

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 164

Fault-Proneness of Open Source Systems: An

Empirical Analysis
Mamdouh Alenezi

 College of Computer & Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Shadi Banitaan

 College of Engineering & Science University of Detroit Mercy Detroit, MI 48221, USA

Qasem Obeidat

 Department of Software Engineering, Al-Zaytoonah University of Jordan, Amman 11377, Jordan
Abstract: Developing quality software is a very complex job considering the complexity and size of software developed these days.

Early prediction of software quality assists in optimizing testing resources. Many fault prediction models have been developed using

several internal attributes and different machine learning techniques. However, the open-source community still lacks a concise

knowledge about what types of internal attributes affect the software quality the most. In this work, an empirical investigation is

conducted to explore the relationships between internal attributes of open-source systems and their fault-proneness. The results of

the empirical analysis showed that by selecting only nine internal attributes, the fault prediction models accuracy did not decrease

significantly. This indicates that only a subset of these internal attributes is worth collection and investigation. By focusing on a

small set of internal attributes, the quality assurance team can save time and resources while achieving high accuracy fault-

proneness predictions.

Keywords: fault-proneness, open-source systems, internal attributes, quality.

1. Introduction

Even when applying the principles of the software
development methodologies, a fault-free software system is
very difficult to achieve. The maintenance phase of software
projects is a very challenging and costly. The extent of
resources spent on software maintenance is much more than
what is being spent on its development. Consequently, any
part of maintenance that can be automated will eventually
lead to saving maintenance resources. One possible area
where an effort is beneficial to lower the maintenance
costs is identifying the source code parts that are
presumably to encompass faults and therefore require
changes.

A noteworthy research work has been devoted to describing
particular quality metrics and building quality predictive
models based on internal attributes. Fault prediction models
are usually built using software metrics and previously
collected fault data. These models are then utilized to guide
decision- making in the course of development. Fault-
proneness is the most frequently investigated dependent
variable [1]. Predicting the classes fault-proneness helps in
focusing the effort of validation and verification, which helps
in finding more faults for the same effort. In case of
predicting a class is as likely to be faulty, corrective
actions can be invested to test and inspect the class. Fault
prediction will channel the focus of the developers to
carefully examine and test the files or classes that have a
high probability of defectiveness. Focusing the effort on
faulty classes will help in managing and utilizing the
resources of the software project more efficiently. This will
make the maintenance phase easier for both the customers and
the project owners.

Software fault prediction models depend on the
information available in software metrics. The software
metrics data quality plays a significant role in building
accurate prediction models. The selection of a subset of the
software metrics is an essential part of the model building
process. Focusing on a subset of these metrics will save

the time needed to collect and manage them. In addition,
using a reduced metrics set in building predictive models
will lead to better classification speed. In this study, we
investigate the association between internal quality
attributes (source code metrics) and fault-proneness of
open source projects.

The remainder of this paper is organized as follows.
Section 2 presents the used methodology. The experimental
evaluation is given in Section 3. Some threats to validity
are presented in Section 4. Section 5 discusses related
work. Conclusions of the research are presented in Section
6.

2. Methodology
To select a subset of software metrics that are

sufficient to predict faulty classes, this study investigate
twenty internal attributes of eight open source software
systems. This study compares four different classifications.
It also applies a feature selection technique to find the
subset of metrics that are sufficient to predict faulty classes
in open-source software projects.

2.1 Feature Selection
Hall and Holmes [2] categorized feature selection

algorithms to (1) algorithms that evaluate individual
attributes and (2) algorithms that evaluate subset of
attributes. The first category of feature selection
algorithms identifies which metric is able to serve as
discriminatory attribute for indicating an external quality.
The second category selects a subset of features that are
best to identify the class label. In this study, the second
category is selected since the goal is to identify which
subsets of metrics are better in identifying faulty classes
in open source software systems.

Feature ranking algorithms evaluate attributes
individually based on a certain measure and order them
accordingly. Although that some attributes may be less useful
by themselves but the can make a substantial contribution
when combined with other attributes. Feature subset selection

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357585629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 165

methods handle that by selecting and searching for subsets of
attributes that collectively have good performance. We utilized
correlation- based feature selection (CFS) technique to find
important metrics. CFS uses a search algorithm along with a
function to estimate the worth of feature subsets, similar to the
most of feature selection algorithms. CFS measures the
individual predictive ability of each feature to estimate the
value of a subset of attributes taking into account the
redundancy between them. Based on a previous study [3]
higher performance was achieved using correlation-based
feature selection.

2.2 Classification Algorithms

Several modeling techniques are available to build fault-
proneness models like regression and classification techniques.
Classification is one of the most commonly used machine
learning techniques. It is also known as supervised statistical
learning. In supervised learning, the model needs to be first
trained using data with predetermined classes. This data is
used to train the learning algorithm, which creates a model
that can then be used to label/classify the testing instances,
where the values of the class labels are unknown. We compare
four different classifiers namely Naive Bayes (NB), Bayesian
Networks (BNet), J48, and Random Forests (RF). These
classification algorithms are known to be high-performance
fault predictors [1]. The WEKA default settings of these
algorithms were used in this study [4].

2.3 Data Collection

The data of defects used in this study was gathered by
Jureczko and Spinellis [5] and is available online at the
PROMISE repository. For that study, the defects were collected
using BugInfo1 tool, from the selected software systems source
code repositories. BugInfo analyzes the logs of the code
repositories and decides if a commit is a bug fix or not based on
the log content. These data were widely used to construct fault-
proneness predictive models in the literature [6], [7], [8].

2.4 The Internal Attributes

The internal attributes of software namely coupling, co-
hesion, inheritance and size are the independent variables used
in this study. The metrics come from several metrics suites. We
focus on object-oriented metrics to be independent variables in a
prediction model, which is accessible at early stages of software
development. The selected internal attributes (metrics) of open
source software systems are shown in more detail in Table I.

2.5 Subject Software Systems

To select the systems for the empirical analysis, four
selection criteria have been used. First, the selected systems had
to be well-known systems that are very widely used. Second,
the systems had to be sizable, so the systems can be realistic and
have multi-developers. Third, the systems had to be actively
maintained. Finally, the data of these systems had to be publicly
available. Eight various-sized systems have been chosen from

different domains. Characteristics of the selected software
systems are listed in Table II.

TABLE II. SELECTED SOFTWARE SYSTEMS

System Ver Classes

Camel 1.6 965
Ant 1.7 745

Xerces 1.4.4 587

jEdit 4.3 493

POI 3.0 442

Ivy 2.0 352

Lucene 2.4 340

Synapse 1.2 256

3. Experimental Evaluation

In this experimental evaluation, several machine
learning algorithms are investigated. The goal is to see
which one of them achieves better results in the case of
open source systems. Then, we show the results of the
feature selection study.

3.1 Classification Metrics

To build and evaluate the prediction models, 10-fold
cross validation has been performed to obtain unbiased
evaluation results. Comparisons between classifiers are
based on two measures namely AUC and F-measure. AUC
is the area under the receiver operating characteristics curve
whereas F-measure is the harmonic mean of Precision and
Recall. AUC is the most informative indicator of predictive
accuracy within the field of software defect prediction [9].

4

3.2 Classification Results

To investigate which classifier lead to best fault
prediction performance, prediction models are built using
all the internal attributes (twenty software metrics). Table
III shows the F- measure and AUC values for each project.
Using the F- measure, both BNet and RF achieve better
results compared to the other two classifiers. As stated
earlier, the analysis primarily focuses on the AUC value for
the different classifiers. The results show that Xerces has
the highest AUC value whereas jEdit has the smallest AUC
value. The AUC values found in the experiments are
relatively high. We found that in most cases, the RF
classifier is the best performing technique based on AUC
while the J48 classifier is the worst. The median value of
the RF classifier is 0.78 which is the highest.

TABLE III. CLASSIFICATION RESULTS

System
AUC F-measure

 NB BNet J48 RF NB BNet J48 RF

Camel 0.675 0.638 0.616 0.722 0.766 0.746 0.753 0.775
Ant 0.806 0.81 0.665 0.807 0.809 0.782 0.792 0.806

Xerces 0.845 0.922 0.913 0.941 0.677 0.825 0.938 0.927

jEdit 0.594 0.447 0.467 0.72 0.95 0.967 0.967 0.966

POI 0.805 0.879 0.772 0.872 0.524 0.812 0.779 0.781

Ivy 0.765 0.79 0.681 0.736 0.852 0.842 0.855 0.857

Lucene 0.728 0.697 0.687 0.757 0.583 0.633 0.678 0.695

Synapse 0.756 0.744 0.692 0.796 0.743 0.747 0.741 0.738

Median 0.761 0.767 0.684 0.777 0.755 0.797 0.786 0.794

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 166

TABLE I. METRICS DEFINITIONS

Metric Name Definition

Weighted methods
per class (WMC)

Based on the assumption of unity weights of methods, WMC is the number of methods in the class.

Depth of
Inheritance Tree
(DIT)

The DIT metric provides for each class a measure of the inheritance levels from the object hierarchy top.

Number of Children
(NOC)

The NOC metric measures the number of immediate descendants of the class.

Coupling between
object classes
(CBO)

The CBO metric represents the number of classes coupled to a given class. This couplings can occur through method calls, field
accesses, inheritance, method arguments, return types, and exceptions.

Response for a
Class (RFC)

The RFC metric measures the number of different methods that can be executed when an object of that class receives a message.

Lack of cohesion in
methods (LCOM)

The LCOM metric counts the sets of methods in a class that are not related through the sharing of some of the class fields.

Lack of cohesion in
methods (LCOM3)

LCOM3 varies between 0 (high cohesion) and 1 (no cohesion). 0 means that each method accesses all variables (i.e., highest
possible cohesion), whereas 1 indicates extreme lack of cohesion.

Afferent couplings
(Ca)

The Ca metric represents the number of classes that depend upon the meas-ured class.

Efferent couplings
(Ce)

The Ca metric represents the number of classes that the measured class is depended upon.

Number of Public
Methods (NPM)

The NPM metric counts all the methods in a class that are declared as public.

Data Access Metric
(DAM)

This metric is the ratio of the number of private (protected) attributes to the total number of attributes declared in the class.

Measure of Aggre-
gation (MOA)

The metric is a count of the number of class fields whose types are user defined classes.

Measure of
Functional
Abstraction (MFA)

This metric is the ratio of the number of methods inherited by a class to the total number of methods accessible by the member
methods of the class.

Cohesion Among
Methods of Class
(CAM)

This metric computes the relatedness among methods of a class based upon the parameter list of the methods.

Inheritance
Coupling (IC)

This metric provides the number of parent classes to which a given class is coupled. A class is coupled to its parent class if one
of its inherited methods functionally dependent on the new or redefined methods in the class.

Coupling Between
Methods (CBM)

The metric measures the total number of new/redefined methods to which all the inherited methods are coupled.

Average Method
Complexity (AMC)

This metric measures the average method size for each class.

McCabe’s cyclo-
matic complexity
(CC)

CC is equal to number of different paths in a method (function) plus one.

Lines of Code
(LOC)

LOC is the sum of number of fields, number of methods and number of instructions in every method of the investigated class.

3.3 Correlation Results
To understand the relationships between software metrics,

their correlation coefficient (the strength of relationship among
their counterparts) can be measured. Metrics that correlate
with each other means that they measure similar aspects
of software modules. The Spearman correlation is preferred
instead of Pearson correlation because the former ignores
any assumptions about the data distribution. Table IV
shows the Spearman rank correlations between coupling
metrics. Correlations greater than 0.69 are highlighted since
they indicate strong correlation. The Table also shows that
the following coupling metrics are strongly correlated with
each other:

• WMC strongly correlates with RFC, LCOM, NPM, LOC,

CAM.

• DIT strongly correlates with MFA. This strong cor- relation

can be explained since DIT and MFA are measures of

inheritance.

• RFC strongly correlates with LOC, CAM, AMC, and

maxCC.

• LOC strongly correlates with WMC, RFC, and Ce.

• LCOM3 strongly correlates with DAM. This strong

correlation can be explained since these measures tries to

explore the cohesion of methods and attributes inside a

class.

• LOC strongly correlates with AMC and maxCC. This

strong correlation can be explained since AMC and

maxCC are measures of complexity.

• CAM strongly correlates with WMC, RFC, NPM, and

LOC.

• IC strongly correlates with CBM. This strong correlation

can be explained since a class is coupled to its parent class

(in case of IC) if one of its inherited methods is

functionally dependent on the new or redefined methods,

while CBM is the total number of new/redefined methods.

• maxCC strongly correlates with avgCC. This strong

correlation can be explained since these two measures are

a variation of the McCabe’s cyclomatic complexity.

A. Internal Attribute Selection Results

In this section, correlation-based feature selection (CFS)
was used to find germane metrics. Based on the execution of

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 167

CFS, these product metrics were selected (CBO, RFC, LCOM,
Ca, Ce, LCOM3, MFA, CAM, IC). Based on the
classification results shown in Table III, the Random Forrest
classifier achieved the best median value with comparison
with the remainder of the classifiers. To evaluate the new
predictive model that contains only a subset of the product
metrics, Random Forest with 10-fold cross validation is
performed. The results of the prediction accuracy are shown in
Table V.

TABLE V. RANDOM FORREST CLASSIFICATION RESULTS WITH

FEATURE SELECTION

System AUC F-measure

Camel 0.68 0.77
Ant 0.8 0.786

Xerces 0.937 0.924

jEdit 0.967 0.714

POI 0.869 0.781

Ivy 0.741 0.857

Lucene 0.746 0.682

Synapse 0.801 0.73

TABLE VI. THE RESULTS OF TWO KRUSKAL-WALLIS TESTS FOR AUC

AND F-MEASURE

 Test 1 AUC Test 2 F-measure

chi-squared 7 7
degree of freedom 7 7

p-value 0.429 0.429

To investigate whether the difference between using all
metrics data or the reduced metrics data in building predictive
models is significant or not, the Kruskal-Wallis test is executed.
The Kruskal-Wallis test [10] is a nonparametric alternative
to the one-way analysis of variance (ANOVA). The
Kruskal- Wallis’s test fits this case because it has eight
independent samples of AUC and F-measure values for each
software project. The Kruskal-Wallis’s test was executed
individually for AUC and F-measure values (see Table VI).
In both tests, the p-value is large, which indicates that the
difference between the AUC values is statistically
insignificant. In other words, we can use the reduced data
set (9 metrics) instead of using all data set (20 metrics) in
building predictive models. This result shows that by
collecting only these product metrics (CBO, RFC, LCOM,
Ca, Ce, LCOM3, MFA, CAM, IC), the resulting predictive
model accuracy does not decrease significantly if you
collect all the studied metrics. This shows that only these
selected metrics are important in distinguishing between faulty
and non-faulty classes.

4. Threats to Validity

In this section, we identify and discuss the main threats
to the validity of this empirical study. To mitigate conclusion
validity, we performed the experiments 10 times to achieve
reliable results. Tests were performed using 10-fold cross
validation. Two measures were used to evaluate the
performance of different classifiers namely the Area Under
Receiver Operating Characteristics Curve (AUC) and F-
measure. To mitigate construct validity, previously validated

and well-known software metrics were used. The used
metrics were satisfactory and widely used in software
fault prediction.

5. Related Work

This section reviews the studies that discussed internal
attribute and fault proneness of open source systems.
Briand et al. [11] conducted a case study that
investigated the relationships between quality factors of
object-oriented design and fault-proneness of an open
source system (LALO). They found a number of metrics
from the Chidamber and Kemerer (CK) metrics suite
were statistically associated with the fault- proneness of
classes. In a later study, they replicated the study [12],
and found different results, including the relations
between DIT, NOC and fault-proneness of classes.

Gyimothy et al. [13] conducted an empirical
investigation of eight object-oriented metrics for fault
prediction of the Mozilla project. They used several
statistical methods such as linear and logistic regression,
decision trees and neural net- works. Their results
showed strong statistically significant correlations between
most of the CK metrics and fault-proneness. Olague et al.
[14] conducted an empirical investigation using three
object-oriented metrics suites and the Mozilla Rhino
project. Their study showed that some of metrics used in
the study are consistent predictors of class fault-
proneness.

Zhou and Leung [15] took into account the
severity of faults. They conducted their study on a
public dataset from the NASA Metrics Data Program.
Their results showed a great number of strong
correlations between the CK metrics and high, low and
ungraded severity faults. In this work, several pre-
validated metrics are used to predict the fault-proneness
of eight open source systems. This study is different than
these previous studies since it uses eight large open
source software systems that come from different
domains. The other difference is the fact that the
dataset used in this study is publicly available and has
been used before to construct fault prediction models.

6. CONCLUSION

This work empirically investigated to what extent and
how fault-proneness could be explained by means of
internal quality attributes. Software quality was measured
in terms of 20 internal quality attributes. This case study
showed that most of the internal attributes of open source
project correlate with each other. Internal attributes that
correlate with each other means that they measure
similar concepts. The results also showed that selecting
only a subset of these internal attributes achieved similar
accuracy results compared to using all the internal
attributes. This shows that certain internal attributes can
be collected and investigated, which saves the project time.
This allows software quality assurance teams to
concentrate on a subset of internal attributes.

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 168

References

[1] C. Catal, “Software fault prediction: A literature review and
current trends,” Expert Systems with Applications, vol. 38, no. 4,
pp. 4626– 4636, 2011.

[2] M. A. Hall and G. Holmes, “Benchmarking attribute selection tech-
niques for discrete class data mining,” IEEE Transactions on Knowledge
and Data Engineering, vol. 15, no. 6, pp. 1437–1447, 2003.

[3] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics
sets, and feature selection techniques on software fault prediction
problem,” Information Sciences, vol. 179, no. 8, pp. 1040–1058, 2009.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[5] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to

predict software defects,” Models and Methods of System Dependability.
Oficyna Wydawnicza Politechniki Wrocławskiej, pp. 69–81, 2010.

[6] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level
fault prediction using software clustering,” in Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE2013). IEEE, 2013.

[7] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian
networks,” Empirical Software Engineering, vol. 19, no. 1, pp. 154–181,
2014.

[8] M. Alenezi and K. Magel, “Empirical evaluation of a new coupling
metric: Combining structural and semantic coupling,” International
Journal of Computers and Applications, vol. 36, no. 1, 2014.

[9] M. Baojun, K. Dejaeger, J. Vanthienen, and B. Baesens,
“Software defect prediction based on association rule classification,”
Available at SSRN http://ssrn.com/abstract=1785381, 2011.

[10] P. Sprent and N. C. Smeeton, Applied nonparametric statistical
meth- ods, 4th ed., ser. Chapman & Hall/CRC Texts in
Statistical Science. Boca Raton, FL: CRC Press, 2007.

[11] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis,
“Investigating quality factors in object-oriented designs: an
industrial case study,” in Proceedings of the 21st international
conference on Software engineer- ing. ACM, 1999, pp. 345–354.

[12] L. Briand, J. Wüst, and H. Lounis, “Replicated case studies for
inves- tigating quality factors in object-oriented designs,”
Empirical Software Engineering: An International Journal, vol. 6,
pp. 11–58, 2001.

[13] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object- oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering,, vol. 31,
no. 10, pp. 897–910, 2005.

[14] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical validation of three software metrics suites to predict
fault- proneness of object-oriented classes developed using highly
iterative or agile software development processes,” IEEE
Transactions on Software Engineering, vol. 33, no. 6, pp. 402–
419, 2007.

[15] Y. Zhou and H. Leung, “Empirical analysis of object-oriented
design metrics for predicting high and low severity faults,” IEEE
Transactions on Software Engineering, vol. 32, no. 10, pp. 771–
789, 2006.

 THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014)

University of Nizwa, Oman December 9-11, 2014 Page 169

TABLE IV. SPEARMAN CORRELATION RESULTS

 WMC DIT NOC CBO RFC LCOM Ca Ce NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC maxCC avgCC

WMC 1.00 DIT 0.11 1.00
NOC 0.17 -0.01 1.00
CBO 0.46 0.05 0.24 1.00
RFC 0.83 0.20 0.13 0.57 1.00

LCOM 0.77 0.09 0.15 0.37 0.60 1.00
Ca 0.23 -0.17 0.31 0.62 0.14 0.18 1.00
Ce 0.46 0.25 0.09 0.69 0.67 0.36 0.10 1.00

NPM 0.89 0.09 0.12 0.34 0.65 0.69 0.19 0.31 1.00
LCOM3 -0.31 -0.10 -0.08 -0.17 -0.38 0.09 -0.05 -0.24 -0.25 1.00

LOC 0.76 0.18 0.13 0.51 0.93 0.49 0.15 0.60 0.57 -0.42 1.00
DAM 0.42 0.16 0.14 0.27 0.48 0.12 0.05 0.35 0.34 -0.78 0.48 1.00
MOA 0.43 0.07 0.11 0.39 0.45 0.22 0.21 0.44 0.32 -0.34 0.46 0.40 1.00
MFA -0.04 0.93 -0.02 -0.01 0.08 -0.02 -0.20 0.20 -0.07 -0.05 0.06 0.08 -0.01 1.00
CAM -0.78 -0.07 -0.12 -0.45 -0.72 -0.58 -0.22 -0.49 -0.65 0.28 -0.69 -0.36 -0.43 0.07 1.00

IC 0.28 0.63 -0.01 0.14 0.32 0.18 -0.07 0.29 0.21 -0.16 0.31 0.17 0.13 0.58 -0.23 1.00
CBM 0.30 0.61 -0.01 0.13 0.32 0.21 -0.06 0.29 0.24 -0.15 0.31 0.16 0.12 0.56 -0.25 0.97 1.00
AMC 0.35 0.17 0.04 0.38 0.71 0.14 0.01 0.52 0.15 -0.40 0.84 0.38 0.31 0.15 -0.38 0.24 0.23 1.00

maxCC 0.54 0.05 0.09 0.43 0.71 0.36 0.16 0.48 0.39 -0.32 0.76 0.35 0.33 -0.04 -0.47 0.21 0.20 0.69 1.00
avgCC 0.44 -0.09 0.05 0.36 0.57 0.30 0.18 0.34 0.33 -0.16 0.59 0.21 0.22 -0.18 -0.35 0.09 0.09 0.53 0.89 1.00

