 site critical for binding to dynactin 4 is pointed by red arrow. Basic residues on the PI3P-binding surface are colored in yellow. The

Figure 1 continued on next page
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AnkB directly recruits RabGAP1L to PI3P-positive organelles
Rab GTPases regulate endosomal identity and trafficking through the recruitment of effector mole-

cules, and cycle between active (GTP-bound) and inactive (GDP-bound) states, which are respec-

tively determined by GDP/GTP exchange factors (RabGEFs) and GTPase activating proteins

(RabGAPs) (Frasa et al., 2012). Therefore, we asked whether AnkB interacts with Rab GTPases or

their regulators.

AnkB is a multipartite protein with an N-terminus membrane-binding domain (MBD) containing

twenty-four ankyrin repeats, a supermodule structure (Zu5N-Zu5C-UPA domains) that binds b-spec-

trins, dynactin, and PI3P lipids, a death domain (DD), and an intrinsically unstructured C-terminal reg-

ulatory domain, which engages in intramolecular interactions (Wang et al., 2012; Bennett and

Lorenzo, 2016) (Figure 2A). Among these domains, only the death domain (named due to structural

similarity to death domains of apoptosis-related proteins) has no known partners. Interestingly, a

yeast-two-hybrid (Y2H) screen using the death domain of human AnkB (AnkB DD) (Figure 2A) and a

normalized universal mouse cDNA library identified ten individual positive clones, all sharing the last

65 C-terminal residues of RabGAP1L (Figure 2B).

RabGAP1L belongs to the Tre2–Bub2–Cdc16 (TBC) domain-containing family of Rab-specific

GTPase-activating proteins (TBC/RabGAPs) (Fukuda, 2011), which regulate intracellular membrane

trafficking in multiple cellular contexts (Fuchs et al., 2007; Haas et al., 2005; Patino-Lopez et al.,

2008). Specifically, RabGAP1L, via a catalytic site on the TBC domain, inactivates Rab22A by pro-

moting its GDP-bound configuration (Itoh et al., 2006; Frasa et al., 2012). In addition, RabGAP1L

contains an N-terminal phosphotyrosine-binding (PTB) domain and a kinesin-like domain of unknown

function (Hidaka et al., 2000) (Figure 2B).

Co-immunoprecipitation (co-IP) and co-localization experiments using affinity-purified antibodies

against AnkB and RabGAP1L, which recognize single polypeptides of 220 kDa and 93 kDa in MEFs,

respectively (Figure 1A and Figure 2—figure supplement 1A), showed that endogenous AnkB and

RabGAP1L interact in cells (Figure 2C top). Interestingly, the AnkG death domain (AnkG DD), which

is 65% homologous with the AnkB DD (Figure 2—figure supplement 1B), did not interact with Rab-

GAP1L in Y2H assays (data not shown). Similarly, full-length endogenous AnkG did not co-immu-

noprecipitate with RabGAP1L from MEF lysates (Figure 2C bottom). Thus, AnkB either gained the

ability to bind to RabGAP1L after the divergence of AnkB and AnkG in early vertebrate evolution, or

AnkG lost this activity.

We performed a proximity ligation assay (PLA) as well as immunofluorescence assay to further

assess the association of endogenous AnkB and RabGAP1L, and to identify the sites of their interac-

tion in MEFs. PLA produces a positive signal when putative binding partners are within less than 40

nm of each other, which allows the DNA labels of antibodies against these proteins to form double

strands (Söderberg et al., 2006). Consistent with the Y2H and co-IP results, we observed strong

PLA labeling of cytoplasmic organelles in WT MEFs and complete loss of signal in Ank2-/- MEFs

(Figure 2D). Immunofluorescent staining of endogenous AnkB and RabGAP1L also re-confirmed

their co-localization on a subset of cytoplasmic organelles (Figure 2—figure supplement 1H).

We next sought to identify AnkB and RabGAP1L residues critical for their interaction, which could

also serve as critical controls in cellular assays. The lack of association between RabGAP1L and AnkG

suggested that divergent sites in the sequences of AnkB DD and AnkG DD may mediate the AnkB

DD-RabGAP1L interaction. Binding assays between RabGAP1L and AnkB with alanine mutations in

Figure 1 continued

R1194 site critical for PI3P binding is circled and pointed in red. (D) Images show the localization of the PI3P biosensor GFP-2�FYVE to WT AnkB-

mCherry vesicles in Ank2-/- MEFs. R1194A AnkB-mCherry was found diffusely distributed in the cytoplasm. Scale bar, 10 mm. (E) Percentage of double

mCherry and GFP-positive vesicles. Data in (B) and (E) represent mean ± SD for three independent experiments. ***p<0.001, two-tailed t-test. N = 26

(B), 12 (E). (F–G) Quantitative analysis of localization of WT AnkB-mCherry (F) and GFP-2xFYVE (G) on different organelles. Results are expressed as the

ratio of co-localized vesicles over either total AnkB-mCherry or GFP-2xFYVE vesicles. Data represent mean ± SD for three independent experiments.

N = 10, 8.

DOI: 10.7554/eLife.20417.003

The following figure supplement is available for figure 1:

Figure supplement 1. Distribution of AnkB and PI3P lipids on multiple organelles.

DOI: 10.7554/eLife.20417.004
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Figure 2. RabGAP1L binds to the death domain of AnkB. (A, B) Schematic representation of the domain organization of 220 kDa AnkB (A) and 93 kDa

RabGAP1L (B). (C) Co-immunoprecipitation (Co-IP) of endogenous AnkB and RabGAP1L (top), AnkG and RabGAP1L (bottom) from WT MEF lysates. (D)

Proximity ligation assay. Red dots indicate cellular sites of interaction between AnkB and RabGAP1L, blue shows nuclear staining. (E) Co-IP of WT

AnkB-HA and RabGAP1L-GFP (left), E1537K AnkB-HA and RabGAP1L-GFP (middle), and WT AnkB-HA and KK783EE RabGAP1L-GFP (right) from

Figure 2 continued on next page
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seven of its DD charged residues diverging from AnkG’s DD (Figure 2—figure supplement 1B, red

box) showed that the E1537A substitution significantly weakened the interaction with RabGAP1L,

while the reverse-charge mutant E1537K blocked their association (Figure 2—figure supplement

1C). The E1537 site, highly conserved among vertebrate AnkB proteins, resides on the surface of the

crystal structure of AnkB DD (Figure 2G and Figure 2—figure supplement 1F).

Within the AnkB DD interacting portion of RabGAP1L, the highly conserved, positively charged

residues 783KKLKK (Figure 2—figure supplement 1D) provided potential candidates for interaction

with AnkB DD. We found that reversing the charge of the surface exposed 783KK residues to EE

(Figure 2G) abolishes RabGAP1L binding to AnkB DD in Y2H assays (data not shown). Co-immuno-

precipitation from HEK293 cell lysates of full length WT, but not E1537K, AnkB-HA with WT Rab-

GAP1L-GFP; as well as of WT, but not KK783EE, RabGAP1L-GFP with WT AnkB-HA (Figure 2E and

Figure 2—figure supplement 1E) corroborated these results.

Time-lapse video microscopy assessing the dynamic localization of AnkB-mCherry and Rab-

GAP1L-GFP co-expressed in Ank2-/- MEFs revealed that AnkB co-transports with RabGAP1L. Kymo-

graph analysis confirmed that both proteins were co-localized and co-transported on motile vesicles

(Figure 2F top, 2 hr and Figure 2—figure supplement 1G). In contrast, E1537K AnkB-mCherry,

which does not bind RabGAP1L, still localizes to vesicles, but no longer co-transports with Rab-

GAP1L-GFP (Figure 2F bottom, 2 hr and Figure 2—figure supplement 1G). Furthermore, the

KK783EE RabGAP1L-GFP mutant that abrogated interaction with AnkB also eliminated RabGAP1L-

GFP and AnkB-mCherry vesicular co-localization and co-transport (Figure 2F center, 2 hr and Fig-

ure 2—figure supplement 1G).

We next asked whether RabGAP1L localizes to PI3P-positive organelles in an AnkB-dependent

manner. While over 60% of RabGAP1L-mCherry vesicles detected in WT MEFs were associated with

PI3P-positive vesicles, strikingly, less than 20% of RabGAP1L-mCherry localized to PI3P-positive

compartments in Ank2-/-MEFs (Figure 3A,D). This result is further confirmed by immunofluorescence

detection of endogenous RabGAP1L in WT and Ank2-/-MEFs expressing PI3P indicator, GFP-2xFY-

VEEEA1 (Figure 3—figure supplement 1A–B). Together, these results reveal a new protein-protein

interaction between AnkB and RabGAP1L that recruits RabGAP1L to PI3P-positive organelles.

AnkB promotes dissociation of Rab22A from PI3P-associated organelles
through recruitment of RabGAP1L
RabGAP1L preferentially activates the GTPase activity of Rab22A (Itoh et al., 2006). Rab22A is a

vertebrate Rab GTPase closely related to Rab5 that localizes to early endosomes, where it interacts

with the early endosomal antigen 1 (EEA1) and the Rab5 guanine nucleotide exchange factor Rabex-

5 (Kauppi et al., 2002; Zhu et al., 2009). Interestingly, Rab22A facilitates the formation of a special-

ized subset of early endosomes, implicated in endocytosis as well as recycling of both clathrin-

dependent and clathrin-independent cargos (Holloway et al., 2013; Maldonado-Báez and Donald-

son, 2013; Weigert et al., 2004). We evaluated whether RabGAP1L recruitment to Rab22A-positive

organelles depends on AnkB. While in WT MEFs 40% to 60% of GFP-Rab22A-positive vesicles co-

localized with RabGAP1L-mCherry, this co-localization was reduced to less than 15% in Ank2-/- MEFs

(Figure 3B,E). This result is further confirmed by immunofluorescence of endogenous RabGAP1L in

WT and Ank2-/-MEFs expressing GFP-Rab22A (Figure 3—figure supplement 1C–D).

Figure 2 continued

HEK293 cells expressing corresponding plasmids. (F) Kymographs of WT AnkB-mCherry and RabGAP1L-GFP (top), WT AnkB-mCherry and KK783EE

RabGAP1L-GFP (middle), and E1537K AnkB-mCherry and WT RabGAP1L-GFP (bottom) motion in Ank2-/- MEFs. White arrowheads indicate vesicles

showing AnkB-mCherry and RabGAP1L co-transport. (G) Molecular surface representation of AnkB death domain (AnkB DD) and RabGAP1L TBC-C-

terminal domain (TBC-Ct). Residues critical for interaction are highlighted by yellow circles. (H) Co-localization of either WT AnkB-mCherry with WT

RabGAP1L-GFP, E1537K AnkB-mCherry with WT RabGAP1L-GFP, or WT AnkB-mCherry with KK783EE RabGAP1L-GFP in Ank2-/- MEFs. Data represent

mean ± SD from three independent experiments. ***p<0.001, one-way ANOVA with Tukey post-test. N = 8.

DOI: 10.7554/eLife.20417.005

The following figure supplement is available for figure 2:

Figure supplement 1. Validation of the RabGAP1L antibody and AnkB/RabGAP1L interaction.

DOI: 10.7554/eLife.20417.006
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Figure 3. AnkB promotes RabGAP1L targeting to Rab22A/PI3P-positive compartments and Rab22A dissociation from PI3P-positive endosomes. (A–C)

Representative images of live WT and Ank2-/- MEFs expressing either RabGAP1L-mCherry and GFP-2xFYVE (A), RabGAP1L-mCherry and GFP-Rab22A

(B), or mCherry-Rab22A and GFP-2xFYVE (C). Scale bar, 10 mm. (D) Quantitative data of the percentage of RabGAP1L that localize to GFP-2xFYVE

labeled PI3P-positive vesicles in WT and Ank2-/- MEFs. (E) Quantitative data of the percentage of RabGAP1L that localize to GFP-Rab22A-positive

compartments in WT and Ank2-/- MEFs. (F) Quantitative data of the percentage of Rab22A that localize to GFP-2xFYVE labeled PI3P-positive

compartments in WT and Ank2-/- MEFs. Data represent mean ± SD for three independent experiments. ***p<0.001, two-tailed t-test. N = 10, 11.

DOI: 10.7554/eLife.20417.007

The following figure supplement is available for figure 3:

Figure supplement 1. Distribution of endogenous RabGAP1L to PI3P-positive and Rab22A-positive compartment.

DOI: 10.7554/eLife.20417.008
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Inactivation of membrane-associated Rab GTPases ensures their dissociation from bound vesicles,

which is critical for the transition between endosomal compartments during endosomal trafficking

(Frasa et al., 2012). Therefore, we speculated that AnkB, via the recruitment of RabGAP1L to PI3P-

positive organelles, might promote inactivation of Rab22A and its dissociation from early endo-

somes. In line with previous reports of Rab22A association with early endosomes (Kauppi et al.,

2002; Zhu et al., 2009), we found that in WT MEFs over 40% of Rab22A localized to PI3P-enriched

membranes (Figure 3C,F). Remarkably, loss of AnkB expression not only abrogated co-localization

of RabGAP1L to Rab22A-positive organelles (Figure 3B,E), but also resulted in an increased associa-

tion of Rab22A with PI3P-positive compartments, especially within the perinuclear region

(Figure 3C,F). Thus, our data indicate that AnkB promotes dissociation of Rab22A from PI3P-

enriched organelles through the recruitment of RabGAP1L.

AnkB-associated organelles exhibit RabGAP1L-dependent polarized
transport
The interaction between RabGAP1L and AnkB prompted us to examine whether AnkB has a role in

determining organelle transport polarity. To study the dynamics of AnkB-associated organelles in

migrating MEFs, which are polarized cells with well-defined front and rear ends, we tracked their

motion from the perinuclear region by expressing AnkB proteins tagged with mMaple3, a photocon-

vertible molecule that switches from green to red fluorescent emission following blue light exposure

(Wang et al., 2014a). Ank2-/- MEFs expressing either mMaple3-tagged WT or mutant E1537K AnkB

were plated on tissue culture wells containing an insert, which was later removed to allow cell migra-

tion into the exposed region (Figure 4A). The perinuclear region of migrating cells was pulsed with

blue light resulting in conversion of about 70% of green AnkB-mMaple3 to red fluorescent signal

(Figure 4B, red inset). To dynamically track AnkB-mMaple3 particles, we monitored loss of red fluo-

rescence, due to outward migration of photoconverted perinuclear vesicles, as well as gain of green

fluorescence, due to entry of non-photoconverted inward-moving vesicles into the perinuclear

region (Figure 4B–E).

We found that the rate of entry of green vesicles from peripheral areas was equivalent for both

WT and E1537K AnkB (Figure 4C,E and G, green symbols). However, photoconverted red WT AnkB

vesicles exited the perinuclear region at twice the rate of mutant E1537K AnkB (Figure 4C,H–I, red

symbols). Moreover, photoconverted perinuclear WT AnkB-mMaple3 red vesicles exhibited a biased

transport toward the migrating front of the cell (Figure 4J and Figure 4—figure supplement 1A). In

contrast, red-converted E1537K AnkB-mMaple3 moved from the perinuclear region into both the

front and the rear of cells at equivalent rates (Figure 4J and Figure 4—figure supplement 1B).

Taken together, these results demonstrate that AnkB, via interaction with RabGAP1L, coordinates

the polarized transport of perinuclear PI3P-positive organelles to the migrating front of MEFs.

Identification of a5b1-integrin as an AnkB/RabGAP1L-dependent cargo
We next sought to identify membrane protein(s) that are transported via the AnkB/RabGAP1L/

Rab22A-mediated pathway in MEFs. Using a cell surface protein biotinylation assay (Bitsikas et al.,

2014), we found that AnkB deficiency did not cause global changes in either plasma membrane pro-

tein internalization or recycling, as shown by the similar rate and extent of internalization and recy-

cling of biotinylated surface proteins to the plasma membrane in WT and Ank2-/- MEFs (Figure 4—

figure supplement 2A–B). We also found no difference between WT and Ank2-/- MEFs in the

dynamics of internalization and recycling of known specialized endocytic cargos, including transferrin

(Trn) and avb3-integrin (Figure 4—figure supplement 2C–F).

We next evaluated the role of AnkB in active transport of the fibronectin receptor a5b1-integrin,

which, similar to AnkB, exhibits polarized delivery from cytoplasmic compartments to the leading

edge of migrating fibroblasts (Bretscher, 1989, 1992). Moreover, polarized transport of the fibro-

nectin receptor is extensively regulated by GTPases and their adaptor proteins (Caswell et al.,

2008, 2009; Thapa et al., 2012). We tagged a5-integrin with mMaple3 and tracked its dynamics in

migrating WT and Ank2-/- MEFs. In WT MEFs, photoconverted perinuclear a5-integrin-mMaple3

localized to vesicles that were predominantly transported towards the migrating cell front

(Figure 5A–B and G–I and Figure 5—figure supplement 1A). In contrast, in Ank2-/- MEFs, signifi-

cantly fewer photoconverted perinuclear a5-integrin-mMaple3 exited the converted region, and
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Figure 4. AnkB-associated perinuclear endosomal organelles exhibit polarized transport in migrating MEFs. (A) Schematic of the experimental design
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Figure 4 continued on next page
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showed no preference in transport directionality (Figure 5C–D and G–I and Figure 5—figure sup-

plement 1B). Thus, these results indicate that AnkB is required for the polarized transport of a5-

integrin from the perinuclear region to the migrating front of MEFs.

The fact that a5b1-integrin has a low degradation rate and is actively recycled in a long-loop

microtubule dependent route led us hypothesize that a majority of photo-converted perinuclear a5-

integrins belong to the recycling population (Caswell et al., 2009; Bridgewater et al., 2012;

Arjonen et al., 2012; Böttcher et al., 2012). Therefore, to determine whether a5b1-integrin

requires AnkB for polarized recycling, we followed the itinerary of internalized b1-integrin in WT and

Ank2-/- MEFs by calculating the percentage of recycled b1-integrin at the cell surface at selected

post-internalization times (Figure 6A). After 60 min, WT MEFs recycled over 60% of internalized b1-

integrins to the plasma membrane (Figure 6B,D). In contrast, in Ank2-/- MEFs less than 20% of inter-

nalized b1-integrins recycled to the cell surface over the same period, and instead accumulated at

the perinuclear region (Figure 6B,D). The pool of labeled intracellular b1-integrins in Ank2-/- MEFs

eventually did return to the plasma membrane after 3–6 hr (data not shown), with a significantly

slower recycling rate than in WT MEFs.

Integration of phosphoinositide lipids, GTPases, and motors is essential for efficient recycling of

endocytic cargoes, including a5b1-integrin (Jović et al., 2007, 2009; Thapa et al., 2012). Therefore,

we addressed the requirement for AnkB interactions with PI3P lipids, dynactin, and RabGAP1L for

a5b1-integrin recycling using a structure-function rescue approach. Expression of WT AnkB-mCherry

fully restored the rate and extent of b1-integrin recycling to the leading edge of migrating Ank2-/-

MEFs (Figure 6B–D). In marked contrast, neither E1537K AnkB-mCherry (lacking RabGAP1L binding)

nor R1194A AnkB-mCherry (lacking PI3P binding) rescued b1-integrin recycling deficits in Ank2-/-

MEFs (Figure 6C,D and Figure 6—figure supplement 1A). DD1320AA AnkB-mCherry (unable to

bind dynactin) (Figure 6C) partially rescued b1-integrin recycling to about 50% of the WT levels

(Figure 6D and Figure 6—figure supplement 1A). These results indicate that AnkB’s binding to

PI3P lipids and RabGAP1L are essential steps in b1-integrin recycling, while its association with the

dynactin complex increases its efficiency.

AnkB’s MBD is comprised of 24 ANK repeats folded as a solenoid with a peptide-binding groove

that mediates binding to multiple membrane proteins (Bennett and Lorenzo, 2016). Thus, we

hypothesized that AnkB’s MBD facilitates b1-integrin recycling via direct interaction with a5b1-integ-

rin or other associated adaptor proteins. To our surprise, expression of a truncated AnkB-mCherry

construct lacking the MBD (Zu5-Ct AnkB-mCherry) was sufficient to restore b1-integrin recycling to

the leading edge of Ank2-/- MEFs (Figure 6C,D and Figure 6—figure supplement 1B). Based on

these findings, we concluded that integrin recognition through ANK repeats is not required for

AnkB-dependent b1-integrin recycling.

Lastly, we investigated whether AnkB is required for either the initial sorting of b1-integrin to

early endosomes or for subsequent endosomal maturation steps. The localization of internalized b1-

integrin to Rab22A- or Rab5-positive early endosomes, both in WT and Ank2-/- MEFs (Figure 6—fig-

ure supplement 1C–E), suggests that the initial sorting to early endosomes is independent of AnkB.

However, b1-integrin exhibited increased co-localization with Rab5-positive early endosomes and

with Rab22A in Ank2-/- MEFs following initiation of recycling (Figure 6E,F and Figure 6—figure

Figure 4 continued

and D) Representative image of Ank2-/- MEF expressing WT AnkB-mMaple3 (B) or E1537K AnkB-mMaple3(D) at t = 0 s (pre-converted), 45 s (perinuclear

region converted), and 16 min (tracking end point). Scale bar, 10 mm. (C and E) Quantification of red fluorescent intensity (post-converted AnkB-

mMaple3) and green fluorescent intensity (pre-converted AnkB-mMaple3) in the perinuclear region. (F, I) Comparative analysis of green fluorescent gain

(F) and red fluorescent loss (I) in the perinuclear region. (G, H) Percentage of red fluorescent loss and green fluorescent gain in perinuclear region at 16

min. (J) Quantification of red fluorescent intensity gain at either the front or rear cell ends. Intensities at each time point are normalized to the

background intensity at t = 0 s. Data represent mean ± SD for three independent experiments. *p=0.011, ***p<0.001, two-tailed t-test. N = 9.

DOI: 10.7554/eLife.20417.009

The following figure supplements are available for figure 4:

Figure supplement 1. Distribution of WT AnkB-mMaple3 and E1537K AnkB-mMaple3 in MEFs during a photoconversion assay.

DOI: 10.7554/eLife.20417.010

Figure supplement 2. Global recycling of cell surface proteins, b3-integrin, and transferrin is not affected in Ank2-/- MEFs.

DOI: 10.7554/eLife.20417.011
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Figure 5. AnkB is required for polarized transport of a5-integrin towards the front end of migrating MEFs. (A and C) Same photoconversion- wound-

induced migration assay was performed in WT and Ank2-/- MEFs expressing a5-integrin-mMaple3. Representative images of WT MEFs (A) and Ank2-/-

MEFs (C) expressing a5-integrin-mMaple3 at 0s (pre-converted), 45 s (perinuclear region converted) and16 mins (tracking end point). Scale bar, 10 mm.

(B and D) Quantification of red fluorescent intensity (post-converted a5-integrin-mMaple3) and green fluorescent intensity (pre-converted AnkB-

Figure 5 continued on next page
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supplement 1D). These results indicate that AnkB, through recruitment of RabGAP1L, facilitates the

dissociation of Rab22A from b1-integrin-containing endocytic vesicles to allow their transition from

Rab5-positive early endosomes to Rab5-negative recycling endosomal compartments.

Balanced Rab22A activity is critical for b1-integrin recycling
Spatio-temporal regulation of Rab and Arf GTPase activities is critical for controlling the endosomal

recycling of a5b1-integrins (Caswell et al., 2008; Pellinen et al., 2006; Li J et al., 2007). To directly

address the requirement of GAP activity of RabGAP1L in b1-integrin recycling, we generated shRNA

mediated RabGAP1L knock-down cells. However, cells with knock-down of RabGAP1L or replace-

ment with GAP-deficient RabGAP1L, the R584A mutant that abolish the IxxDxxR arginine finger

motif (Pan et al., 2006; Frasa et al., 2012), exhibited altered morphology and global defects in cell

growth (Figure 6—figure supplement 2). These results suggest that RabGAP1L also plays important

roles though its GAP activity in cellular events other than integrin trafficking and cell migration.

Rab21 provides a similar example and is required for b1-integrin trafficking as well as cell adhesion

and cytokinesis (Pellinen et al., 2006, 2008; Mai et al., 2011).

To test if Rab22A activity is responsible for a5b1-integrin recycling downstream of the AnkB-Rab-

GAP1L pathway, we performed b1-integrin recycling assay in WT MEFs over-expressing either

mCherry-tagged WT Rab22A or constitutively active mutant Q64L Rab22A. Interestingly, WT MEFs

over-expressing WT Rab22A showed a reduced rate of b1-integrin recycling. The deficiency was fur-

ther increased in MEFs expressing Q64L Rab22A (Figure 6—figure supplement 3A–B). Moreover,

we noticed that WT MEFs expressing Q64L Rab22A not only affected internalization of b1-integrins,

but also of transferrin and b3-integrins, whose recycling is not affected in the loss of ankB (Figure 6—

figure supplement 3C). These results suggest that hyper-activation of Rab22A disrupts general recy-

cling of multiple receptors while the AnkB-RabGAP1L mediated regulation specifically tunes the

Rab22A activity on selected PI3P-positive organelles bearing b1-integrin.

AnkB/RabGAP1L interaction promotes directional cell migration
Fibroblasts rely on the efficient recycling of a5b1-integrin adhesion receptors to the plasma mem-

brane for directional migration (Caswell et al., 2008; Mai et al., 2011; Jović et al., 2007;

Zech et al., 2011), and b1-integrin is required for haptotaxis along fibronectin gradients

(De Franceschi et al., 2015; King et al., 2016). Considering that AnkB promotes a5b1-integrin recy-

cling to the leading edge of migrating MEFs, we next investigated the possibility that AnkB loss

impairs directional migration based on a linear fibronectin gradient. Using a microfluidic chamber

system-based haptotaxis assay, we tracked the position of individual WT and Ank2-/- MEFs migrating

on a linear gradient of fibronectin during a 24 hr interval, which allowed us to calculate the forward

migration index (FMI), overall velocity, and persistence of motion (Wu et al., 2012) (Figure 7A). Typ-

ically, fibroblasts haptotaxing on fibronectin gradients display an average FMI above 0.1, with a 95%

confidence interval (CI) above 0. In contrast, a FMI of 0 with 95% CI crossing 0 is considered as not

haptotaxing (Wu et al., 2012). While WT MEFs, similar to control IA32 fibroblasts, exhibited hapto-

taxis towards higher concentrations of fibronectin, Ank2-/- MEFs migrated in a random pattern

(Figure 7B,C). Interestingly, Ank2-/- MEFs exhibited no difference in the overall velocity or persis-

tence of the cell migration, suggesting that the cell motility machinery is fully functional in the

absence of AnkB (Figure 7D,E). The finding that AnkB is required for recycling of a5b1-integrin, but

Figure 5 continued

mMaple3) in the perinuclear region of WT (B) and an Ank2-/- (D) MEFs. (E, H) Comparative analysis of green fluorescent gain (E) and red fluorescent loss

(H) in the perinuclear region. (F, G) Quantitative data of the percentage of red fluorescent loss and green fluorescent gain in the perinuclear region of

WT and Ank2-/- MEFs at 16 min. (I) Quantification of red fluorescent intensity gain at either the front or rear cell ends. Intensities at each time point are

normalized to the background intensity at t = 0 s. Data represent mean ± SD for six independent experiments. Mean from each of the six experiment is

shown in E and H. **p=0.022, two-tailed t-test. N = 13.

DOI: 10.7554/eLife.20417.012

The following figure supplement is available for figure 5:

Figure supplement 1. Distribution of a5-integrin-mMaple3 in WT and Ank2-/- MEFs during a photoconversion assay.

DOI: 10.7554/eLife.20417.013
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Figure 6. An AnkB-mediated mechanism promotes a5b1-integrin recycling to the plasma membrane of migrating MEFs. (A) Schematic representation

of the b1-integrin recycling assay. Cell surface b1-integrins were labeled with anti-b1-integrin antibody conjugated with Alexa 488 at 4˚C. Cells were
incubated at 37˚C for 30 min to allow internalization. Remaining cell surface labeling is reduced by acid wash and recorded as recycle time point 0 min.

Cells were returned to 37˚C incubation for indicated times following the wash with PBS and culture media. (B) Representative images of WT and Ank2-/-

Figure 6 continued on next page
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not of avb3-integrin, is consistent with reports that fibroblasts rely primarily on b1-integrins for

establishing fibronectin haptotaxis (King et al., 2016).

Interestingly, rescue experiments in Ank2-/- MEFs expressing either WT or E1537K AnkB-GFP

(lacking RabGAP1L binding) showed that expression of WT AnkB-GFP restored the haptotatic migra-

tion pattern in Ank2-/- MEFs while E1537K AnkB-GFP did not rescue the impaired haptotactic

response (Figure 7B,C). Together, these data indicate that the AnkB-RabGAP1L interaction, which is

required for polarized recycling of b1-integrin, is also required for efficient fibroblast migration along

a fibronectin gradient. In future studies, it will be important to characterize the role of the AnkB-Rab-

GAP1L pathway in cell migration in a more physiological relevant 3D micro-environment and to eval-

uate its role in cancer cell metastasis (Caswell et al., 2007, 2008).

Discussion
We report the discovery of a new pathway required for polarized membrane transport of specialized

cargos. It was previously reported that AnkB promotes fast axonal transport through recruiting

dynactin to PI3P-positive organelles (Lorenzo et al., 2014). We demonstrate that in fibroblasts AnkB

functions as a PI3P effector associated with early endosomes, and describe a new interaction of

AnkB with RabGAP1L. Moreover, we show that AnkB recruits RabGAP1L to PI3P-positive organelles,

where it inactivates Rab22A, and identify a5b1-integrin as a specialized cargo that depends on

AnkB/RabGAP1L for efficient recycling to the leading edge of migrating fibroblasts (Figure 8). Thus,

our results establish AnkB as a key nodal element in the protein circuitry required for a5b1-integrin

recycling and for directional fibroblast migration on fibronectin gradients.

An AnkB/RabGAP1L-based pathway with roles in polarized long-range organelle transport likely

first appeared in jawed vertebrates over 400 million years ago as a result of neofunctionalization of

duplicated genes. Human AnkB, RabGAP1L, and Rab22A all have homologues in ghost sharks and

zebrafish with a high level of sequence similarity, including nearly complete conservation of their

AnkB-RabGAP1L binding sites. In contrast, residues required for interaction between AnkB and Rab-

GAP1L are highly divergent in the closest homologues of Drosophila melanogaster and C. elegans.

Human AnkB and its paralogue AnkG exhibit over 70% sequence conservation, with only a few local-

ized regions of divergence. One highly divergent site between these two ankyrins is an unstructured

peptide connecting the MBD and the first ZU5 domain, which through intramolecular inhibition, pre-

vents interactions between AnkB and membrane partners (He et al., 2013). Here, we identify an

additional divergent site within AnkB’s DD that allows AnkB, but not AnkG, to bind to RabGAP1L.

AnkB, likely gained RabGAP1L-binding activity after divergence of AnkB and AnkG proteins in early

vertebrate evolution, although, alternatively, AnkG may have lost this function. Similarly, RabGAP1L

differs from its paralogue RabGAP1 primarily in the C-terminal residues required to bind AnkB.

Figure 6 continued

MEFs at recycling points t = 0 min and t = 60 min. b1-integrins are shown in green, plasma membranes labeled with WGA-Alexa 633 are shown in blue.

Yellow arrows indicate plasma membrane areas at the migrating front containing recycled b1-integrin in WT and in Ank2-/-MEFs expressing WT AnkB-

mCherry. White arrows indicate the absence of recycled b1-integrin signal at the plasma membrane of Ank2-/-MEFs (C) Schematic representation of the

domain organization of AnkB-mCherry constructs used in structural function experiments. The various mutation sites are marked in red. (D) Quantitative

data of b1-integrin recycling in WT, Ank2-/-, and Ank2-/- MEFs expressing WT or mutant AnkB-mCherry constructs. Data represents mean ± SD from five

independent experiments. Individual data points indicate the mean from each experiment. N = 16. (E) Images show prolonged association of Rab5 with

b1-integrin vesicles in Ank2-/- MEFs. (F) Pearson’s co-localization coefficient between Rab5 and internalized b1-integrin 10 min post recycling in WT and

Ank2-/- MEFs. Data represents mean ± SD for three independent experiments. ***p<0.001, two-tailed t-test. N = 8.

DOI: 10.7554/eLife.20417.014

The following figure supplements are available for figure 6:

Figure supplement 1. Structural-functional study of AnkB-mCherry protein rescue of b1-integrin recycling deficits in Ank2-/- MEFs, b1-integrin

localization to Rab22A- and Rab5-positive early endosomes.

DOI: 10.7554/eLife.20417.015

Figure supplement 2. Knock down of RabGAP1L or replacement with GAP-deficient RabGAP1L affects cell viability.

DOI: 10.7554/eLife.20417.016

Figure supplement 3. Overexpression of WT or constitutively active Rab22A impairs receptor recycling.

DOI: 10.7554/eLife.20417.017
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Figure 7. An AnkB-RabGAP1L complex is required for haptotaxis of MEFs on a fibronectin gradient. (A) Schematic of a microfluidic chamber system-

based haptotaxis assay and analysis. (B) Rose plot showing the distribution of the tracking end point of cells migrate on a linear gradient of fibronectin.

(C) Mean FMI of WT MEFs, control IA32 fibroblasts, Ank2-/- MEFs and Ank2-/- MEFs expressing WT AnkB-GFP or E1537K AnkB-GFP with 95%

confidence interval (95% CI). Mean FMI with 95% CI crossing 0 is considered as not haptotaxing. (D, E) Mean velocity (D) and persistence (E) of

the motility of WT, Ank2-/-, and Ank2-/- MEFs expressing WT AnkB-GFP or E1537K AnkB-GFP. Data represent mean ± SD from four independent

experiments. *p=0.0238, 0.04. N = 98, 156, 116, 70, 78. one-way ANOVA with Tukey post-test.

DOI: 10.7554/eLife.20417.018
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A functional prediction, based on the recent evolution of the AnkB/RabGAP1L-based pathway, is

that it will engage a subset of cargos with specialized roles in vertebrate physiology. In support of

this idea, Rab22A, an AnkB/RabGAP1L substrate identified in this study, participates in recycling of

other specialized cargos, including the Menkes copper transporter, the epidermal growth factor

receptor (EGFR), and the major histocompatibility complex class I (Holloway et al., 2013; Maldo-

nado-Báez and Donaldson, 2013; Weigert et al., 2004). Interestingly, Rab22A shares 70%

sequence identity with Rab22B/Rab31, also implicated in the endosomal transport of specialized car-

gos such as EGFR and the p75 neurotrophin receptor (Baeza-Raja et al., 2012; Chua and Tang,

2014). It will be of interest to determine whether Rab22B is a RabGAP1L substrate, and whether it

also depends of AnkB for its inactivation. Likewise, it will be important to identify the full comple-

ment of membrane-associated proteins engaged by the AnkB/RabGAP1L pathway.

As an initial step in further elucidating the physiological role(s) of the AnkB/RabGAP1L interac-

tion, we performed a proximity ligation assay as well as immunofluorescent staining of total AnkB

and RabGAP1L in brain and skeletal muscle tissues from PND 30 mice (Figure 8—figure supple-

ment 1). We detected a strong PLA signal in the corpus callosum in the CNS and costameres in skel-

etal muscle (Figure 8—figure supplement 1B,D). Interestingly, AnkB is required for preservation of

the corpus callosum and assembly of costameres (Scotland et al., 1998; Lorenzo et al., 2014;

Ayalon et al., 2008). The cellular role of the AnkB/RabGAP1L interaction remains to be further char-

acterized in more specialized mice models such as E1537K AnkB knock-in mice lacking RabGAP1L-

binding activity.

An AnkB mutation eliminating interaction with the dynactin complex impairs but does not abolish

a5b1-integrin recycling to the plasma membrane (Figure 6D). The residual a5b1-integrin transport

may operate through alternative mechanisms to recruit motor proteins to AnkB-associated

Rab5

PTB
TBCKN-like

DD

Rab22

RabGAP1L
? ? dynactin/motor 

Zu5(C)PI3P

AnkyrinB

A

Figure 8. Model of AnkB-mediated mechanism for endosomal transport. (A) Model of AnkB-mediated mechanism for the recruitment of RabGAP1L to

PI3P/Rab22A-positive endosomal compartments, which is critical for the maturation and recycling of a5b1-integrin containing endosomes.

DOI: 10.7554/eLife.20417.019

The following figure supplement is available for figure 8:

Figure supplement 1. AnkB and RabGAP1L co-localize at the corpus callosum in the CNS and costameres in skeletal muscle.

DOI: 10.7554/eLife.20417.020
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organelles, and facilitate their traffic from the perinuclear compartment to the plasma membrane.

One potential candidate is the kinesin-3 family member KIF16B, which binds directly to PI3P lipids

and promotes outward transport of Rab5-associated early endosomes to the cell surface

(Hoepfner et al., 2005).

Inactivation of Rab22A by RabGAP1L through its TBC domain likely contributes to the maturation

of early endosomes. GTP-bound Rab22A directly associates with the Rab5 GEF Rabex-1, which acti-

vates Rab5 (Zhu et al., 2009). Alternatively, conversion of Rab22A to its GDP form through the

AnkB-mediated recruitment of RabGAP1L would be expected to reduce Rab5 activation, thus pro-

moting loss of early endosome identity. Another possibility is that RabGAP1L perform functions

independent of GAP-activity, similar to p120RasGAP, which competes with, instead of inactivating,

Rab21in binding to integrin a cytoplasmic tails to promote integrin recycling (Mai et al., 2011).

However, whether and how loss of Rab22A association with early endosomes lead to the polarized

transport of organelles preferentially to the front of migrating fibroblasts remains to be elucidated.

The regulation of GTPases and their adaptor proteins also involves kinases (Stenmark, 2009;

Frasa et al., 2012). Specifically, previous studies had shown that Diacylglycerol kinase a (DGKa) is

required for Rab-coupling protein (RCP)-dependent integrin trafficking and Akt mediated phosphor-

ylation of ACAP1, a GAP for Afr6, is required for integrin recycling (Rainero et al., 2012; Li et al.,

2005). Although the kinase(s) that regulate RabGAP1L activity has not been identified, it remains to

be a possible regulatory mechanism for sensing directional cues during haptotaxis (Figure 8).

Integrin dynamics has been the focus of intense investigation with particular attention from inves-

tigators in the fields of cancer cell metastasis, and angiogenesis (De Franceschi et al., 2015;

Caswell et al., 2007; Dozynkiewicz et al., 2012; Paul et al., 2015; Tian et al., 2012). Interestingly,

Rab22A also contributes to exosome biogenesis and shedding from primary tumor cells and tumor

metastasis (Wang et al., 2014b). Our discovery of an AnkB/RabGAP1L pathway as a key regulator

of Rab22A localization and activity, and of a5b1-integrin polarized transport, offers new insights into

the molecular circuitry underlying fibroblast and endothelial cell migration and tumor metastasis, as

well as potential new targets for regulation.

Long-range transport and targeting of integrins underlies neurite outgrowth and neuronal migra-

tion (Anton et al., 1999; Condic, 2001; Condic and Letourneau, 1997; Wu and Reddy, 2012).

Moreover, proper levels and dynamics of a5b1-integrin complexes, shown to localize to nerve

growth cones, are required in multiple stages of brain development and synaptic function (Bi et al.,

2001; Graus-Porta et al., 2001; Marchetti et al., 2010; Yanagida et al., 1999). Intriguingly, the

neuron-specific 440 kDa AnkB isoform is exclusively targeted to axons and enriched at axonal

growth cones and might play a role in axonal guidance (Kunimoto, 1995). It is, thus, conceivable

that similar to its roles in migrating fibroblasts, an AnkB/RabGAP1L pathway might facilitate the 440

kDa AnkB-mediated axonal growth cone behavior, axonal guidance and synaptogenesis.

Materials and methods

Mouse lines and animal care
All animal care and procedures were approved by the Institutional Animal Care and Use Committee

of Duke University. AnkB KO mice (Scotland et al., 1998) were generated by targeted disruption of

the endogenous Ank2 gene by homologous recombination. In brief, a clone containing 17 kb of the

Ank2 gene isolated from a 129SVJ genomic l DNA library was modified to introduce a NotI site-

flanked cassette containing a neomycin resistance gene, an in-frame HA epitope, and a stop codon

within an exon in the spectrin-binding domain of AnkB. Male C57BL/6 chimeras containing the tar-

geting construct were crossed to C57BL/6 females to assure germline transmission. Heterozygous

carriers (Ank2+/�) were maintained in a mixed 129SVJ/C57BL/6 genetic background and used to

generate WT (Ank2+/+) and AnkB KO mice (Ank2�/�) littermates.

DNA constructs
AnkB-2xHA, AnkB-mCherry, DD1320AA AnkB-mCherry, and R1194A AnkB-mCherry clones have

been previously described (Lorenzo et al., 2014). Full-length EB1-GFP, LAMP1-GFP, Rab5-RFP,

Rab11-GFP, and TGN38-GFP were purchased from Addgene (Addgene, Cambridge, MA). The pN1-

DEST-mMaple3 vector used as backbone for the mMaple3-tagged clones was generated from the
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pN1-DEST-mCherry vector. In brief, the AgeI-MfeI mCherry sequence was replaced with a 5’-AgeI-

mMaple3-MfeI-3’ fragment (cloned from Zyxin-mMaple3, a generous gift from Xiaowei Zhuang, Har-

vard University, MA). AnkB-mMaple3 and a5-integrin-mMaple3 clones were then generated by LR

recombination (Invitrogen, Carlsbad, CA) of either AnkB-pENTER or a5-integrin-pENTER with pN1-

DEST-mMaple3.

AnkB ZU5N-ZU5C-UPA-DD-Ct-mCherry was generated by replacing the GFP sequence from

ZU5N-ZU5C-UPA-DD-Ct-GFP with the mCherry sequence using the PmeI and NotI sites. DDD AnkB-

mCherry, E1537K AnkB-mCherry mutants were generated by site-directed mutagenesis. mMaple3-

2�FYVEEEA1 was generated by replacing the GFP sequence in the GFP-2�FYVEEEA1 clone, a gener-

ous gift from P. De Camilli (Yale University, CT), with the mMaple3 sequence using the AgeI and

XhoI sites.

The mouse RabGAP1L cDNA sequence was subcloned into pENTER using the D-TOPO approach.

mCherry- and GFP-tagged RabGAP1L derivatives were generated by LR recombination. The mouse

Rab22A cDNA was subcloned into the SalI and BamHI sites of pEGFP-C1 to generate GFP-Rab22A.

Then, the GFP sequence was removed and replaced by a 5’-AgeI- mMaple3- AccIII-3’AgeI fragment.

MBP-RabGAPL1(1–235)-6xHis was generated by LR recombination between RabGAP1L (1-235)-pEN-

TER and the pMAL-c4G-DEST vector. Similarly, pGBKT7-AnkB DD and pGBKT7-AnkG DD clones

were generated by LR recombination between AnkB DD-pENTER or AnkG DD-pENTER and the

pGBKT7-DEST vector. pGADT7-RabGAP1L (E507-L815) were generated by LR recombination

between RabGAP1L (E507-L815)-pENTER and pGADT7-DEST vector. All mutations were introduced

by site-directed mutagenesis.

Antibodies
An affinity-purified antibody against RabGAP1L was generated by immunization of rabbits with a

purified peptide containing amino acids 1–235 of mouse RabGAP1L (see generation of anti-Rab-

GAP1L antibody). Rabbit affinity-purified antibodies against total AnkB (C-terminal domain), b2-

spectrin (spectrin repeats 4–9), GFP, sheep anti-AnkB (C-terminal domain) and goat anti-AnkG (C-

terminal domain) were all generated in our laboratory (Ayalon et al., 2011). Other primary antibod-

ies include, mouse anti-HA and chicken anti-GFP (Aves Labs, Tigard, OR), rabbit anti-Rab5 and anti-

TGN38 (Cell Signaling Technology, Danvers, MA), mouse anti-LAMP1 (Developmental Studies

Hybridoma Bank, University of Iowa, IA), rabbit anti-Rab11 (Invitrogen), rat anti-EEA1 and rabbit

anti-golgin97 (Abcam, Cambridge, UK), mouse anti-a-tubulin and mouse anti-sheep/goat IgG

(Thermo, Waltham, MA). Alexa488-anti-mouse/rat CD29 (Biolegend, San Diego, CA), Alexa633-

WGA and Alexa568-tranferrin (Life Technologies, Carlsbad, CA) were used in internalization and

recycling assays. Secondary antibodies used includes: Alexa Fluor 488 or 568–conjugated donkey

anti–mouse, anti–rabbit, anti-chicken, anti-rat, anti-sheep or anti–goat purchased from Invitrogen.

Generation of anti-RabGAP1L antibody
A His-MBP-RabGAP1L (residues 1–235) protein was purified from bacterial cultures by a two-step

affinity purification protocol using nickel and amylose beads. MBP and His tags were removed by

subsequent treatment with precision protease and affinity chromatography using GST beads. Puri-

fied RabGAP1L peptides were used as antigen for rabbit immunization. Serum from immunized rab-

bits was collected and the anti-RabGAP1L antibody purified using in-tandem ovalbumin-, MBP-, and

antigen (RabGAP1L 1–235)-affinity columns. The eluted antibody was mixed 1:1 (volume) with glyc-

erol and stored at �20˚C.

Mammalian cell culture and transfection
Primary fibroblasts were isolated from postnatal day zero (PND0) Ank2�/� and WT pups and cul-

tured by standard methods. Passage one or two MEFs were electroporated with plasmids using an

ECM 830 Square Wave Electroporation System830 (BTX, Harvard Apparatus, Holliston, MA) follow-

ing the standard protocol recommended by the manufacturer. Cells were either imaged live or fixed

with 4% PFA for further examination.
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Live-cell imaging and analysis
Cells expressing fluorescently-tagged proteins were cultured on fibronectin-coated MatTek dishes

and imaged using a Zeiss LSM 780 inverted confocal microscope equipped with temperature and

CO2 controls. Individual cells were selected for either one-frame or time-lapse imaging (1 frame/2 s,

60 frames). Tracks of individual vesicles were generated using the manual tracker function of ImageJ.

Velocity (mm) = displacement/time and Persistence = displacement/total distance.

Immunoprecipitation
Total protein homogenates from MEFs were prepared in PBS containing 150 mM NaCl, 0.32 M

sucrose, 2 mM EDTA, 0.1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, and protease inhibi-

tors (10 mg/ml AEBSF, 30 mg/ml benzamidine, 10 mg/ml pepstatin, and 10 mg/ml leupeptin; EMD

Millipore, Billerica, MA). Samples were centrifuged at 100,000 g for 30 min, and the supernatants

were precleared with protein A/G Dynabeads (EMD Millipore) and subjected to immunoprecipitation

using antibodies against AnkB, AnkG, RabGAP1L, or control IgG. Immunoprecipitation samples

were resolved by SDS-PAGE and Western blotting, and signal detected using the Odyssey CLx

imaging system.

For coimmunoprecipitation experiments, 5 � 106 HEK293 cells were plated in 10 cm dishes and

transfected with 4 mg of each plasmid using Lipofectamine 2000 (Invitrogen) according to the manu-

facturer’s instructions. Cells were harvested 72 hr after transfection and lysed in 0.5% Triton X-100 in

lysis buffer (10 mM sodium phosphate, 0.32 M sucrose, 2 mM EDTA, and protease inhibitors). Cell

lysates were centrifuged at 100,000 g for 30 min, and the soluble fraction was collected and pre-

cleared by incubation with protein A/G Dynabeads. Coimmunoprecipitation experiments were per-

formed using protein A/G Dynabeads and mouse anti-HA or rabbit anti-GFP antibodies. Immuno-

precipitation samples were resolved by SDS-PAGE and Western blot as described in the previous

paragraph.

Yeast-two-hybrid assay
The Y2H screen was performed using the Matchmaker Gold Yeast-Two-Hybrid System and the

Mouse Universal Normalized cDNA library (Clontech, Mountain View, CA). The screen was per-

formed following the recommendations of the manufacturer. The GAL4 DNA-BD/bait construct was

prepared by ligating a PCR fragment containing the AnkB death domain (aa1485-1563, accession

no. NM_020977.3) into the pGBKT7 vector (Clontech). The yeast strain Y2HGold was maintained on

YPD agar plates on SD –TRP (tryptophan) plates when transfected with the GAL4 DNA-BD/AnkB DD

bait construct. To confirm the expression of the bait and prey plasmids, cells were grown on SD-

Leu/Trp plates. The library was transformed into the AH 109 yeast strain (Takara Bio Inc., Mountain

View, CA). The Y2H screen was performed under high-stringency growth conditions as recom-

mended by the manufacturer.

Yeast cells coexpressing either AnkB DD or AnkG DD (baits) together with either the C-terminal

sequence of RabGAP1L cloned in pGADT7, or the empty pGADT7vector (prey) were grown on

plates lacking leucine, tryptophan, histidine, and adenine (-Leu, -Trp, -His, and -Ade) and supple-

mented with 125 ng/ml Aureobasidin A. Same conditions were used to assess interactions between

AnkB DD mutant baits and the RabGAP1L C-terminal domain.

Proximity ligation assay
PLA was performed using the commercial Duolink kit (Sigma-Aldrich, St. Louis, MO) following the

manufacturer’s recommendations. PFA-fixed cells or deparaffinized tissue sections were incubated

overnight with a pair of primary antibodies, each produced in different species, against the putative

interacting partners. Duolink minus- and plus-probes were used to detect antibody-labeled proteins.

mMaple3-based photoconversion assay and analysis
Cells were transfected with plasmids encoding WT or E1537K AnkB-mMaple3 or a5-integrin-mMa-

ple3 and plated on fibronectin-coated MatTek dishes with a silicone insert. Inserts were removed 48

hr post-plating to allow cell migration towards the exposed region. Migrating cells at the edges of

the dish were selected for photoconversion and imaged by time-lapse video microscopy. In brief,

the perinuclear region of mMaple3-expressing cells was stimulated with blue light (l = 405 nm) to
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convert mMaple3 particles from green to red fluorescence. Photoconverted cells were continuously

imaged for 16 min (1frame/15 s, 64 frames). The fluorescent intensity (FI) of red and green particles

within the perinuclear region was determined using the Volocity software (Perkin Elmers, Waltham,

MA). Retrograde transport of non-converted mMaple3-tagged vesicles towards the perinuclear

region, expressed as percentage of green fluorescent gain, was calculated as: [FI at 16 min – FI at 45

s (post-conversion time))/ (FI at 0 s – intensity at 45 s)]. The anterograde transport of mMaple3-

tagged vesicles was expressed as percentage of red fluorescent loss and calculated as [(intensity at

45 s– intensity at 16 min)/ (intensity at 45 s – intensity at 0 s)]. The transport of converted mMaple3

vesicles from the perinuclear region is expressed as the gain of fluorescent intensity at the front or

rear cell ends at each time point.

Immunolabeling
Cells were washed with room temperature PBS, fixed for 15 min at room temperature in a 4% para-

formaldehyde solution in PBS, and permeabilized with 0.2% vol/vol Triton X-100 in PBS for 10 min.

Samples were then blocked for 60 min in blocking buffer (3% BSA, 0.2% Tween-20 in PBS) and incu-

bated overnight with primary antibodies in blocking buffer at 4˚C. Cells were washed three times

with PBS, incubated with fluorescent-labeled secondary antibody conjugates in blocking buffer at

room temperature, washed three times with PBS, and mounted in Pro-Long Gold mounting media

(Life Technologies, Carlsbad, CA).

Cell surface protein biotinylation and recycling assay
Cells were rinsed twice with ice cold PBS and labeled with 0.2 mg/ml sulfo-NHS-SS biotin (Thermo)

in PBS at 4˚C for 30 min. The remaining sulfo-NHS-SS biotin was quenched with 50 mM Tris pH 8.0

in PBS, and the cells were washed two more times with PBS. To allow endocytosis, pre-warmed

medium was added to the cells and the cultures were incubated at 37˚C for various time points

before fixation with 4% PFA. After 30 min of endocytosis, remaining surface exposed biotin labels

were removed by incubating the cells 2 � 5 min in cold 100 mM MESNa buffer (50 mM Tris, 100

mM NaCl, 1 mM EDTA, 0.2 wt/vol BSA, pH 8.6). Cells were returned to a 37˚C incubator to allow

the recycling of biotin-labeled internalized proteins. Cells were fixed at various time points and the

biotin-labeled proteins detected by Streptavidin-Alexa 488 (Life Technologies).

Integrin and transferrin recycling assay
Cells were incubated with either Alexa 488-anti-mouse/rat b1-integrin, Alexa 488-anti-mouse/rat b3-

integrin (BioLegend), or Alexa 568-transferrin (Life Technologies) in DMEM containing 0.5% FBS

(DMEM-FBS) at 4˚C for 30 min followed by washes with ice-cold PBS and DMEM-FBS. To allow

endocytosis, fluorescently-labeled cultures were incubated at 37˚C for 30 min. The remaining sur-

face-associated fluorescence was quenched by brief acid wash (0.5% acetic acid, 0.5 M NaCl, pH

3.0). Following internalization cells were washed with PBS and, either fixed (recycling time 0 min), or

incubated at 37˚C for the indicated times before fixation (recycling time 15 min, 30 min, 60 min). The

percentage of recycled proteins at a given time point (t) is expressed as: fluorescent intensity on the

plasma membrane at time point (t)/fluorescent intensity in cytoplasm at time point (0). The percent-

age of remaining intracellular transferrin at a given time point is expressed as a ratio of the fluores-

cent intensity remaining in the cytoplasm at time point (t)/fluorescent intensity in cytoplasm at time

point (0).

shRNA mediated knock down of RabGAP1L and viability test
The PLKO-BFP-Tet-on vector was generated as described in He et al. (2013). The production of len-

tivirus with vectors inserted with the shRNA hairpin targeting mouse RabGAP1L and the subsequent

infection of cultured cells were performed following a standard protocal (He et al., 2013). Hairpins

used were: luciferase control (50-GGAGATCGAATCTTAATGTGC-30) and mouse RabGAP1L (50-

TGGAACAGGCTTGCAATATT -30).

2 � 104 cells were plated in matak plate and treated with 4 mg/ml doxycycline the next day

(Day1). Cells were transfected with RabGAP1L rescue plasmids 8 hr later and the number of cells

were counted every 24 hr.
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Haptotaxis assay and analysis
The haptotaxis assay was performed as previously described (Wu et al., 2012). WT or Ank2-/- MEFs

were plated on microfluidic chambers containing a linear fibronectin gradient. Ank2-/- MEFs trans-

fected with WT AnkB-GFP or E1537K AnkB-GFP were sorted, and GFP-positive cells were pooled

and plated on microfluidic chambers as described above. Cells were allowed to migrate for 24 hr on

the chamber, and then were manually tracked allowing the calculation of FMI, velocity and persis-

tence of migration, as described in Figure 7A. Rose plots of directional migration on normalized

polar coordinates were generated using a MATLAB script described in King et al., 2016.

Replication and statistical analysis
Each experiment was repeated using at least three lines of mouse embryonic fibroblast isolated

from three individual PND0 WT (Ank2+/+) and AnkB KO (Ank2-/-) littermates, which is considered as

biological replicates. Each experiment was done three or more times, which is considered as techni-

cal replicates. All of the data were combined for statistical analysis unless otherwise stated.

GraphPad Prism (GraphPad Software, La Jolla, CA) was used for statistical analysis. Statistical dif-

ferences were determined by unpaired Student’s t-test or by repeated measures one-way ANOVA,

followed by a post hoc Tukey’s test. Results are presented as mean ± SD. Significance was consid-

ered as p�0.05. Exact p-values were shown when p>0.001.
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