Superstability of Approximate Cosine Type Functions on the Monoid \mathbb{R}^{2}

B. Bouikhalene ${ }^{1}$, E. Elqorachi ${ }^{2}$, A. Charifi ${ }^{1}$
${ }^{1}$ University Sultan Moulay Slimane, Laboratory LIRST, Polydisciplinary Faculty, Beni-Mellal, Morocco
${ }^{2}$ Ibn Zohr University, Faculty of Sciences, Agadir, Morocco
bbouikhalene@yahoo.fr, elqorachi@yahoo.fr, charifi2000@yahoo.fr

Presented by Pier L. Papini
Received March 26, 2012
Abstract: In this paper, we study the superstability problem for the cosine type functional equation

$$
f\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}, y_{1} x_{2}-x_{1} y_{2}\right)=2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
$$

on the commutative monoid $\left(\mathbb{R}^{2}, \times\right)$. As a result we obtain cosine type functions satisfying the equation approximately.
Key words: Functional equation, cosine function, superstability, multiplicative function. AMS Subject Class. (2010): 39B72, 39B22.

1. Introduction

In 1940, S. M. Ulam [17] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Question 1.1. Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric d. Given $\epsilon>0$, does there exist $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(h(x * y), h(x) \diamond h(y))<\delta$ for all $x, y \in$ G_{1}, then there is a homomorphism $H: G_{1} \longrightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x_{1} \in G_{1}$?.

In 1941, Hyers [11] answered this question for the case where G_{1} and G_{2} are Banach spaces. In [2] and [15] Aoki and Th. M. Rassias respectively provided a generalization of Hyer's theorem which allows the Cauchy difference to be unbounded. The interested reader may refer to the book by Hyers, Isac,

Rassias [12] for an in depth account on the subject of stability of functional equations. In 1982, J. M. Rassias [14] solved the Ulam problem by involving a product of powers of norms. Since then, the stability problems of various functional equations has been investigated by many authors (see [9], [10]). In [4] and [7] Baker et al. and Bourgin respectively, introduced the notion that by now is frequently referred to as superstability or Baker's stability : if a function f satisfies the stability inequality $\left|E_{1}(f)-E_{2}(f)\right| \leq \varepsilon$, then either f is bounded or $E_{1}(f)=E_{2}(f)$. The superstability of d'Alembert's functional equation $f(x+y)+f(x-y)=2 f(x) f(y)$ was investigated by Baker [5] and Cholewa [8]. Badora and Ger [3] proved its superstability under the condition $|f(x+y)+f(x-y)-2 f(x) f(y)| \leq \varphi(x)$ or $\varphi(y)$. In a previous work, Bouikhalene et al [6] investigated the superstability of the cosine functional equation on the Heisenberg group.

Now, Let $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ be the commutative monoid equipped with composition rule

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right):=\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right) \tag{1.1}
\end{equation*}
$$

The map $i: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, given by $i(x, y)=(x,-y)$ for any $(x, y) \in \mathbb{R}^{2}$, is an involution of \mathbb{R}^{2}, i.e., $i\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=i\left(x_{1}, y_{1}\right) i\left(x_{2}, y_{2}\right)$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ and $i \circ i=i d$ (the identity map). Consider the functional equation

$$
\begin{equation*}
f\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}, y_{1} x_{2}-x_{1} y_{2}\right)=2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \tag{1.2}
\end{equation*}
$$

for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. By setting $a=\left(x_{1}, y_{1}\right), b=\left(x_{2}, y_{2}\right)$ in (1.2) we obtain the cosine type functional equation

$$
\begin{equation*}
f(a b)+f(a i(b))=2 f(a) f(b), \quad a, b \in \mathbb{R}^{2} \tag{1.3}
\end{equation*}
$$

on the commutative monoid \mathbb{R}^{2}. This equation has the same form as the cosine functional equation, also called d'Alembert's functional equation ([1], [13])

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1.4}
\end{equation*}
$$

on an abelian group G, except that the group inversion $y \longrightarrow-y$ is replaced by the involution i. We say that a function $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ is of approximate a cosine type function, if there is $\delta>0$ such that

$$
\begin{equation*}
|f(a b)+f(a i(b))-2 f(a) f(b)|<\delta, \quad a, b \in \mathbb{R}^{2} \tag{1.5}
\end{equation*}
$$

In the case where $\delta=0, f$ satisfies the functional equation (1.3). We call f a cosine type function on \mathbb{R}^{2}. The main purpose of this work is to prove the superstability problem of equation (1.2) in the commutative monoid \mathbb{R}^{2}.

2. Superstability of equation (1.2)

Proposition 2.1. let $\varphi, \psi, \phi, \zeta: \mathbb{R} \longrightarrow[0,+\infty[$ be functions and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ satisfies the functional inequality

$$
\begin{equation*}
|f(a b)+f(a i(b))-2 f(a) f(b)| \leq \min \left\{\varphi\left(x_{1}\right), \psi\left(y_{1}\right), \phi\left(x_{2}\right), \zeta\left(y_{2}\right)\right\} \tag{2.1}
\end{equation*}
$$

for any $a=\left(x_{1}, y_{1}\right), b=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Then $m(x)=f(x, 0)$ for any $x \in \mathbb{R}$, is either bounded or multiplicative function from \mathbb{R} to \mathbb{C}. Furthermore f satisfies the following inequality

$$
\begin{equation*}
\left|f(a)^{2}-\frac{1}{2} f\left(a^{2}\right)-\frac{1}{2} m\left(x^{2}\right)\right| \leq \frac{1}{2} \min \{\varphi(x), \psi(y), \phi(x), \zeta(y)\} \tag{2.2}
\end{equation*}
$$

for any $a=(x, y) \in \mathbb{R}^{2}$.
Proof. Setting $a=(x, 0), b=(y, 0)$ in (2.1), we get

$$
|f(x, 0) f(y, 0)-f(x y, 0)| \leq \frac{1}{2} \min \{\varphi(x), \psi(0), \phi(y), \zeta(0)\}
$$

for any $x, y \in \mathbb{R}$. According to $[16]$ we get that $m(x)=f(x, 0)$ for any $x \in \mathbb{R}$ is either bounded or a multiplicative function from \mathbb{R} to \mathbb{C}. Once again, putting $a=(x, y)$ in (2.1) we get that

$$
\left|f\left(x^{2}, 2 x y\right)+f\left(x^{2}, 0\right)-2 f(x, y)^{2}\right| \leq \min \{\varphi(x), \psi(y), \phi(x), \zeta(y)\}
$$

for any $x, y \in \mathbb{R}$. So that

$$
\left|f(a)^{2}-\frac{1}{2} f\left(a^{2}\right)-\frac{1}{2} m\left(x^{2}\right)\right| \leq \frac{1}{2} \min \{\varphi(x), \psi(y), \phi(x), \zeta(y)\}
$$

for any $a=(x, y) \in \mathbb{R}^{2}$.
Proposition 2.2. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ satisfies the functional inequality (2.1) and let $F(y)=f(1, y)$ for any $y \in \mathbb{R}$. Then
i) F is either bounded, or
ii) F satisfies the cosine functional equation

$$
\begin{equation*}
F(x+y)+F(x-y)=2 F(x) F(y), \quad x, y \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

Further, in the latter case, there exists an exponential function $\gamma: \mathbb{R} \longrightarrow \mathbb{C}$ such that

$$
F(x)=\frac{1}{2}(\gamma(x)+\gamma(-x))
$$

for any $x \in \mathbb{R}$.

Proof. Let $a=(1, x), b=(1, y)$ for any $x, y \in \mathbb{R}$ in (2.1). By setting $F(y)=f(1, y)$ for any $y \in \mathbb{R}$ we get

$$
|F(x+y)+F(x-y)-2 F(x) F(y)| \leq \min \{\varphi(1), \psi(x), \phi(1), \zeta(y)\}
$$

for any $x, y \in \mathbb{R}$. According to ([3], [5]) it follows that F is either bounded or F is a cosine function. In view of ([1], [5], [13]) we get that there exists an exponential function $\gamma: \mathbb{R} \longrightarrow \mathbb{C}$ such that $F(x)=\frac{1}{2}(\gamma(x)+\gamma(-x))$ for any $x \in \mathbb{R}$.

Proposition 2.3. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ satisfies the functional inequality (2.1). Then f is either bounded or $f \circ i=f$.

Proof. Let $P_{f}=\frac{f+f \circ i}{2}$. Since f satisfies (2.1), we have

$$
\left|P_{f}(a b)+P_{f}(a i(b))-2 P_{f}(a) f(b)\right| \leq \min \left\{\varphi\left(x_{1}\right), \tilde{P}_{\psi}\left(y_{1}\right), \phi\left(x_{2}\right), \tilde{P}_{\zeta}\left(y_{2}\right)\right\}
$$

for any $a=\left(x_{1}, y_{1}\right), b=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, where $\tilde{P}_{\psi}(x)=\frac{\psi(x)+\psi(-x)}{2}$ for any $x \in \mathbb{R}$. By using the same way as in [3] and [5] we get that f is either bounded or f satisfies the Wilson's type functional equation

$$
P_{f}(a b)+P_{f}(a i(b))=2 P_{f}(a) f(b), \quad a, b \in \mathbb{R}^{2}
$$

on the commutative monoid \mathbb{R}^{2}. By small computations we get that $f \circ i=f$.

Proposition 2.4. Let $\varphi, \psi, \phi, \zeta: \mathbb{R} \longrightarrow[0,+\infty[$ be functions and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$, with $f(0,0) \neq 0$, satisfies the functional inequality (2.1). Then f is bounded and we have

$$
\begin{equation*}
|f(a)-1| \leq \frac{1}{2|f(0,0)|} \min \{\varphi(x), \psi(y), \phi(0), \zeta(0)\} \tag{2.4}
\end{equation*}
$$

for any $a=(x, y) \in \mathbb{R}^{2}$.

Proof. By letting $b=(0,0)$ in (2.1) we get

$$
|2 f(0,0)-2 f(a) f(0,0)| \leq \min \{\varphi(x), \psi(y), \phi(0), \zeta(0)\}
$$

for any $a=(x, y) \in \mathbb{R}$. So that we have

$$
|2 f(0,0)||f(a)-1| \leq \min \{\varphi(x), \psi(y), \phi(0), \zeta(0)\}
$$

for any $a=(x, y) \in \mathbb{R}^{2}$.
Theorem 2.5. let $\varphi, \psi, \phi, \zeta: \mathbb{R} \longrightarrow[0,+\infty[$ be functions and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ satisfies the functional inequality (2.1). Then
i) f is either bounded and

$$
\begin{equation*}
\left|f(0, y)^{2}-f(0,0)\right| \leq \frac{1}{2} \min \{\varphi(0), \psi(y), \phi(0), \zeta(y)\} \tag{2.5}
\end{equation*}
$$

for any $y \in \mathbb{R}$ or
ii) f satisfies the functional inequality

$$
\begin{equation*}
\left|f(a)-m(x) \frac{\gamma\left(\frac{y}{x}\right)+\gamma\left(\frac{-y}{x}\right)}{2}\right| \leq \frac{1}{2} \min \left\{\varphi(x), \psi(0), \phi(1), \zeta\left(\frac{y}{x}\right)\right\} \tag{2.6}
\end{equation*}
$$

for any $a=(x, y) \in \mathbb{R}$ with $x \neq 0$, where $m: \mathbb{R} \longrightarrow \mathbb{C}$ is a multiplicative function and $\gamma: \mathbb{R} \longrightarrow \mathbb{C}$ is an exponential function.

Proof. i) Letting $a=b=(0, y)$ in (2.1), we get

$$
\left|f(0, y)^{2}-f(0,0)\right| \leq \frac{1}{2} \min \{\varphi(0), \psi(y), \phi(0), \zeta(y)\}
$$

for any $y \in \mathbb{R}$.
ii) Let f be unbounded. Hence by Propositions 2.1 and 2.2 we get that $f(x, 0)=m(x)$ for any $x \in \mathbb{R}$ is a multiplicative function from \mathbb{R} to \mathbb{C} and $f(1, y)=F(y)$ for any $y \in \mathbb{R}$ is a solution of the cosine functional equation (1.4). Therefore there exists an exponential function $\gamma: \mathbb{R} \longrightarrow \mathbb{C}$ such that $f(1, y)=F(y)=\frac{\gamma(y)+\gamma(-y)}{2}$ for any $y \in \mathbb{R}$. By letting $a=(x, 0), b=\left(1, \frac{y}{x}\right)$, with $x \neq 0$, in (2.1) we get the following inequality

$$
\begin{equation*}
\left|f(x, y)+f(x,-y)-2 f(x, 0) f\left(1, \frac{y}{x}\right)\right| \leq \min \left\{\varphi(x), \psi(0), \phi(1), \zeta\left(\frac{y}{x}\right)\right\} \tag{2.7}
\end{equation*}
$$

for any $x, y \in \mathbb{R}$ with $x \neq 0$. Therefore by Proposition 2.3 we get that $f(x, y)=f \circ i(x, y)=f(x,-y)$ for any $x, y \in \mathbb{R}$. So that we get from (2.7) that

$$
\left|f(x, y)-m(x) F\left(\frac{y}{x}\right)\right| \leq \frac{1}{2} \min \left\{\varphi(x), \psi(0), \phi(1), \zeta\left(\frac{y}{x}\right)\right\}
$$

for any $x, y \in \mathbb{R}$ with $x \neq 0$.
In the next corollary we let $\varphi\left(x_{1}\right)=\psi\left(y_{1}\right)=\varphi\left(x_{2}\right)=\zeta\left(y_{2}\right)=\delta$ for any $x_{1}, y_{1}, x_{2}, y_{2} \in \mathbb{R}$.

Corollary 2.6. Let $\delta>0$ and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ satisfies the functional inequality

$$
\begin{equation*}
|f(a b)+f(a i(b))-2 f(a) f(b)| \leq \delta \tag{2.8}
\end{equation*}
$$

for any $a, b \in \mathbb{R}^{2}$. Then
i) f is bounded and there exists $\eta \in \mathbb{C}^{*}$ such that $|f(a)-1| \leq \frac{\delta}{2 \eta}$ for any $a=(x, y) \in \mathbb{R}$, with $x \neq 0$. Furthermore $|f(0, y)-\eta| \leq \frac{\delta}{2}$ for an $y \in \mathbb{R}$ or
ii) f is unbounded and there exist a multiplicative function $m: \mathbb{R} \longrightarrow \mathbb{C}$ and an exponential function $\gamma: \mathbb{R} \longrightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\left|f(a)-m(x) \frac{\gamma\left(\frac{y}{x}\right)+\gamma\left(\frac{-y}{x}\right)}{2}\right| \leq \frac{\delta}{2} \tag{2.9}
\end{equation*}
$$

for any $a=(x, y) \in \mathbb{R}^{2}$ with $x \neq 0$.
Proof. By using Proposition 2.4 and Theorem 2.5 with $\eta=f(0,0)$.
In the next corollary we give the explicit formula of cosine type functions on \mathbb{R}^{2}

Corollary 2.7. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ be a cosine type function on \mathbb{R}^{2}. Then
i) $f(x, y)=1$ for any $x, y \in \mathbb{R}$ or
ii)

$$
f(x, y)= \begin{cases}0 & \text { if } x=0, \\ \frac{m(x)}{2}\left(\gamma\left(\frac{y}{x}\right)+\gamma\left(-\frac{y}{x}\right)\right) & \text { if } x \neq 0,\end{cases}
$$

for any $x, y \in \mathbb{R}$.
Proof. By letting $\delta=0$ in Corollary 2.6.

References

[1] J. Aczél, J. Dhombres, "Functional Equations in Several Variables", Cambridge University Press, Cambridge, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[3] R. Badora, R. Ger, On some trigonometric functional inequalities, in "Functional Equation-Results and Advances", Kluwer Acad. Publ., Dordrecht, 2002, 3-15.
[4] J. Baker, J. Lawrence, F. Zorzitto, The stability of the equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. $74(2)$ (1979), 242-246.
[5] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (3) (1980), 411-416.
[6] B. Bouikhalene, E. Elqorachi, J.M. Rassias, The superstability of d'Alembert's functional equation on the Heisenberg group Appl. Math. Lett. 23 (1) (2010), 105-109.
[7] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke. Math. J. 16 (2) (1949), 385-397.
[8] P.W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc. 88 (4) (1983), 631-634.
[9] Z. GaJdA, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (3) (1991), 431-434.
[10] P. GăVruta, A generalization of the HyersûUlamûRassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (3) (1994), 431-436.
[11] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[12] D.H. Hyers, G. Isac, Th.M. Rassias, "Stability of Functional Equations in Several Variables", Birkhäuser Boston Inc., Boston, MA, 1998.
[13] PL. KANnappan, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1) (1968), 69-74.
[14] J.M. RASSIAS, On approximation of approximately linear mapping by linear mappings, J. Funct. Anal. 46 (1) (1982), 126-130.
[15] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (2), (1978), 297-300.
[16] L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc. 84 (1) (1982), 95-96.
[17] S.M. Ulam, "A Collection of Mathematical Problems", Interscience Publishers, New York-London, 1960.

