
Design Principles for Scaling Multi-core OLTP Under
High Contention

Kun Ren
Yale University

kun.ren@yale.edu

Jose M. Faleiro
Yale University

jose.faleiro@yale.edu

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT

Although significant recent progress has been made in improving
the multi-core scalability of high throughput transactional database
systems, modern systems still fail to achieve scalable throughput
for workloads involving frequent access to highly contended data.
Most of this inability to achieve high throughput is explained by
the fundamental constraints involved in guaranteeing ACID — the
addition of cores results in more concurrent transactions accessing
the same contended data for which access must be serialized in or-
der to guarantee isolation. Thus, linear scalability for contended
workloads is impossible. However, there exist flaws in many mod-
ern architectures that exacerbate their poor scalability, and result in
throughput that is much worse than fundamentally required by the
workload.

In this paper we identify two prevalent design principles that
limit the multi-core scalability of many (but not all) transactional
database systems on contended workloads: the multi-purpose na-
ture of execution threads in these systems, and the lack of advanced
planning of data access. We demonstrate the deleterious results of
these design principles by implementing a prototype system, OR-
THRUS, that is motivated by the principles of separation of database
component functionality and advanced planning of transactions.
We find that these two principles alone result in significantly im-
proved scalability on high-contention workloads, and an order of
magnitude increase in throughput for a non-trivial subset of these
contended workloads.

1. INTRODUCTION
The maximum throughput that a database system is able to achieve

is dependent on many factors, from the hardware on which it runs
to the particular implementation details of the database software.
While most of these factors can be overcome by spending more
money, on better hardware or better software developers, through-
put will always be fundamentally limited by the presence of con-

tended operations in a workload.
The definition of a “contended operation” may vary depending

on the user’s requested isolation level of transactions, the ability of
the database to prevent reads from conflicting with writes via multi-
versioning and the semantic commutativity of operations. Nonethe-
less, unless no isolation whatsoever is required, there will always

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882958

be certain operations that cannot be executed concurrently and the
presence of many of these contended operations in a workload will
necessarily limit throughput. Thus, adding more processors to a
system, which enables more transactions to be processed in par-
allel, only increases throughput if the additional transactions that
can be run do not conflict with the existing transactions that are
currently running.

For decades, database systems had been designed for single pro-
cessor machines. These conventional database architectures were
ill suited for the abundant parallelism in multi-core hardware. As
a consequence, they could not achieve scalable throughput across
the entire spectrum of transactional workloads. Particularly prob-
lematic was the fact that conventional database architectures were
not able to scale throughput on low contention workloads, despite
the fact that low contention workloads have no fundamental limit
to scalability. To address this gap between hardware and database
software, most work on multi-core database systems has focused on
eliminating fundamental scalability bottlenecks in these systems’s
design [21,23,48]. As a result of this research, today’s state-of-the-
art systems can achieve close to linear scalability in transactional
throughput on low contention workloads.

Unfortunately, as recently demonstrated by Yu et al., multi-core
database systems continue to be plagued by performance problems
on high contention workloads [53]. For the fundamental reason
described above, it is impossible to achieve linear scalability in
high contention workloads; the throughput of a database system
should taper as cores are added under high contention. However,
the actual shortfall relative to linear scalability on high contention
workloads is much worse than what is theoretically required by the
nature of the contention in the workload. In some cases, in fact,
throughput actually decreases as more cores are added. The prob-
lem is that the overhead of managing transactions, particularly that
of concurrency control, is proportional to the amount of workload
contention. At high levels of contention, concurrency control over-
head takes up a non-trivial fraction of each transaction’s total ex-
ecution time. As a consequence, modern multi-core database sys-
tems achieve nowhere near the theoretical performance determined
by the achievable concurrency in high contention workloads.

We attribute this poor performance under high contention to two
design decisions that, to the best of our knowledge, are present
in every widely-used transactional database system available to-
day. First, despite compelling proposals to the contrary [17,37,38],
database systems tend to assign responsibility for a particular trans-
action to a single thread [18]. Assigning a transaction to a sin-
gle thread conflates database functionality, which leads to poor in-
struction and data cache locality [17]. Worse, this conflated func-
tionality causes workload contention to directly impact physical
contention in the database system (§2.1).

Second, database systems allow dynamic access of data without
advanced planning of transactions’ data access patterns. The neg-
ative side-effects of this design decision are most clearly present
in database systems that use pessimistic concurrency control pro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357585911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tocols based on logical locking. Such systems dynamically acquire
each transaction’s logical locks in an arbitrary order, which makes
transactions susceptible to deadlocks. Any system which employs
dynamic lock acquisition must therefore include a mechanism for
handling deadlocks. Under high contention workloads, deadlock
handling mechanisms are a significant source of overhead and can
lead to wasted work due to transaction aborts (§2.2).

This paper proposes two design principles to address these over-
heads. First, we propose that database systems partition function-

ality across the cores of a single machine. Instead of using a single
thread to perform both a transaction’s logic and concurrency con-
trol on behalf of the transaction, we dedicate a set of threads to
perform only concurrency control, and another set of threads to ex-
ecute transaction logic. Concurrency control and execution threads
cooperatively process transactions using explicit message-passing.

Second, we propose that database systems analyze transactions
prior to their execution in order to predict their access patterns.
These access patterns are used to coordinate access to data. Since
almost all widely-used database systems use pessimistic locking to
protect at least some types of data access, our focus in this paper
is particularly within the context of pessimistic locking protocols.
In this context, planning data access enables the implementation of
a deadlock avoidance protocol, which circumvents the overhead of
deadlock detection and resolution.

We built a prototype database system, ORTHRUS, based on the
design principles of partitioned functionality and deadlock free-
dom. A notable aspect of ORTHRUS’s design is the use of mes-
sage passing between cores devoted to different functionalities. Al-
though the use of explicit message-passing among a system’s cores
has been used in the context of multi-core operating systems [2,51]
and programming models [5,33], to the best of our knowledge, OR-
THRUS is the first multi-core database system to successfully use
explicit message-passing to avoid physical contention on shared
concurrency control data structures in the database system.

To summarize, the contributions of this paper are as follows:

• We identify two sources of overhead in state-of-the-art multi-
core database systems that severely limit throughput under high
contention workloads: conflated functionality (§2.1) and dynamic
data access (§2.2).

• We propose two design principles to address this overhead; par-
titioning database functionality (§3.1) and planned data access
(§3.2).

• Based on these design principles, we implement a prototype
database system, ORTHRUS. We discuss techniques to make our
design principles practical to implement (§3.3 and §3.4).

• We perform an extensive set of experiments in order to evaluate
the multi-core scalability of ORTHRUS relative to an archetypal
modern multi-core database system (§4).

2. PROBLEMS WITH EXISTING DESIGNS

2.1 Conflated functionality
As mentioned above, in most database systems, a single thread

processes an individual transaction [18]. This single thread man-
ages both the execution of the transaction’s logic and the necessary
interactions with the concurrency control module of the database
system (e.g. a lock manager or the shared data structures needed
for OCC validation). Several such threads concurrently execute on
a single multi-core system. These concurrently executing threads

make requests of the same concurrency control module1. This de-
sign pattern of multiple threads globally sharing a single concur-
rency control module can lead to severe scalability bottlenecks. We
discuss these bottlenecks in this section.

Synchronization overhead. We first discuss the overhead as-
sociated with synchronization on concurrency control meta-data.
In order to control the interleaving of concurrent transactions, any
concurrency control protocol must associate some meta-data with
the database’s logical entities. The meta-data used is protocol de-
pendent. For example, pessimistic locking protocols use a hash-
table of lock requests on records [15], while optimistic and multi-
version protocols associate timestamps with records [29, 48]. As
part of the concurrency control protocol, several concurrent threads
may need to read or write the meta-data associated with a particu-
lar database object. Concurrent threads must therefore synchronize
their access to concurrency control meta-data. Note that synchro-
nization is not implementation dependent; instead, it is intrinsic
to any concurrency control protocol whose meta-data can be read
or written by any database thread. Since meta-data is associated
with database objects (such as records), contention for concurrency
control meta-data is directly affected by workload contention; if a
particular database record is popular, then threads will need to fre-
quently synchronize on that record’s meta-data. Unfortunately, on
modern multi-core hardware, contention significantly degrades the
performance of atomic instructions [4, 12, 13, 48]. These atomic
instructions – such as fetch-and-increment and compare-and-swap

– are the basic building blocks of both latch based and latch-free
algorithms. Thus, under contention, both classes of algorithms are
susceptible to severe performance degradation.

Data movement overhead. In addition to synchronization on
concurrency control meta-data, another source of overhead in con-
ventional database architectures is the movement of this meta-data
across multiple cores. In order to access an object’s meta-data, a
thread must move the memory words corresponding to the meta-
data into its CPU core’s local cache. As multiple threads request
access to a particular object’s meta-data, the memory words corre-
sponding to the meta-data are moved between cores. The move-
ment of data between a machine’s cores occurs because multiple
threads are allowed to read or write the data. If a thread requires
access to a latch-protected data-structure, the thread must first ac-
quire the latch and then move the data-structure to its core. Only
when these two steps complete can the thread actually access the
data-structure. Since the latch is acquired first, it is held for the
time it takes to move the data-structure. As a consequence, data-
movement extends the duration for which latches are held. In the
presence of contention, the increase in latch hold times can con-
tribute to a decrease in concurrency.

In order to validate the deleterious effects of synchronization
and data movement overhead, we ran a simple experiment to mea-
sure the scalability of short read-only transactions under two-phase
locking on a high contention workload (see Appendix A.1 for a de-
tailed description of the experimental setup). Since transactions are
read-only, the workload is conflict free (despite the presence of con-
tention). Figure 1 shows the results of the experiment. Two-phase

1The discussion that follows assumes a shared-memory architec-
ture where all threads have access to the same shared memory
where the concurrency control data structures sit. It should be noted
that some database systems, such as H-Store [44] and Hyper [24],
use a shared-nothing architecture across threads. Such systems do
not suffer from the overheads associated with conflated function-
ality discussed in this section. However, they introduce other per-
formance problems — namely agreement protocols across threads
necessary to handle transactions that access data in multiple sepa-
rate partitions. We explore this further in §4.

0.0 M

1.0 M

2.0 M

3.0 M

4.0 M

5.0 M

 10 20 40 60 80

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Number of CPU cores

Two-Phase Locking

Figure 1: Scalability of read-only transactions under two-phase

locking on a high contention workload.

locking is unable to scale beyond 40 cores despite the absence of
conflicts and surprisingly decreases in performance. The inability
to scale is due to synchronization and data movement overhead.
The source of synchronization overhead is two-phase locking’s use
of atomic instructions on contended memory words to manipulate
the table of lock requests. Data movement overhead is a conse-
quence of multiple cores manipulating the same list of lock requests
(due to multiple cores requesting read locks on the same records).

Instruction and data cache pollution. If a single thread exe-
cutes both concurrency control and transaction logic, then the thread’s
CPU core must cache data and instructions corresponding to each
of these two functions. The data and instructions corresponding to
concurrency control, and transaction logic thus compete for a sin-
gle core’s cache. Concurrency control cache-lines therefore evicts
transaction logic cache-lines, and vice-versa. This has the overall
effect of increasing the duration of each transaction, which in turn
decreases overall throughput.

All three reasons for performance degradation — synchroniza-
tion overhead, data movement overhead, and cache pollution —
have the effect of increasing a transaction’s execution time. Not
only does this increase in execution time per transaction necessar-
ily reduce throughput by occupying system resources for longer
periods of time, but the throughput reduction is compounded by
the fact that increasing transaction time is particularly harmful in
high contention settings. This is because conflicting transactions
either have to block (in pessimistic schemes) or abort (in optimistic
schemes). The longer it takes to execute a transaction, the higher
the probability that a later conflicting transaction will abort or block
behind the original transaction.

2.2 Dynamic concurrency control
Most database systems allow transactions to dynamically request

records to read and write as they execute. This lack of advanced
planning precludes opportunities to coordinate access to contended
items in order to maximize concurrency. The clearest example of
this are in systems that use two-phase locking (2PL) for concur-
rency control, where locks are acquired for a transaction as each
data access request is processed. Allowing transactions to dynam-
ically request access to records necessitates dynamic lock acquisi-
tion, which can lead to deadlocks. These systems must therefore
implement mechanisms to deal with deadlocks.

Under high contention workloads, deadlock handling logic is a
significant source of overhead. There are two reasons for this over-
head: first, deadlock handling logic extends the duration for which
locks are held; second, deadlocks waste useful work performed by
transactions that must be aborted.

• Since a transaction cannot deadlock unless it has already ac-
quired locks, any deadlock handling logic must be executed while
locks are held. Therefore, deadlock handling logic extends the
duration for which locks are held. The increased lock hold time

means that conflicting transactions must wait longer to execute.
Therefore, deadlock handling logic imposes a performance penalty
regardless of whether a deadlock has actually occurred.

• If deadlock handling logic aborts a transaction, then any work
performed by the transaction is wasted. Furthermore, if a trans-
action is allowed to directly write records (i.e., if transactions
do not buffer their writes), then the database must also undo the
aborted transaction’s writes. In addition to wasted work, aborted
transactions induce unnecessary waiting on conflicting transac-
tions; if a conflicting transaction is made to wait on a transaction
that is eventually aborted, then in retrospect the conflicting trans-
action could have been allowed to make progress without delay.
Finally, under high contention workloads, deadlocks are simply
more prevalent. Therefore, the wasted work and unnecessary
waiting due to transaction aborts occur more often under such
workloads.

3. ARCHITECTURE
In this section, we describe the architecture of a proof-of-concept

system that we built, ORTHRUS. ORTHRUS is designed to amelio-
rate the scalability bottlenecks described in §2. ORTHRUS is not
a complete database system — we did not build a relational query
processor, a client communications manager, or many of the shared
utilities that are present in most database systems. Instead, we just
built the transaction management component of the system, with a
particular focus on concurrency control, since the main impediment
to scalability under high contention is concurrency control.

ORTHRUS implements locking-based pessimistic concurrency con-
trol. We choose a pessimistic scheme because ORTHRUS is tar-
geted at workloads with high contention, and optimistic schemes
are well-known to perform poorly under high contention due to ex-
cessive aborts — even recent proposals for multi-core optimized
optimistic schemes (such as Silo [48] and Hekaton [29]) perform
poorly under high contention [13].

Like most recently proposed architectures for transactional database
systems, ORTHRUS assumes that the working set of data accessed
by transactions can be held in main memory, since memory sizes
are growing faster than transactional working sets [44]. As a con-
sequence, ORTHRUS does not incur stalls to access data from disk.
ORTHRUS therefore creates exactly the same number of threads as
physical CPU cores and pins each thread to a single core, as is done
in several other main-memory database systems [13, 14, 24, 34, 37,
38, 41, 44, 48, 53].

ORTHRUS’s first key design feature is that it partitions function-

ality across the cores of a single machine. The thread pinned to
each core on the server is devoted to a single narrow component of
transaction processing. Since our focus in this paper is on concur-
rency control, ORTHRUS assigns cores one of two possible roles;
concurrency control or transaction execution. Note, however, that
this philosophy can extend to other roles within a database sys-
tem. For instance, StagedDB successfully separated functionality
across cores in the query processor component of the database sys-
tem [17]. In ORTHRUS, concurrency control and transaction ex-
ecution cores do not share any data-structures; concurrency con-
trol cores cannot read or write any data-structures on execution
cores, and vice-versa. Instead of implicitly communicating through
shared-memory, ORTHRUS uses explicit message-passing between
concurrency control and execution threads.

The second key design feature of ORTHRUS is data access plan-
ning for the purpose of deadlock avoidance. In the rest of this sec-
tion, we discuss these two key features of ORTHRUS’s architecture
in more detail.

3.1 Partitioned functionality
Logically, concurrency control threads perform the same func-

tion as that of a centralized lock manager. ORTHRUS partitions re-
sponsibility for database objects across concurrency control threads
such that each database object is controlled by single thread. Thus,
each concurrency control thread maintains meta-data for a disjoint
subset of the database’s objects. The meta-data on each concur-
rency control thread is exactly the same as in a centralized lock
manager; each thread maintains a hash-table which maps keys to a
list of transaction lock requests.

Execution threads do not contain instructions nor data pertaining
to concurrency control; they are only responsible for performing
each transaction’s logic. Each transaction is assigned to a single ex-
ecution thread, which is responsible for processing the transaction’s
logic in its entirety. Execution threads request locks by sending
messages to the concurrency control threads responsible for those
locks2. Message passing between execution threads and concur-
rency control threads is mediated via queues. Space is allocated
in shared memory for an input queue to each concurrency control
thread and an output queue from each concurrency control thread.
Messages are passed via reads and writes to these queues.

Note that a naïve implementation of these queues leads to the
same type of synchronization bottlenecks observed in traditional
systems. If every transaction execution thread is allowed to write
to a single input queue (for a particular concurrency control thread),
then synchronization overhead will prevent a scalable implementa-
tion of message passing. To overcome this pitfall, our implementa-
tion assigns each concurrency control thread a separate queue for
each execution thread. Thus, while we mention a single logical

input queue to each concurrency control thread, its implementation
consists of N physical queues, where N is the number of execution
threads.

With the above implementation, each queue has only one writer
(the associated execution thread) and one reader (the associated
concurrency control thread). The queue can be therefore imple-
mented using a standard latch-free circular buffer [33] to avoid
synchronization between the reader and writer except in the rare
case where the queue fills up. Consequently, our message passing
implementation does not suffer from the synchronization costs that
contended writes to shared-memory usually encounter.

Concurrency control threads serially process requests from their
logical input queues. On dequeuing a request for locks from its in-
put queue, a concurrency control thread checks the requested set of
locks, and determines which of these locks are requested on objects
in its local partition. For each lock on an object in its logical par-
tition, the concurrency control inserts a lock request into its local
hash-table. The concurrency control thread responds to an acquisi-
tion request only after it has granted all locks from the request of
an individual transaction. Note that the response may take a while;
the lock acquisition request may have to wait for prior conflicting
requests to release locks (just as in conventional locking protocols).
Instead of waiting for responses from concurrency control threads,
execution threads begin working on other transactions. The inter-
action between execution and concurrency control threads during
lock release is similar; the only difference is that concurrency con-
trol threads respond immediately because lock release requests are
satisfied immediately.

Figure 2 shows an example of the interaction between a con-
currency control thread and an execution thread. Transaction T1’s

2Since responsibility for objects is disjointedly partitioned across
concurrency control threads, the set of locks required by a single
transaction may reside on multiple concurrency control threads.

Figure 2: Concurrency control thread acquiring locks on be-

half of an execution thread.

execution thread, E1, requests locks on records A, B, and C (see
§3.2 for why multiple requests are made together; for simplicity, we
omit the details of the lock mode required on each of these records).
E1 writes these lock requests in a message that we label with name
of the transaction (T1). In order to acquire a lock on A, E1 en-
queues message T1 in CC1’s input queue (Step 1). CC1 dequeues
T1 from its input queue (Step 2) and checks the locks requested by
T1. In this particular example, of the locks requested by T1 (A, B,
and C), only A resides on CC1’s partition. CC1 thus inserts a lock
request on record A into its local lock table (Step 3). The details
of how locks B and C are acquired, and how these requests end up
in the input queues of the other concurrency control threads will be
explained in §3.3.

The communication pattern between execution and concurrency
control threads is much like client-server communication in dis-
tributed systems; execution threads behave as clients, and concur-
rency control threads behave as servers. An execution thread’s
“request” is an explicit message asking the concurrency control
thread to acquire or release a lock on behalf of a particular trans-
action. While centralized lock managers and ORTHRUS’s concur-
rency control threads perform the same logical function (acquire
and release logical locks), they each use two fundamentally dif-
ferent communication mechanisms. In conventional database sys-
tems, threads use the abstraction of a shared-address space to im-
plicitly share data. Intuitively, data is shared by default. Since data
is globally shared, each database thread can directly manipulate the
data. In contrast, in ORTHRUS, the default mode of operation is to
eliminate shared data among threads of different types; execution
and concurrency control threads do not share any data. In order to
acquire and release locks on database objects, an execution thread
must request concurrency control threads to acquire locks on its
behalf.

As a result of its physical separation of concurrency control and
transaction execution concerns across threads, ORTHRUS guaran-
tees that data is never implicitly shared across concurrency control
and execution threads; the only way to share data is via message-
passing. The consequence of this design principle is that ORTHRUS

completely eliminates all overheads associated with conflated func-
tionality (§2.1):

• Synchronization overhead. ORTHRUS partitions database ob-
jects across concurrency control threads. As a consequence, ev-
ery lock acquisition and release request for a particular object is
serviced by a single concurrency control thread; reads and writes
of an object’s meta-data are restricted to one thread. Therefore,
this thread does not need to synchronize its access to any of the

objects’ meta-data it is responsible for. If multiple execution
threads concurrently request locks on the same record, then the
requests are handled by the same concurrency control thread.

• Data movement overhead. Since the locking operations on a
particular database object are performed by a single thread, con-
currency control meta-data (linked-lists of lock requests in the
lock table) never need to move between threads. As a result,
ORTHRUS does not suffer from any data movement overhead
(for concurrency control).

• Instruction and data cache pollution. In ORTHRUS, execu-
tion and concurrency control threads perform two different func-
tions. Execution threads are completely isolated from concur-
rency control threads; these two types of threads do not share
any instructions nor data. As a consequence, ORTHRUS avoids
the cache pollution that is inherent in conventional database im-
plementations.

3.2 Deadlock avoidance
§2.2 discussed the various overheads associated with handling

deadlocks in pessimistic locking-based concurrency control proto-
cols. The fundamental problem behind the cost of deadlocks is the
dynamic nature of data access, which in turn stems from a lack
of advanced planning. Motivated by this observation, ORTHRUS

plans data access prior to transaction execution, and leverages this
advanced planning to perform a deadlock avoidance protocol in-
stead of deadlock detection and resolution.

In more detail, ORTHRUS guarantees that deadlocks never oc-
cur by enforcing a locking discipline on execution threads. Execu-
tion threads must acquire locks on behalf of transactions in some
well-defined order. To enforce this locking discipline, an execu-
tion thread cannot start to make lock requests (by sending messages
to concurrency control threads) until it knows the complete set of
locks requests that it will make for a particular transaction. Once
an execution thread knows the complete set of locks requests, it can
request locks from the appropriate concurrency control threads in
order of the threads’ unique identifiers. In order to avoid deadlock,
these requests to concurrency control threads cannot occur concur-
rently — locks are requested from the next concurrency control
thread after the locks from the previous thread have been granted.

In some cases, the set of locks that a transaction will request can-
not be determined via a simple inspection of the transaction logic.
Rather, there is a data-dependent access such that a part of the trans-
action needs to be executed before it can be determined what locks
will be requested. In such a situation ORTHRUS uses the OLLP
technique proposed by Thomson et al. in the context of Calvin [46].
In OLLP, a transaction is partially executed in “reconnaissance”
mode in order to generate an estimate of the access footprint of the
transaction. No locks are acquired during this reconnaissance, so
no writes to the database state occur, and all reads are not assumed
to be consistent (this is why the resulting access footprint is just an
estimate and not a guarantee). This access estimate is then anno-
tated as part of the transaction, which is submitted to the system
to be actually run. Before starting to process a transaction, OR-
THRUS acquires the locks that are indicated by the access estimate
annotation. If, over the course of processing the transaction, an ex-
ecution thread notices that it needs to access a record that it did not
acquire a lock for at the beginning of the transaction (that is, the
access estimate it received was incorrect), ORTHRUS updates the
annotation, and then aborts and restarts the transaction with a new
estimate. Ren et al. have shown that the extra overhead of OLLP
(the reconnaissance phase) is generally a small percentage of ac-
tual transaction processing and that aborts due to incorrect access
estimates are rare in practice [42].

A disadvantage of ORTHRUS’s approach relative to dynamic lock
acquisition is that there is a risk of locks being held for a longer pe-
riod of time. This is because ORTHRUS immediately acquires all
locks at the beginning of a transaction, while dynamic locking can
acquire one lock at a time, interleaving lock acquisition with trans-
action execution. For example, if a lock on a highly contended
record is only needed for the last operation of a transaction, dy-
namic lock acquisition only needs to hold the lock for a very short
period of time (just the end of the transaction). Meanwhile OR-
THRUS must hold the lock for the entire transaction.

Note that increased lock hold time is not a disadvantage un-
der low contention. Increased lock hold time only hurts perfor-
mance under high contention workloads. However, it is precisely
under high contention that deadlocks are more frequent, and the
cost of deadlock detection increases (§2.2). We hypothesize that
ORTHRUS’s increased lock hold time is more than offset by avoid-
ing the decrease in concurrency and wasted work due to deadlock
detection and aborts, respectively, in dynamic locking. We experi-
ment with this hypothesis in §4.

3.3 Optimizations
ORTHRUS’s design philosophy of partitioning concurrency con-

trol and execution functionality across the threads of a database
server addresses several sources of overhead in conventional database
systems. However, since concurrency control and execution threads
communicate with each other via explicit message-passing, OR-
THRUS introduces new sources of overhead. The single biggest
source of overhead we had to overcome was that of asynchrony in
the interactions between execution and concurrency control threads.

In ORTHRUS, concurrency control threads run a tight loop which
sequentially processes requests for lock acquisition or release. At
any given point in time, a concurrency control thread may have
multiple outstanding lock acquisition or release requests. Thus, ex-
ecution threads’ requests may experience queuing delay before be-
ing processed. To prevent these queuing delays from wasting CPU
cycles, execution threads do not synchronously wait on responses
from concurrency control threads. After sending a request to a con-
currency control thread, an execution thread checks whether any
older requests have received responses. If yes, the execution thread
resumes the execution of the corresponding transaction. If not, the
execution thread begins executing a new transaction. Consequently,
when a concurrency control thread does eventually respond to a
lock request, the execution thread will likely be in the middle of
working on a different transaction, and does not resume the orig-
inal transaction immediately. Execution threads’ lock acquisition
and release requests are therefore asynchronous.

On its own, asynchrony is not a source of overhead. However,
the interaction of asynchrony with the higher level concept of log-
ical locking can hamper concurrency. The queuing delays expe-
rienced by requests and responses extend the duration for which
logical locks are held. For instance, if an execution thread requests
a lock on record A for transaction T , the time between when the
lock is acquired by the appropriate concurrency control thread, and
the time the execution thread resumes the execution of T represents
time for which the lock on A is needlessly held. Furthermore, the
overhead due to queuing delay is compounded when an execution
thread requests locks from multiple concurrency control threads.
This is because our deadlock avoidance mechanism requires that
lock requests to these concurrency control threads occur sequen-
tially (as explained in §3.2). For instance, if the execution thread
from the example above subsequently requests locks on B and C,
the lock on A is held while requests and responses on B and C

experience queuing delays.

Figure 3: Concurrency control thread acquiring locks on be-

half of an execution thread.

In order to reduce the impact of queuing delay, ORTHRUS min-
imizes the number of messages sent between threads. The basic
idea is to allow concurrency control threads to forward lock re-
quest messages to other concurrency control threads on behalf of
an execution thread. In other words, instead of paying two message
delays for all concurrency control threads involved in a transaction,
each concurrency control thread forwards the request directly to the
next thread involved in that transaction (which reduces the number
of message delays per concurrency control thread to one).

Figure 3 shows an example of how multiple locks are acquired.
Transaction T1 requires locks on records A, B, and C. As men-
tioned in §3.2, to avoid deadlocks, ORTHRUS requires all transac-
tions to request locks from concurrency control threads in a well-
defined order. In Figure 3, this order is CC1, followed by CC2,
followed by CC3

3.
Execution threads request the first of these concurrency control

threads to acquire locks on its partition. E1 therefore requests CC1

to acquire T1’s locks (Step 1). For every lock required on later con-
currency control threads, the concurrency control thread itself for-
wards the request. For instance, in order to acquire a lock on record
B, CC1 forwards T1 to CC2 (Step 2). Similarly, after acquiring
a lock on record B, CC2 forwards T1 to CC3 (Step 3). The last
concurrency control thread that needs to acquire a lock on a trans-
action returns the transaction back to the execution thread. In this
case, CC3 returns T1 to E1 (Step 4).

If this optimization were not in place, E1 would have to request
locks to each concurrency control thread directly. First it would
send a message to CC1 to acquire a lock on A. CC1 then re-
sponds to E1 once the lock on A has been acquired by T1. E1 then
repeats this process for each concurrency control thread. The num-
ber of messages per execution-concurrency control thread interac-
tion would thus be two. Therefore, the total number of messages
sent in the case of execution thread mediated lock acquisition is
2(Ncc) (where Ncc is the number of concurrency control threads
from which the execution thread requires locks). On the other hand,
ORTHRUS’s optimized lock acquisition procedure requires Ncc+1
messages (one message to each concurrency control thread, and
one last message to the execution thread). The reduced number of
messages is directly correlated with decreased waiting due to asyn-
chrony.

Note that concurrency control threads may be subject to over-
and under-utilization due to workload skew [39]. ORTHRUS can re-
use prior techniques for addressing utilization imbalance in shared-
nothing systems [6,39,45] in order to partition data among concur-
rency control threads.

3In Figure 3, each thread is assumed to have its own input queue
(as in Figure 2). However, we do not show them in the figure.

3.4 Alternative architectures
In ORTHRUS, the set of database objects is partitioned across

concurrency control threads. This design ensures that concurrency
control threads do not share any data, thereby avoiding data move-
ment and synchronization overhead (§2.1). Note, however, that par-
titioning objects across concurrency control threads is orthogonal
to the design principle of separating functionality. ORTHRUS’s use
of partitioning is just one possible implementation of locking-based
concurrency control.

A plausible alternative implementation would be to share a sin-
gle lock table across all concurrency control threads. A single
concurrency control thread could then obtain all the logical locks
needed by a particular transaction. Execution threads could request
any one of several concurrency control threads to acquire locks on
its behalf. Although such an implementation would be subject to
synchronization and data movement overhead, this synchronization
is only across the concurrency control threads — a much smaller
number of threads than the total number of threads in the system.
Furthermore, the database system has the flexibility to limit the im-
pact of these synchronization overheads. For example, the system
could choose to assign concurrency control threads to execute on
cores within a single NUMA socket.

Note that this flexibility to choose the number of threads to dedi-
cate to each function is a direct consequence of the design principle
of separating functionality. Conventional database systems do not
have this flexibility because a single thread performs all the work
entailed in executing a transaction. Furthermore, the separation of
functionality enables a single system to support more than one im-
plementation of a particular sub-system (such as the partitioned and
non-partitioned lock table). Since components interact through nar-
row message-passing interfaces, the actual deployed implementa-
tion of a sub-system, such as concurrency control, can vary de-
pending on system parameters, such as number of cores, number of
NUMA sockets, and so forth.

4. EVALUATION
We run our experiments on a single 80-core machine, consisting

of eight 10-core Intel E7-8850 processors and 128GB of memory.
The operating system used is Ubuntu 14.04. All our experiments
are performed in memory (none of our implementations utilize sec-
ondary storage). In all experiments, the number of threads used is
equal to the number of cores; we pin a single long running thread
to each CPU core (see §3.1).

We compare ORTHRUS against an implementation of two-phase
locking (2PL) within the same ORTHRUS transaction management
codebase. Our 2PL implementation uses a lock-table to store infor-
mation about the locks acquired and requested by transactions. The
lock-table is implemented as a hash-table. We implemented two
important multi-core specific optimizations to improve the scala-
bility of our 2PL implementation. First, the lock manager hash-
table uses per-bucket latches instead of a single latch to protect
the entire table. Per-bucket latches allow our 2PL implementation
to avoid contention and overly conservative serialization on a sin-
gle global latch. In addition to per-bucket latches, our 2PL imple-
mentation does not acquire high-level intention locks; transactions
only acquire fine-grained logical locks on individual records. As a
consequence, latch contention occurs only when multiple threads
try to acquire or release logical locks on the same record. Sec-
ond, our 2PL implementation never interacts with a memory al-
locator. Each database thread manually manages a pre-allocated
thread-local pool of memory. Avoiding interaction with a memory
allocator (such as malloc) removes superfluous synchronization in

the operating system’s memory management logic and the memory
allocator’s logic. This allows us to isolate the sources of synchro-
nization overhead to those in our own implementation.

To evaluate the overhead of deadlock handling in 2PL, we im-
plement three different deadlock detection/avoidance mechanisms:

Wait-for graph. We use a graph to track the dependencies be-
tween transactions waiting to acquire logical locks, and the current
holders of the lock. We only add edges to the wait-for graph if a
transaction requests a lock, but finds that the lock is currently held
in a conflicting mode by another transaction. The presence of a cy-
cle in the wait-for graph implies that the transactions that constitute
the cycle have deadlocked. In order to scale across multiple cores,
our implementation avoids the use of a global latch to protect the
entire graph. Instead, each database thread maintains a local parti-
tion of the wait-for graph, as is done by Yu et al. [53].

Wait die. Unlike the wait-for graph deadlock detection tech-
nique, which allows transactions to deadlock, and then detects and
resolves deadlocks after the fact, wait die proactively avoids dead-
locks by aborting transactions if they are suspected to be involved
in a deadlock. In wait die, each transaction is assigned a times-
tamp prior to its execution, and the timestamp is used to determine
whether or not the transaction is allowed to wait for a logical lock.
If a transaction fails to immediately acquire a lock, then wait die
only allows the transaction to wait on prior transactions if its times-
tamp is smaller than that of the current lock holder. If not, the
transaction is aborted and restarted. Thus, wait die prioritizes older
transactions (transactions with smaller timestamps), over younger
transactions (transactions with larger timestamps). Each database
thread uses the local timestamp counter on its CPU core to as-
sign transactions their timestamps. Reading from the the core-local
timestamp counter is low-overhead and contention-free. Core-local
timestamp counters are therefore a cheap scalable source of mono-
tonically increasing timestamps.

Dreadlocks. This state-of-the-art deadlock detection technique
was proposed by Koskinen et al. in the context of mutual exclusion
spin locks [26] and is used in the multi-core optimized version of
the Shore database system (Shore-MT) [22]. Each transaction, T ,
maintains a digest, a data-structure which indicates the set of other

transactions that T waits on for locks. Intuitively, a transaction’s di-
gest is a compact representation of its localized wait-for graph; T ’s
digest contains the transitive closure of the transactions it waits for.
If T fails to acquire a lock, T performs a set-union of its digest
with the digest of the current lock holder. If T ever finds itself in its
own digest, then it means that T ’s transitive closure contains a cy-
cle, and a deadlock has occurred. Note that digests are amenable to
a simple bitmap representation, and that a particular transaction’s
digest is always updated by the thread responsible for running the
transaction. However, other threads can read the transaction’s di-
gest. As a consequence, updates to a transaction’s digest can be
performed without the use of latches [26].

We also include a version of 2PL that uses the deadlock avoid-
ance protocol described in §3.2. We call this baseline Deadlock-

free locking. This deadlock-free implementation analyzes each trans-
action prior to its execution in order to obtain its read- and write-
sets and acquires locks in the lexicographical order in advance of
transaction execution (as described in §3.2). Thus, we can com-
pare our version of deadlock avoidance with three other widely-
used techniques for handling deadlocks in 2PL systems.

4.1 Quantifying deadlock handling overhead
We begin our evaluation with experiments to show the overhead

of the three deadlock handling mechanisms we implemented —
wait-for graph, wait die, and dreadlocks — and compare them with

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

1.2 M

1.4 M

8K 4K 2K 1K 512 384 256 192 128 64
(a) 10 CPU cores

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

0.0 M

1.0 M

2.0 M

3.0 M

4.0 M

5.0 M

6.0 M

8K 4K 2K 1K 512 384 256 192 128 64
(b) 80 CPU cores

Number of hot records

Deadlock-free
Dreadlocks

Wait-die
Wait-for graph

Figure 4: Throughput while varying the number of hot records

in the database. (a) Number of database cores = 10. (b) Number

of database cores = 80.

the simple, deadlock-free implementation of 2PL discussed above.
We measure the throughput of these mechanisms under varying lev-
els of contention.

Our benchmark uses a single table of 10,000,000 records. Each
record’s size is 1,000 bytes. The workload consists of transactions
that each perform read-modify-write operations on ten records. Of
the ten records updated by each transaction, we pick two records
uniformly at random from a set of “hot” records, while the remain-
ing eight are selected uniformly at random from a set of “cold”
records. We vary the level of contention in the workload by vary-
ing the number of hot records. Intuitively, if transactions pick two
records from a small set of hot records, then the probability that
they will conflict is higher than if the set is large. We run two ex-
periments, the first dedicates 10 CPU cores to the database system,
while the second uses all 80 CPU cores of our test machine.

Figure 4(a) shows the throughput of each deadlock handling pro-
tocol when the database runs on 10 CPU cores. The number of hot
records decreases as we move from left to right along the x-axis.
As a consequence, contention increases from left to right. As ex-
pected, each system’s throughput decreases with increasing con-
tention, because as contention increases, the likelihood of conflicts
between transactions increases. This, in turn, limits the amount of
concurrency the database system is able to exploit. However, the
relative difference in throughput between each deadlock handling
mechanism is small.

Next, we perform the same experiment with 80 CPU cores. Fig-
ure 4(b) shows the results. Increasing the core count has two ef-
fects. First, it increases overall contention in the system since there
are more active threads competing for the same logical data and
internal data structures. Note that this is a different type of con-
tention increase than the x-axis in the graphs which are generated
via increasing logical contention by reducing the hot-set size. By
increasing the number of active transactions, the overhead of the
deadlock management schemes all increase as the data structures
that they have to access (e.g., linked lists of waiting transactions) all
become larger. (2) It causes the system to encounter NUMA effects
as different cores are located in different NUMA sockets, increas-
ing the cost of passing active data between cores (the 10 cores in

the previous experiment are located on a single socket). So, for ex-
ample, the cost to acquire a latch on the data structures maintained
by the deadlock handling schemes increases. Combined, these two
effects (1) increase the overhead of the deadlock handling schemes,
and (2) increase logical contention to the point where deadlock is
more frequent, such that avoiding deadlocks a priori is superior to
dynamically avoiding or detecting them.

The performance of the wait-for graph mirrors that of dreadlocks
across the spectrum of contention. Both wait-for graph and dread-
locks effectively use the same algorithm to detect deadlocks — they
only use different data-structures to represent the same information
(a bitmap vs. an explicit dependency graph). Logically, however,
the two algorithms are equivalent: both abort transactions upon de-
tecting a cycle in their respective graph representations. Hence,
both have poor performance at the right-hand side of the graph
when logical contention is high, and deadlocks are frequent.

Wait-for graph and dreadlocks outperform wait die in the low
to medium range of contention (the left-hand side of Figure 4(b)).
This is because wait die suffers from false positives — it aborts
transactions despite the absence of deadlocks. However, on the
right-hand side of the graph, deadlocks are frequent, and the de-
lay inherent in the dreadlocks and wait-for graph schemes, because
they first detect deadlocks before resolving them, causes locks to
be held by deadlocked transactions for longer periods of time be-
fore they abort, further exacerbating the effect of high contention.
Thus, the wait-die approach of “giving up” early has the benefit of
not allowing deadlocks to increase lock hold times.

Most importantly, Figure 4(b) indicates that Deadlock-free lock-

ing always outperforms all three deadlock handling mechanisms.
There are two reasons for this. First, when deadlocks do not oc-
cur too often (in the middle of the graph), Deadlock-free locking

outperforms the other schemes due to its low-overhead. Deadlock-

free locking only has to analyze transactions’s read- and write-sets
in advance, and request locks in the correct order, while the other
schemes are burdened by running deadlock handling logic (wait-
for graph and dreadlocks) and aborting transactions due to false
positives (wait die). Second, by eliminating the possibility of dead-
locks, Deadlock-free locking does not suffer from aborts, and the
subsequent wasted work due to retries. Deadlock-free locking’s ad-
vantage over deadlock handling techniques grows with increasing
contention. At the right-most point in the graph, Deadlock-free

locking’s throughput is 2.2x, 5.5x and 5.5x times that of wait die,
dreadlocks and the wait-for graph, respectively.

Figure 4(b) validates the fact that under high contention work-
loads, deadlock handling logic is a significant impediment to multi-
core throughput; dynamic deadlock handling techniques are always

outperformed by Deadlock-free locking. Furthermore, the fact that
throughput drops so drastically from 10 to 80 CPU cores indicates
the problem will only get worse with increasing core counts.

Appendix B presents additional experiments on deadlock over-
head on alternative workloads.

4.2 Tradeoffs in thread allocation
Until this point, we have experimented with just the benefit of

deadlock avoidance in high contention scenarios. We now experi-
ment with the full system design of ORTHRUS including its parti-
tioned functionality.

ORTHRUS’s partitioned functionality means that each database
thread can be assigned one of two roles; concurrency control or
transaction execution. Given a fixed number of threads, ORTHRUS

must apportion threads to either concurrency control or execution.
This section shows the performance implications of various con-
currency control and execution thread allocations. We run one ex-

0.0 M

1.0 M

2.0 M

3.0 M

4.0 M

5.0 M

6.0 M

7.0 M

4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Number of Execution Threads

4 Conc Ctrl Threads
8 Conc Ctrl Threads
16 Conc Ctrl Threads

Figure 5: Execution thread scalability in ORTHRUS under var-

ious fixed concurrency control thread configurations.

periment in which 80 threads (corresponding to our test machine’s
80 physical CPU cores) are made available to ORTHRUS. We ex-
periment with multiple ORTHRUS configurations. In each configu-
ration, we fix the number of concurrency control threads, and mea-
sure throughput while varying the number execution threads.

We configure the database with a single table of 10,000,000 rows,
each of size 1,000 bytes. The workload consists of transactions per-
forming 10 read-modify-write operations on unique records. The
records in transactions’ read- and write-sets are selected uniformly
at random from the set of 10,000,000 database rows. Each transac-
tion acquires all its locks from a single concurrency control thread
(we experiment with transactions that acquire locks on multiple
concurrency control threads in §4.3, and §4.4).

Figure 5 shows the results of the experiment. We experiment
with three concurrency control configurations, each corresponding
to a curve in Figure 5. In each concurrency control configura-
tion, throughput initially increases with increasing execution thread
count. This is because on the left-hand-side of Figure 5, there are
not enough execution threads to fully utilize the available concur-
rency control threads. Throughput continues increasing until a suf-
ficient number execution threads saturate the available concurrency
control threads. At this point, throughput plateaus. The point at
which each curve plateaus is directly proportional to the number
of concurrency control threads; more concurrency control threads
can sustain a higher aggregate throughput than fewer concurrency
control threads.

While ORTHRUS provides the flexibility to configure the num-
ber of concurrency control and execution threads, the choice of the
optimal division of threads between concurrency control and ex-
ecution is not obvious. Too few execution threads causes under-
utilization of concurrency control threads, and vice-versa. Fortu-
nately, ORTHRUS uses a staged event driven architecture (SEDA)
[50]; ORTHRUS’s concurrency control and execution modules cor-
respond to SEDA stages communicating via explicit-message pass-
ing. Systems based on SEDA are amenable to dynamic allocation
of resources (such as threads) based on load. In order to decide on
the optimal allocation of threads between concurrency control and
execution, therefore, ORTHRUS can use techniques for dynamic re-
source allocation on SEDA systems.

4.3 Multi-partition transactions
This section explores the cost of multi-partition transactions (trans-

actions that need locks located on multiple concurrency control
threads) in ORTHRUS. We compare performance against Deadlock-

free locking (which has no partitioning whatsoever), and a fully-
partitioned, “shared-nothing” system, where no memory is shared
between partitions. Our implementation is based on the single-node
(not distributed) version of the architecture of H-Store/VoltDB and
HyPer [24,44]. This Partitioned-store baseline is similar to the cor-
responding implementation by Tu et al. in Silo [48]. Partitioned-

store physically partitions data across database worker threads, such

0.0 M

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

14.0 M

1 2 4 6 8 10

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Partitions accessed per transaction

Partitioned Store
SPLIT ORTHRUS

Split Deadlock-free
ORTHRUS

Deadlock-free

Figure 6: Performance of ORTHRUS and Partitioned-store as

the number of partitions accessed per transaction is varied.

that each worker has its own local hash-table index. For concur-
rency control, Partitioned-store associates a coarse-grain partition-
level spinlock with each worker. In order to execute a transaction,
a worker thread obtains partition-level spinlocks on every partition
that the transaction needs to access. If every transaction is single-
partition, the corresponding workers will only acquire their own
partition-level spinlocks. In the single-partition case, therefore,
workers’ lock acquisitions never conflict with each other. Further-
more, in the single-partition case, spinlock acquisition has minimal
overhead because the lock is cached by the corresponding worker.

We run two experiments, both highlighting the effect of multi-
partition transactions on performance. The first experiment com-
pares the throughput of each system while varying the number of
partitions accessed by each transaction. The second varies the frac-
tion of multi-partition transactions in the workload.

The experiments in this section use a database which consists
of a single table with 10,000,000 records of size 1,000 bytes each.
These 10,000,000 records are uniformly spread across Partitioned-

store’s physical partitions. Similarly, 10,000,000 logical locks are
uniformly spread across ORTHRUS’s concurrency control threads.
Both experiments use transactions which perform 10 read-modify-
write operations. In Partitioned-store, multi-partition transactions
span physical partitions. Similarly, multi-partition transactions in
ORTHRUS request locks from multiple concurrency control threads.

Vary partitions per transaction. Figure 6 shows the perfor-
mance of ORTHRUS, Partitioned-store and Deadlock-free locking

while varying the number of partitions accessed by each transac-
tion. When transactions are restricted to a single partition, Partitioned-

store outperforms ORTHRUS and Deadlock-free locking. There
are two primary reasons for this. First, Partitioned-store requires
no concurrency control when transactions are restricted to a sin-
gle partition. Second, Partitioned-store index structures have bet-
ter cache locality because indexes are physically partitioned across
worker threads. As transactions access two or more partitions,
however Partitioned-store experiences a sharp drop in throughput.
Partitioned-store’s drop in throughput is due to its use of coarse-
grain concurrency control. Partitioned-store isolates transactions at
the level of partitions; a pair of transactions conflict if they both ac-
cess the same partition. In contrast, ORTHRUS and Deadlock-free

locking isolate transactions at the granularity of read- and write-
conflicts on individual records.

We also find that ORTHRUS’s throughput decreases as transac-
tions access more partitions. However, unlike Partitioned-store,
ORTHRUS’s drop in throughput is more modest. ORTHRUS’s through-
put drops because of the increase in the number of messages re-
quired to acquire a transaction’s locks. In the single-partition case,
each transaction acquires its locks from a single concurrency con-
trol thread. However, as transactions’ locks are distributed over a
greater number of concurrency control threads, the number of mes-
sage hops during lock acquisition increases. In particular, the num-
ber of messages required to acquire a transaction’s locks is equal to

Ncc + 1, where Ncc is the number of concurrency control threads
on which a transaction’s locks reside (§3.3). Clearly, as Ncc in-
creases, the number of messages involved in acquiring a single
transaction’s locks increases. Figure 6 also shows that Deadlock-

free locking’s throughput remains unchanged as the number of par-
titions accessed by a transaction increases. Deadlock-free locking

is a shared-everything system, and hence is not subject to additional
overhead in the presence of multi-partition transactions.

To better understand the performance characteristics of the curves
in Figure 6, we physically partitioned indexes across ORTHRUS and
Deadlock-free locking’s worker threads4. These curves are marked
SPLIT ORTHRUS and Split Deadlock-free, respectively. This op-
timization puts all three systems on the same level as Partitioned-

store with respect to cache locality, and any remaining difference
between Partitioned-store and these two new curves can be at-
tributed to concurrency control.

When analyzing the difference between Partitioned-store and
SPLIT ORTHRUS/Split Deadlock-free and comparing this differ-
ence to the difference between Partitioned-store and ORTHRUS/Deadlock-

free locking, we can conclude that when transactions are restricted
to a single partition, Partitioned-store’s main advantage over OR-
THRUS and Deadlock-free locking is due to the smaller cache foot-
print of partitioned indexes. Partitioned-store’s throughput is about
2x and 2.6x that of ORTHRUS and Deadlock-free locking, respec-
tively, while its advantage over SPLIT ORTHRUS and Split Deadlock-

free is a more modest 1.3x and 1.5x, respectively. Furthermore, as
transactions access more partitions, the performance of the parti-
tioned variants of ORTHRUS and Deadlock-free locking converge to
their non-partitioned counterparts. This confirms that Partitioned-

store’s poor performance under multi-partition transactions is due
to its use of coarse-grain concurrency control.

It should be noted that a big advantage of ORTHRUS and Deadlock-

free locking over Partitioned-store is that these systems by default
do not require a user to be concerned about finding a near-perfect
data partitioning such that the vast majority of a transactions in a
workload will only access a single-partition. However, if a good
or near-perfect partitioning is available for a particular workload,
there is no reason why ORTHRUS and Deadlock-free locking cannot
benefit from it by partitioning their indexes across worker threads
accordingly. In other words, although our primary motivation for
introducing SPLIT ORTHRUS and Split Deadlock-free was in or-
der to break down the performance differences between Partitioned-

store and ORTHRUS/Deadlock-free locking, if a good data partition-
ing is available for a workload, SPLIT ORTHRUS could be used
instead of ORTHRUS, and achieve much closer performance to par-
titioned stores on single-partitioned transactions, while maintaining
its significant advantages over partitioned-stores for multi-partition
transactions.

Vary fraction of multi-partition transactions. Although Fig-
ure 6 shows the effect of multi-partition transactions on each sys-
tem’s throughput, realistic workloads involve a mix of single-partition
and multi-partition transactions. In this experiment, we evaluate
a workload consisting of both single- and multi-partition transac-
tions. We vary the percentage of multi-partition transactions in the
workload. Multi-partition transactions run on exactly two parti-
tions.

Figure 7 shows the result of the experiment. As in the previous
experiment, we find that Partitioned-store outperforms ORTHRUS

and Deadlock-free locking when all transactions are single-partition
(0% multi-partition transactions). Partitioned-store’s throughput
decreases as the fraction of multi-partition transactions increases.

4Tu et al. perform a similar analysis in Silo [48]

0.0 M

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

14.0 M

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Percentage of multi-partition transactions

Partitioned Store
SPLIT ORTHRUS

Split Deadlock-free

ORTHRUS
Deadlock-free

Figure 7: Performance of ORTHRUS and Partitioned-store as

the percentage of multi-partition transactions is varied.

This is expected because we already saw in Figure 6 that Partitioned-

store’s performance decreases dramatically as soon an transactions
access more than one partition.

ORTHRUS’s throughput also decreases as the fraction of multi-
partition transactions increases. As elaborated in the previous ex-
periment, this is due to the increase in the number of messages
required to acquire transactions’ locks. However, despite the de-
crease in throughput, ORTHRUS always outperforms Deadlock-free

locking (even when the percentage of multi-partition transaction
is 100%). Although both ORTHRUS and Deadlock-free locking

use the same underlying locking-based protocol, ORTHRUS’s parti-
tioned functionality allows concurrency control and execution threads
to better utilize data- and instruction-caches (§3.1).

Finally, Figure 7 also evaluates SPLIT ORTHRUS and Split Deadlock-

free. These curves reinforce the fact that Partitioned-store’s main
advantage relative to ORTHRUS and Deadlock-free locking is cache
locality, and this advantage can be duplicated by ORTHRUS and
Deadlock-free locking if a good data partitioning is available. Nonethe-
less, Partitioned-store’s total elimination of concurrency control for
single-partition transactions prevents SPLIT ORTHRUS and Split

Deadlock-free from matching its performance at the extreme left-
hand side of the graph.

4.4 Performance under contention
This section evaluates the performance of ORTHRUS under con-

tention. We compare ORTHRUS against Deadlock-free locking, and
2PL with dreadlocks. The experiments in this section run a sub-
set of the TPC-C benchmark, while we experiment with the YCSB
benchmark in Appendix A. As is common practice, our TPC-C
implementation does not model client “think” time, and transac-
tions are executed as one-shot stored procedures [1,41,44,48]. We
restrict our evaluation to TPC-C’s NewOrder and Payment trans-
actions. These two transactions make up the vast majority of the
benchmark; approximately 45% and 43% of transactions in the
full TPC-C mix are NewOrder and Payment transactions, respec-
tively. Furthermore, NewOrder and Payment are short update trans-
actions5, and thereby put greater stress on concurrency control. Our
evaluation therefore uses an equal mix of NewOrder and Payment
transactions; both types of transaction are equally likely to occur.

TPC-C’s database conforms to a tree-based schema [44]. Most
tables in TPC-C have a foreign key dependency on the “root” Ware-
house table. Excluding the Warehouse table itself, out of eight ta-
bles in the TPC-C database, only one, Item, does not contain a
foreign key dependency on the Warehouse table. TPC-C’s Item ta-
ble is read-only. Hence, none of our baselines perform any con-
currency control on reads to Item table’s rows. In TPC-C, the
warehouse_id attribute is the primary key of the Warehouse ta-
ble, and foreign key in all other tables (apart from Item). ORTHRUS

partitions database tables across concurrency control threads based

5Compared to long running transactions such as StockLevel

0.0 M

1.0 M

2.0 M

3.0 M

4.0 M

5.0 M

6.0 M

4 8 16 32 64 96 128

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Number of warehouses

ORTHRUS
Deadlock-free

2PL w/ Dreadlocks

Figure 8: TPC-C NewOrder and Payment throughput, varying

number of warehouses. Each system uses 80 CPU cores.

on each row’s warehouse_id attribute. Our evaluation adheres to
the TPC-C specification of requiring 10% of NewOrder and 15%
of Payment transactions to span two warehouses. Therefore, ap-
proximately 12.5% of transactions in our evaluation require locks
from two concurrency control threads. Some Payment transactions’
read- and write-sets are deducible only upon reading the value of a
secondary index. In particular, 60% of Payment transactions must
find a Customer by a secondary index on customers’ last name.
For this subset of transactions, ORTHRUS must speculatively read
this secondary index in order to obtain the transaction’s read- and
write-sets using the OLLP protocol described in §3.2.

4.4.1 Throughput under varying contention

Since the TPC-C database schema is tree-based, and rooted at
the Warehouse table, contention on all tables (except the read-only
Items table) can be controlled by varying the number of records
in the Warehouse table; decreasing the number of warehouses in-
creases the level of contention in the workload. Figure 8 shows
the throughput of each system while varying the number of ware-
houses. The number of warehouses increases from left to right
along the x-axis, therefore, contention decreases from left to right.

When the number of warehouses is small, we find that ORTHRUS

significantly outperforms 2PL. When the number of warehouses is
small, both transactions update highly contended records. Payment
updates two records, one each from the Warehouse and District
tables. NewOrder updates a single District record. Deadlock-free

locking suffers from latching overhead associated with acquiring
logical locks on each of these records (synchronization overhead).
Furthermore, the linked-list corresponding to a bucket in the lock
table must also be moved across cores (data movement overhead).

In addition to suffering from the same sources of overhead as
Deadlock-free locking, 2PL with dreadlocks must also execute dead-
lock handling logic, which further reduces throughput (see §4.1).
Dreadlocks requires all transactions waiting on a particular logi-
cal lock to spin on the lock holder’s digest. When the lock holder
eventually releases the lock, it updates its digest, which propagates
to the threads spinning on the digest. In order to read the new
value of the digest, the readers’ cached values of the digest must
be invalidated and then reloaded with the new value. Note that this
cache coherence overhead is in addition to the cache coherence
overhead associated with latch acquisition and linked-list traversal
experienced by Deadlock-free locking. Furthermore, we found that
the actual occurrence of deadlocks on the TPC-C workload was
rare. 2PL with Dreadlocks is thus subject to severe cache coher-
ence overhead despite the fact that the workload itself is mostly
deadlock free.

Unlike 2PL, ORTHRUS does not experience cache-coherence in-
duced overhead. In ORTHRUS, a single concurrency control thread
is responsible for processing every lock operation on a particular
record. Concurrency control threads therefore require no synchro-
nization to process lock acquisition or release requests. Further-

0.0 M

0.5 M

1.0 M

1.5 M

2.0 M

2.5 M

3.0 M

 10 20 40 60 80

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Number of CPU cores

ORTHRUS
Deadlock-free

2PL w/ Dreadlocks

Figure 9: TPC-C throughput while increasing core count.

Number of warehouses = 16.

more, the meta-data associated with the locks (the linked list of
lock requests) does not need to move across cores. On the contrary,
since Warehouse and District records are popular, the linked lists
of lock requests on these records experience good cache locality
on concurrency control threads. As mentioned previously, 10% of
NewOrder and 15% of Payment transactions span two warehouses.
Since we assign a single concurrency control thread to a particu-
lar warehouse, this subset of NewOrder and Payment transactions
must interact with two concurrency control threads. These trans-
actions are therefore subject to greater lock hold times on popular
records due to asynchrony (§3.3). Despite the longer duration for
which contended locks are held, ORTHRUS is able to significantly
outperform both locking implementations.

As the number of warehouses increases, the level of contention
in the workload decreases. As a consequence, both locking systems
experiences lower synchronization overhead. However, despite the
decrease in contention, we find that ORTHRUS maintains a signifi-
cant advantage over both locking systems. At 128 warehouses, OR-
THRUS’s throughput is 1.3x and 1.5x that of Deadlock-free locking

and 2PL, respectively. We attribute this remaining advantage to the
lower instruction- and data-cache footprint entailed by partitioned
functionality (§2.1 and §3.1).

4.4.2 Scalability under high contention

Next, we compare the scalability of ORTHRUS, Deadlock-free

locking and 2PL under high contention. We set the total num-
ber of warehouses to 16 and vary the number of cores used by
the system. Figure 9 shows the results of the experiment. When
each system uses 10 CPU cores, we find that Deadlock-free lock-

ing and 2PL’s throughput is identical (as explained in §4.1). On
increasing the number of CPU cores, we find that 2PL’s through-
put begins to drop because of the overhead of deadlock handling
logic. As mentioned above, deadlocks occur with negligible fre-
quency on the TPC-C benchmark. However, despite the negligible
frequency of deadlocks, we find a significant difference between
2PL and Deadlock-free locking; this difference validates our claim
that deadlock handling logic is a significant source of overhead,
even on workloads which are devoid of deadlocks. Despite the sig-
nificant level of contention in the workload ORTHRUS’s throughput
scales with additional CPU cores. At 80 cores, ORTHRUS outper-
forms Deadlock-free locking and 2PL by 2x and nearly an order of

magnitude, respectively.

4.4.3 Execution time breakdown

We conclude our experimental evaluation by showing the break-
down of CPU time on database execution threads in ORTHRUS,
Deadlock-free locking, and 2PL. Figure 10 shows that 2PL spends
significantly more time locking records than Deadlock-free locking.
This is due to the fact the the dreadlocks algorithm spends time
spinning on threads’ digests in the lock manager. The difference
between these two baselines is only that 2PL spends time waiting

 0 %

 20 %

 40 %

 60 %

 80 %

100 %

ORTHRUS
Deadlock-free

2PL w/ Dreadlocks
(a) Low contention

%
 E

x
ec

u
ti

o
n

 T
im

e

Execution Locking Waiting

 0 %

 20 %

 40 %

 60 %

 80 %

100 %

ORTHRUS
Deadlock-free

2PL w/ Dreadlocks
(b) High contention

%
 e

x
ec

u
ti

o
n

 t
im

e

Figure 10: Execution thread CPU time breakdown on TPC-C

with 80 threads. (a): 128 Warehouses (low contention). (b): 16

Warehouses (high contention)

within the lock manager, while Deadlock-free locking spends time
waiting outside the lock manager.

ORTHRUS’s execution threads spend more cycles doing useful
work than both Deadlock-free locking and 2PL under both high
contention and low contention. Under high contention all three
systems spend a large fraction of their time waiting on locks. How-
ever, ORTHRUS’s execution threads spend significantly more time
executing transactions (in comparison to Deadlock-free locking and
2PL). In particular, ORTHRUS’s execution threads spend 18% of
their time executing transactions. In comparison, Deadlock-free

locking and 2PL threads spend just 7.2% and 3.7% of their time
doing useful work. Thus, ORTHRUS’s execution thread utiliza-
tion is about 2.5x and 5x greater than that Deadlock-free lock-

ing and 2PL, respectively. It should be noted that as a conse-
quence of its partitioned functionality, ORTHRUS uses fewer ex-
ecution threads than Deadlock-free locking and 2PL. In both exper-
iments, ORTHRUS uses 16 concurrency control threads and 64 ex-
ecution threads. In contrast, the other systems utilize all 80 threads
for execution. However, despite having 20% fewer execution threads
at its disposal, ORTHRUS outperforms Deadlock-free locking and
2PL by much better utilizing its available execution threads.

5. RELATED WORK
Synchronization. Remote Core Locking (RCL) is a technique

for reducing synchronization overhead and increasing data local-
ity in contended critical sections [33]. RCL classifies a subset of
a machine’s CPU cores as “server” cores, and assigns contended
critical sections to server cores. Threads request server cores to
execute critical sections on their behalf. Flat combining is a syn-
chronization technique that addresses the same problem as RCL;
the impact of contended critical sections on synchronization over-
head and data locality [19]. Unlike RCL, flat combining does not
dedicate CPU cores for the sole purpose of critical section execu-
tion. Instead, a single “combiner” thread is dynamically chosen to
execute critical sections on behalf of others. Both RCL and flat
combining use the design principle of dedicating a single thread to
repeatedly execute critical sections for the purposes of exploiting
instruction- and data-cache locality, and reducing synchronization
overhead. ORTHRUS uses the same design principle; RCL’s server
cores, and flat combining’s combiner are analogous to ORTHRUS’s
concurrency control threads. However, both RCL and flat com-

bining address high contention in critical sections without regard
to any higher level functionality. In contrast, ORTHRUS’s concur-
rency control threads implement logical locking, and must there-
fore carefully address harmful interactions between logical locking
and asynchronous message-passing (§3.3).

Operating systems. Barrelfish is a multi-core operating sys-
tem kernel that forbids shared-memory-based inter-core communi-
cation altogether [2]. Barrelfish forces cores to communicate using
explicit message passing. One of the motivations for Barrelfish’s
deisgn was shared-memory operating system kernels’s inability to
reason about contention at scale. Wentzlaff et al. propose a factored
operating system (fos), which assigns operating system functions to
specific cores of a single machine [51]. fos’s design is intended to
reduce contention, and improve instruction- and data-cache local-
ity. ORTHRUS shares some of the motivation behind Barrelfish and
fos: synchronization overhead, and poor locality due to conflated
functionality (§2.1). However, Barrelfish and fos address overheads
in operating system kernels, while ORTHRUS addresses overheads
in database concurrency control.

Partitioned functionality. Bernstein and Das, and Ding et al.
proposed optimistic distributed DBMSs in which validation is per-
formed by a dedicated set of processes, independent from those
that execute transactions’s logic [3, 11]. Faleiro et al. proposed
techniques for lazy transaction evaluation [14], and multi-version
concurrency control [13], that separate concurrency control and
transaction execution. None of these systems advocated for ex-
plicit message-passing as an inter-thread communication mecha-
nism on a single multi-core machine. Moreover, this paper ana-
lyzes the broader implications of separating concurrency control
from transaction execution, while these prior systems used separate
concurrency control and execution threads in the narrower context
of distributed optimistic concurrency control, lazy transaction eval-
uation, and multi-version concurrency control.

Staged DBMSs. Harizopoulos et al. identified several sources
of overhead with thread-based query execution architectures [17].
Chief among these was poor instruction- and data-cache locality
due to thread context switching. To address this overhead, they
proposed StagedDB, a staged event-driven query execution archi-
tecture. StagedDB uses long-lived threads to exploit inter-query
instruction- and data-cache locality. ORTHRUS uses a similar de-
sign; it dedicates long-lived threads to perform concurrency con-
trol and transaction execution logic respectively. These threads
are pinned to physical CPU cores in order to exploit instruction-
and data-cache locality. ORTHRUS differs from StagedDB in that
it addresses bottlenecks in transaction processing, not query exe-
cution. Furthermore, ORTHRUS addresses transaction processing
overheads on modern multi-core machines, such as synchroniza-
tion, data movement, and deadlock handling.

Several distributed DBMSs have adopted a staged event driven
architecture (SEDA) [10, 20, 28, 54]. SEDA is a natural fit for dis-
tributed database systems, which must necessarily use message-
passing as a communication mechanism. In contrast, ORTHRUS

uses a staged message-passing among threads on a single node.
Multi-core optimized DBMSs. Several researchers have re-

cently proposed techniques to address synchronization overhead
and improve cache-locality in multi-core databases [25, 30–32, 35,
40, 47, 49]. Johnson et al. devised a technique to reduce the fre-
quency of contended latch acquisitions in conventional lock man-
agers [21]. Their technique, speculative lock inheritance, passes
contended logical locks between transactions without requiring calls
to the lock manager (consequently decreasing the frequency of con-
tended latch acquisition within the lock manager). Jung et al. de-
vised scalable latch-free algorithms for conventional lock managers

[23]. Larson et al. address several scalability bottlenecks in both
pessimistic and optimistic concurrency control protocols [29]. For
instance, their optimistic validation protocol does not require the
use of a global critical section (as required by conventional pro-
tocols [27]). Tu et al. propose Silo, an optimistic main-memory
multi-core database system designed to eliminate contended cen-
tralized data-structures [48]. All of these systems use a conven-
tional shared-memory design. In contrast, ORTHRUS mediates com-
munication among concurrency control and execution threads us-
ing explicit message-passing.

Semantics-aware concurrency control. Several researchers have
argued for reasoning about conflicts using the semantics of opera-
tions [1,7,8,36,43]. Doppel is a main-memory database system that
exploits commutative operations on contended records [34]. Con-
tended records are replicated across a machine’s cores, and commu-
tative operations on these records are satisfied by any core. In order
to process non-commutative operations, the state on each replica
is periodically aggregated. In contrast, ORTHRUS is designed to
address high contention in workloads where semantic knowledge
about conflicts is not available (beyond reads, and writes to records).

Shared-nothing systems. Prior research found that the cost of
two-phase locking was prohibitively expensive on main-memory
database systems [16]. Several researchers subsequently recom-
mended doing away with two-phase locking altogether, and advo-
cated for serial transaction execution. H-Store is an example of a
database system which employs serial transaction execution, and
works best when workloads are perfectly partitionable [44]. Hy-
Per is another example of a single-thread transaction processing
system, but its design is meant to simultaneously support OLTP
and OLAP workloads [24] (note that the latest version of HyPer
abandons a shared-nothing design in favor of shared-everyting op-
timistic multi-versioning [35]). Since these systems do away with
concurrency control altogether, they do not suffer from any of the
overheads described in this paper. However, for the same reason,
they cannot adequately utilize multi-core systems when a workload
contains a non-trivial fraction of distributed transactions.

Pandis et al. propose a shared-nothing transaction processing ar-
chitecture to avoid contention on locking meta-data (DORA) [37]
and indexes (PLP) [38]. Unlike conventional designs where a sin-
gle thread performs a transaction’s logic, their work proposes that
a transaction is collectively processed by the partitions on which
it must execute. A transaction’s logic is broken into smaller sub-
transactions such that an entire sub-transaction is restricted to a
single partition. Unlike ORTHRUS, DORA assigns a single thread
to perform both concurrency control and execution within a parti-
tion. Furthermore, this paper advocates for partitioned functional-

ity, which does not necessarily preclude shared-data among concur-
rency control or execution threads (§3.4). PLP is complimentary to
our work; we do not address index contention.

6. CONCLUSIONS
The vast majority of database systems adhere to the design prin-

ciple of assigning a single thread the responsibility of performing
all logic on behalf of a transaction. This design principle leads to
severe scalability problems on main-memory multi-core databases
due to synchronization overhead, data movement overhead, and
cache pollution. Furthermore, these systems allow dynamic ac-
cess of data which necessitates expensive deadlock handling mech-
anisms. ORTHRUS addresses these limitations by partitioning func-
tionality across a machine’s cores and eliminating the need for
handling deadlocks. Our experimental evaluation shows that OR-
THRUS’s design enables it to outperform conventional database sys-
tems by upto an order of magnitude on high contention workloads.

Acknowledgements. This work was sponsored by the NSF un-
der grant IIS-1527118. We thank the anonymous SIGMOD 2016
reviewers for their insightful feedback.

7. REFERENCES
[1] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Coordination avoidance in database systems. PVLDB, 8(3), 2014.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The multikernel: A new OS architecture for
scalable multicore systems. In SOSP, 2009.

[3] P. A. Bernstein and S. Das. Scaling optimistic concurrency control by
approximately partitioning the certifier and log. DE Bull, 38(1), 2015.

[4] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable
locks are dangerous. In Linux OLS, 2012.

[5] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. Marathe, and M. Moir.
Message passing or shared memory: Evaluating the delegation abstraction for
multicores. In OPODIS. 2013.

[6] A. Cheung, S. Madden, O. Arden, and A. C. Myers. Automatic partitioning of
database applications. PVLDB, 5(11), 2012.

[7] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The
scalable commutativity rule: Designing scalable software for multicore
processors. In SOSP, 2013.

[8] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic
and lattices for distributed programming. In SoCC, 2012.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC, 2010.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In SOSP, 2007.

[11] B. Ding, L. Kot, A. Demers, and J. Gehrke. Centiman: Elastic, high
performance optimistic concurrency control by watermarking. In SoCC, 2015.

[12] J. M. Faleiro and D. J. Abadi. FIT: A distributed database performance tradeoff.
DE Bull, 38(1), 2015.

[13] J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion concurrency
control. PVLDB, 8(11), 2015.

[14] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation of transactions in
database systems. In SIGMOD, 2014.

[15] J. Gray and A. Reuter. Transaction processing. Morgan Kaufmann Publishers,
1992.

[16] S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker. OLTP through the
looking glass, and what we found there. In SIGMOD, 2008.

[17] S. Harizopoulos and A. Ailamaki. A case for staged database systems. In CIDR,
2003.

[18] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a database

system. Now Publishers, 2007.

[19] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In SPAA, 2010.

[20] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of PIER: An
internet-scale query processor. In CIDR, 2005.

[21] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP scalability using
speculative lock inheritance. PVLDB, 2(1), 2009.

[22] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-MT:
A scalable storage manager for the multicore era. In EDBT, 2009.

[23] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A scalable lock
manager for multicores. In SIGMOD, 2013.

[24] A. Kemper and T. Neumann. Hyper: A hybrid OLTP & OLAP main memory
database system based on virtual memory snapshots. In ICDE, 2011.

[25] H. Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In
SIGMOD, 2015.

[26] E. Koskinen and M. Herlihy. Dreadlocks: Efficient Deadlock Detection. In
SPAA, 2008.

[27] H.-T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM TODS, 6(2), 1981.

[28] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage
system. ACM SIGOPS OSR, 44(2), 2010.

[29] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling.
High-performance concurrency control mechanisms for main-memory
databases. PVLDB, 5(4), 2011.

[30] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional
memory in main-memory databases. In ICDE, 2014.

[31] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and R. Wang.
Multi-version range concurrency control in deuteronomy. PVLDB, 8(13), 2015.

[32] D. B. Lomet, S. Sengupta, and J. J. Levandoski. The bw-tree: A b-tree for new
hardware platforms. In ICDE, 2013.

[33] J.-P. Lozi, F. David, G. Thomas, J. L. Lawall, G. Muller, et al. Remote core
locking: Migrating critical-section execution to improve the performance of
multithreaded applications. In USENIX ATC, 2012.

[34] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for
contended in-memory transactions. In OSDI, 2014.

[35] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable multi-version
concurrency control for main-memory database systems. In SIGMOD, 2015.

[36] P. E. O’Neil. The escrow transactional method. TODS, 11(4), 1986.

[37] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented
transaction execution. PVLDB, 3(1-2), 2010.

[38] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: page latch-free
shared-everything oltp. PVLDB, 4(10), 2011.

[39] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems. In SIGMOD, 2012.

[40] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki. Oltp on hardware
islands. PVLDB, 5(11), 2012.

[41] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main memory
database systems. PVLDB, 6(2), 2012.

[42] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages and
disadvantages of deterministic database systems. PVLDB, 7(10), 2014.

[43] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and
J. Gehrke. The homeostasis protocol: Avoiding transaction coordination
through program analysis. In SIGMOD, 2015.

[44] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The end of an architectural era (it’s time for a complete rewrite). In
VLDB, 2007.

[45] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. PVLDB, 8(3), 2014.

[46] A. Thomson, T. Diamond, S. chun Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: Fast distributed transactions for partitioned database systems. In
SIGMOD, 2012.

[47] P. Tözün, I. Atta, A. Ailamaki, and A. Moshovos. Addict: Advanced instruction
chasing for transactions. PVLDB, 7(14), 2014.

[48] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy Transactions in
Multicore In-memory Databases. In SOSP, 2013.

[49] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional memory to
build a scalable in-memory database. In Eurosys, 2014.

[50] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for
well-conditioned, scalable internet services. In SOSP, 2001.

[51] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for a
scalable operating system for multicores. ACM SIGOPS OSR, 43(2), 2009.

[52] C. Yan and A. Cheung. Leveraging lock contention to improve OLTP
application performance. PVLDB, 9(5), 2016.

[53] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one thousand cores. PVLDB,
8(3), 2014.

[54] L.-Y. Yuan, L. Wu, J.-H. You, and Y. Chi. Rubato DB: A highly scalable staged
grid database system for OLTP and big data applications. In CIKM, 2014.

APPENDIX

A. YCSB EVALUATION
In this section, we compare ORTHRUS’s performance against

that of Deadlock-free locking and 2PL on the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [9].

This set of experiments uses a single table of 10,000,000 records,
each 1,000 bytes in size. Since YCSB transactions execute over
a single table, the benchmark implicitly assumes a “flat” schema.
This is in contrast to the tree schema from TPC-C that we exper-
imented with in §4.4. The key difference between flat and tree
schemas is that it is easier to partition data in a tree schema such
that multi-partition transactions are rare.

To avoid assumptions about the partitionability of the data, we
run ORTHRUS under three different configurations; single partition,
dual partition, and random. In the single partition configuration all
the locks required by a particular transaction are guaranteed to re-
side on a single concurrency control thread. The single partition
configuration represents a perfectly partitionable tree schema. In
the dual partition configuration, all the locks required by a trans-
action are guaranteed to reside on exactly two concurrency control
threads. The dual partition configuration forces every transaction

 0 M

 2 M

 4 M

 6 M

 8 M

10 M

 10 20 40 60 80
(a) Low contention

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)
ORTHRUS(Single)

ORTHRUS(Dual)
ORTHRUS(Random)

Deadlock-free
2PL w/ Waitdie

 0 M

 2 M

 4 M

 6 M

 8 M

10 M

 10 20 40 60 80
(b) High contention

Number of CPU cores

Figure 11: YCSB read-only transaction scalability.

to acquire locks from exactly two concurrency control threads. The
dual partition configuration thus represents a workload in which ev-

ery transaction is distributed due to the involvement of an ad-hoc
pairing of real-world entities involved in the transaction. Under
the random configuration, a transaction’s locks are randomly dis-
tributed across concurrency control threads and could potentially
access many more than two threads. This corresponds to com-
plex transactions involving many real-world entities whose joint-
involvement in transactions are not predictable in advance.

A.1 Read-only transactions
This experiment compares ORTHRUS’s throughput against that

of 2PL with wait-die6 and Deadlock-free locking on a workload
consisting of read-only transactions. Each transaction reads 10
records. We run both low and high contention experiments. In the
low contention experiment, the 10 records in a transaction’s read-
set are selected uniformly at random from the set of 10,000,000
records. In the high contention experiment, each transaction picks
two records from a set of hot records, and the remaining eight
records from a set of cold records (locks on two hot records are
acquired before locks on cold records). We set the number of hot
records to 64. In both low, and high contention experiments, 2PL’s
deadlock handling logic is never invoked. This is because read-
only transactions do not conflict with each other. Hence, this ex-
periment is designed to explore the overhead of conflated function-
ality in conventional concurrency control protocols in the absence
of deadlock handling logic.

Figure 11(a) shows the results of the low contention experiment.
All the schemes that we compare use lock-based concurrency con-
trol. However, since all transactions are read-only, all locks that are
acquired are shared-locks, and no lock request is ever denied. Thus,
one may expect that all schemes should perform similarly. Surpris-
ingly, this is not the case. Read-only transactions are extremely
short in YCSB. As a consequence, concurrency control overhead
— the process of requesting and immediately receiving a shared
lock — takes up a non-trivial fraction of each transaction’s total
execution time. Single partition ORTHRUS outperforms all other
baselines, which indicates that its concurrency control overhead is
the least among all the other baselines when only one concurrency

6We also evaluated the throughput of 2PL with the wait-for graph,
and dreadlocks algorithms, but found that wait-die outperformed
both these schemes on this benchmark.

control thread is involved in a transaction. This is because it doesn’t
require synchronized access to shared memory concurrency control
meta-data.

§3.3 explained that the number of message delays required in or-
der for a transaction to acquire its locks in ORTHRUS is Ncc + 1,
where Ncc is the number of concurrency control threads on which
a transaction’s locks reside. The number of message delays re-
quired for lock acquisition directly affects the time spent acquiring
locks; more message delays correspond to more time spent acquir-
ing locks. Since each transaction in single partition ORTHRUS ac-
quires all its locks from a single concurrency control thread, the
number of message delays per transaction in single partition OR-
THRUS is 2. The number of message delays per transaction in dual
partition ORTHRUS is 3 (because every transaction must acquire its
locks from two concurrency control threads, but the threads for-
ward messages to eliminate one extra message). Finally, in random
ORTHRUS, the number of concurrency control threads that a sin-
gle transaction acquires its locks from is, on average, a factor of 3
higher than in dual ORTHRUS. The difference in throughput of each
of these systems is therefore directly attributable to the difference
in the number of message delays required for lock acquisition.

Figure 11(a) also shows that both Deadlock-free locking and 2PL
outperform random ORTHRUS. The reason is that messaging over-
head in ORTHRUS when there are 8-10 messages per transaction
exceeds the overhead of latch acquisition and data movement in
the 2PL and Deadlock-free locking baselines. However, single and
dual partition ORTHRUS (when there are only 2-3 messages per
transaction) outperform both 2PL and Deadlock-free locking, in-
dicating that the reduction in synchronization and data movement
overhead does indeed pay off for many workloads, even under low
contention.

Figure 11(b) compares each of these systems under high con-
tention. Since read-only transactions never conflict with one an-
other, the increase in contention does not affect the number of ac-
tual conflicts in the workload (which remains zero). In this case, the
throughput of each ORTHRUS configuration increases slightly. The
increase in throughput is due to better cache locality in concurrency
control and execution threads. Concurrency control threads expe-
rience better locality because they often update the same meta-data
across different transactions (corresponding to contended records).
Execution threads experience better locality because they read the
same contended records across transactions.

However, unlike ORTHRUS, Deadlock-free locking and 2PL do
not scale beyond 60 cores. Instead, their throughput decreases after
60 cores. This decrease in throughput occurs despite the absence
of conflicts among read-only transactions. Deadlock-free locking

and 2PL do not scale because of contention for concurrency control
meta-data. In order to acquire or release a logical lock, both locking
implementations must acquire a latch. This latch protects the hash-
bucket in which requests for a particular lock reside. Under high
contention, database threads will contend for the latches protecting
the meta-data corresponding to popular records. Furthermore, as
the number of cores allocated to the database increases, latch con-
tention increases because more threads attempt to acquire the same
set of latches. As §2.1 explained, contention on memory words –
such as those corresponding to latches – leads to significant cache
coherence overhead, which in turn inhibits Deadlock-free locking

and 2PL’s scalability7. Note that Deadlock-free locking’s through-
put is nearly identical to that of 2PL because 2PL’s deadlock han-
dling logic is never invoked due to the absence of logical conflicts
among read-only transactions.

7Note that while our implementation uses latches, latch-free algo-
rithms are subject to the same cache-coherence overhead [13, 48].

 0 M

 2 M

 4 M

 6 M

 8 M

 10 20 40 60 80
(a) Low contention

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)
ORTHRUS(Single)

ORTHRUS(Dual)
ORTHRUS(Random)

Deadlock-free
2PL w/ Waitdie

0.0 M

0.5 M

1.0 M

1.5 M

2.0 M

 10 20 40 60 80
(b) High contention

Number of CPU cores

Figure 12: YCSB 10RMW scalability.

A.2 10RMW transactions
We now compare ORTHRUS’s throughput with that of Deadlock-

free locking and 2PL when transactions perform 10 read-modify-
write (RMW) operations. As in §A.1, we perform both low con-
tention and high contention experiments. Records in transactions’
read- and write-sets are picked in the same manner as the read-only
experiment, where the hot set for the high contention experiment
is 64 records. Note that unlike read-only transactions which never
logically conflict, a pair of 10RMW transactions conflict with each
other if their read-/write-sets intersect.

Figure 12(a) shows the results of the low contention experiment.
Each system’s performance trend is similar to that in the low con-
tention read-only experiment (§A.1). However, the absolute through-
put of each system is less than its throughput in the low contention
read-only experiment. This is because 10RMW transactions take
longer than read-only transactions since they both read and write
10 records while read-only transactions only read 10 records.

Figure 12(b) shows the throughput of each system under high
contention. Under high contention, 2PL does not scale beyond 20
cores. On the contrary, its throughput begins to drop as more cores
are added. Deadlock-free locking’s throughput also does not scale
beyond 20 cores. However, unlike 2PL, its throughput plateaus at
1,000,000 transactions per second. We attribute the difference be-
tween Deadlock-free locking and 2PL to deadlock handling over-
head. 2PL uses the wait-die deadlock avoidance algorithm, which
aborts a transaction if it requests a lock held by an older transaction
(§4). Therefore, in addition to suffering from synchronization and
data-movement overheads associated with lock acquisition, 2PL
suffers additional overhead due to deadlock handling (in particu-
lar, wasted work due to transaction aborts).

As expected, single and dual partition ORTHRUS outperform ran-
dom ORTHRUS. This is because transactions in single and dual
partition ORTHRUS request locks from fewer concurrency control
threads (relative to random ORTHRUS), and therefore hold con-
tended locks for shorter durations (§3.3). Single partition OR-
THRUS outperforms dual partition ORTHRUS configuration for the
same reason.

At 80 cores, the difference between 2PL and random, dual, and
single partition ORTHRUS is 2.3x, 3.35x, and 4.65x, respectively.

B. DEADLOCK EXPERIMENTS
This section analyzes the pros and cons various deadlock han-

dling mechanisms in greater detail. §4 explained that Deadlock-

free locking eliminates the possibility of deadlock by acquiring
locks in lexicographic order. This lexicographic order does not nec-
essarily match the order in which locks are actually required by a
transaction’s logic. For instance, if the last operation performed
by a transaction is an update to a contended record, then a con-
ventional locking protocol would acquire a lock on this record at
the end of the transaction. In contrast, Deadlock-free locking may
need to acquire this contended lock before other locks because the
contended lock may occur earlier in the lexicographic order. In the
worst case, the lexicographic order may force the contended lock
to be acquired at the beginning of the transaction. Thus, although
lexicographically ordered lock acquisition avoids deadlocks, it may
force transactions to hold contended locks for longer. This section
analyzes this tradeoff in detail.

The workload used in this section consists of transactions which
perform 10 read-modify-write operations (RMW) on 1000-byte sized
records (as in §A.2). One or two of the records in each transaction’s
write-set are chosen from a set of hot records. The remainder – nine
or eight, respectively – are chosen from a set of cold records. We
vary contention in the workload by decreasing the number of hot
records in the database. For each experiment, we plot the through-
put of each system against the number of hot records. In each
graph, the number of hot records decreases along the x-axis, which
corresponds to increasing contention.

Figure 13 shows the results of the experiments. We run exper-
iments corresponding to different points at which transactions up-
date the hot record(s). In Figure 13(a) and Figure 13(d), hot records
are updated at the beginning of transactions. In Figure 13(b) and
Figure 13(e), hot records are updated at the end of transactions.
In Figure 13(c) and Figure 13(f), hot record updates are randomly
distributed across transactions’ writesets.

When hot records are updated at the beginning of transactions
(Figure 13(a) and Figure 13(d)), we find that Deadlock-free locking

outperforms two-phase locking (2PL) with every variant of dead-
lock handling algorithm. This is because Deadlock-free locking

and 2PL are forced to acquire locks on hot records at the begin-
ning of transactions, which mostly eliminates their advantage over
Deadlock-free locking which is also forced to acquire its locks at
the beginning of the transaction. Meanwhile the 2PL variants must
additionally execute deadlock handling logic, which was shown to
be expensive in §4.1. Furthermore, when transactions access two
hot records (Figure 13(a)), deadlocks occur more frequently than
in the case when transactions access one hot record. Thus, in Fig-
ure 13(a), 2PL-based systems waste additional cycles on transac-
tions that are eventually aborted. As a consequence, the relative
difference between Deadlock-free locking and the best perform-
ing 2PL system is higher when transactions update two hot records
(2.2x) than when transactions update one hot record (1.4x).

The higher probability of deadlocks when transactions update
two hot records (Figure 13(a)) also explains the relative perfor-
mance between the wait-die and the dreadlocks/wait-for graph dead-
lock handling mechanisms. Wait-die conservatively aborts transac-
tions that wait on locks held by older transactions. These conserva-
tive aborts minimize the wasted work involved in forcing a transac-
tion to wait for a lock, only to have the same transaction later abort
due to a deadlock. As a consequence, wait-die outperforms both
the dreadlocks and wait-for graph deadlock detection algorithms
in Figure 13(a). However, when transactions update a single hot
record (Figure 13(d)), conservatively aborting transactions in antic-
ipation of deadlocks does not pay off because deadlocks are rare.

 0 M

 1 M

 2 M

 3 M

 4 M

 5 M

 6 M

8K 2K 512 256 128 64

(a) Two hot records at beginning

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Number of hot records

 0 M

 1 M

 2 M

 3 M

 4 M

 5 M

 6 M

8K 2K 512 256 128 64

(b) Two hot records at end

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Number of hot records

 0 M

 1 M

 2 M

 3 M

 4 M

 5 M

 6 M

8K 2K 512 256 128 64

(c) Two hot records randomly distributed

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Number of hot records

 0 M

 1 M

 2 M

 3 M

 4 M

 5 M

 6 M

8K 2K 512 256 128 64

(d) One hot record at beginning

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Number of hot records

Deadlock-free Dreadlocks Wait-for graph Wait-die

 0 M

 1 M

 2 M

 3 M

 4 M

 5 M

 6 M

8K 2K 512 256 128 64

(e) One hot record at end

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Number of hot records

 0 M

 1 M

 2 M

 3 M

 4 M

 5 M

 6 M

8K 2K 512 256 128 64

(e) One hot record randomly distributed

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Number of hot records

Figure 13: Throughput while varying number of hot records at 80 CPU cores.

Thus, both dreadlocks and wait-for graph outperform wait-die in
Figure 13(d).

Figure 13(b) and Figure 13(e) show the results of experiments
where updates to two hot records, and one hot record, respectively,
occur at the end of each transaction. These experiments represent
the best-case behavior for the 2PL systems because they hold locks
on contended data for the least possible duration (the time taken to
update the data) [52]. Meanwhile, because it acquires locks in lex-
icographic order, Deadlock-free locking cannot wait until the end
of the transaction to acquire locks on hot records. Indeed, in Fig-
ure 13(b), when transactions update two hot records, we find that
2PL initially outperforms Deadlock-free locking. However, at the
highest level of contention (at 64 hot records), the 2PL baselines
are more susceptible to deadlocks, which in turn causes them to
waste cycles on transactions that will abort. At this point, despite
the fact it holds contended locks for longer durations, Deadlock-

free locking outperforms all 2PL implementations.
In Figure 13(e), however, only a single hot record is updated at

the end of each transaction. This experiment represents the best-

case scenario for the 2PL schemes for two reasons. First, 2PL
holds contended locks for the shortest possible duration. Second,
deadlocks are rare. Accordingly, 2PL with dreadlocks and wait-for
graph outperform Deadlock-free locking by 1.5x and 1.3x respec-
tively. Despite the fact it holds locks for longer duration, Deadlock-

free locking outperforms 2PL with wait-die at high levels of con-
tention because wait-die spuriously aborts transactions that are not
involved in deadlocks.

Note that when locks for hot records are acquired at the end of
transactions, the performance of the wait-for graph and dreadlock
approaches to deadlock control are no longer identical. §4.1 ex-
plained that both algorithms effectively search for cycles in the
transitive closure of transactions waiting for locks. Even though
the dreadlocks and wait-for graph algorithms are equivalent, they
use very different graph representations — a bitmap to represent
a transaction’s transitive closure of wait-for dependencies, and an
explicit distributed dependency graph of transactions, respectively.
Computing the transitive closure of the explicit graph involves travers-
ing the graph of transactions, which is distributed across the cores
of a machine. In contrast, dreadlocks only spins on the bitmap of
the most recent preceding transaction (the transitive closure compu-

tation is effectively memoized in each bitmap) — a much lighter-
weight process. The extra overhead of the graph traversal in the
wait-for graph approach is hidden when the hot records are ac-
cessed at the beginning of the transaction, because the traversal
can take place in parallel with the transaction that is holding the
lock performing the rest of the transaction. However, when the hot
record locks are acquired at the end of the transaction, the origi-
nal transaction may complete while the graph traversal is ongoing,
making this graph traversal overhead more visible.

Finally, Figure 13(c) and Figure 13(f) show the results of ex-
periments where the positions of updates to hot records are ran-
domly distributed across transactions. In both these experiments,
Deadlock-free locking outperforms all variants of 2PL. As in prior
experiments, Deadlock-free locking has a greater advantage over
2PL when transactions update two hot records because deadlocks
are more likely.

In conclusion, these experiments indicate that Deadlock-free lock-

ing’s lexicographic lock acquisition can cause locks on hot records
to be held for longer, which can translate into poorer performance
(relative to 2PL) in cases where hot records are accessed at the end
of transactions. However, when deadlocks are actually prevalent
(experiments with two hot records), Deadlock-free locking outper-
forms 2PL, even when hot records are updated at the end of trans-
actions. Furthermore, when operations on hot records are not re-
stricted to the end of transactions, Deadlock-free locking always

outperforms 2PL (Figure 13(a), Figure 13(c), Figure 13(d), and
Figure 13(f)). These results make a strong case for eliminating
deadlock handling logic from pessimistic locking protocols; for the
most part, the benefits of eliminating deadlocks significantly out-
weigh any concurrency disadvantage due to increased lock hold
times.

Furthermore, it should be noted that the lack of flexibility of
Deadlock-free locking in these experiments, in particular the re-
quirement to acquire locks on hot records before they are actually
needed, could be overcome with further improvements to the al-
gorithm. In particular, it is possible to envision an algorithm that
renames hot records such that they appear at the end of the lexi-
cographic order relative to the other records in the database. This
would further increase the advantage of Deadlock-free locking rel-
ative to the 2PL-based deadlock handling schemes.

