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Abstract: Developing quality software is a very complex job considering the complexity and size of software developed these days. 

Early prediction of software quality assists in optimizing testing resources. Many fault prediction models have been developed using 

several internal attributes and different machine learning techniques. However, the open-source community still lacks a concise 

knowledge about what types of internal attributes affect the software quality the most. In this work, an empirical investigation is 

conducted to explore the relationships between internal attributes of open-source systems and their fault-proneness. The results of 

the empirical analysis showed that by selecting only nine internal attributes, the fault prediction models accuracy did not decrease 

significantly. This indicates that only a subset of these internal attributes is worth collection and investigation. By focusing on a 

small set of internal attributes, the quality assurance team can save time and resources while achieving high accuracy fault-

proneness predictions.  
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1. Introduction 

Even when applying the principles of the software 
development methodologies, a fault-free software system is 
very difficult to achieve. The maintenance phase of software 
projects is a very challenging and costly. The extent of 
resources spent on software maintenance is much more than 
what is being spent on its development. Consequently, any 
part of maintenance that can be automated will eventually 
lead to saving maintenance resources. One possible area 
where an effort is beneficial to lower the maintenance 
costs is identifying the source code parts that are 
presumably to encompass faults and therefore require 
changes. 

A noteworthy research work has been devoted to describing 
particular quality metrics and building quality predictive 
models based on internal attributes. Fault prediction models 
are usually built using software metrics and previously 
collected fault data. These models are then utilized to guide 
decision- making in the course of development. Fault-
proneness is the most frequently investigated dependent 
variable [1]. Predicting the classes fault-proneness helps in 
focusing the effort of validation and verification, which helps 
in finding more faults for the same effort. In case of 
predicting a class is as likely to be faulty, corrective 
actions can be invested to test and inspect the class. Fault 
prediction will channel the focus of the developers to 
carefully examine and test the files or classes that have a 
high probability of defectiveness. Focusing the effort on 
faulty classes will help in managing and utilizing the 
resources of the software project more efficiently. This will 
make the maintenance phase easier for both the customers and 
the project owners. 

Software fault prediction models depend on the 
information available in software metrics. The software 
metrics data quality plays a significant role in building 
accurate prediction models. The selection of a subset of the 
software metrics is an essential part of the model building 
process. Focusing on a subset of these metrics will save 

the time needed to collect and manage them. In addition, 
using a reduced metrics set in building predictive models 
will lead to better classification speed. In this study, we 
investigate the association between internal quality 
attributes (source code metrics) and fault-proneness of 
open source projects. 

The remainder of this paper is organized as follows. 
Section 2 presents the used methodology. The experimental 
evaluation is given in Section 3. Some threats to validity 
are presented in Section 4. Section 5 discusses related 
work. Conclusions of the research are presented in Section 
6. 

 

2. Methodology 
To select a subset of software metrics that are 

sufficient to predict faulty classes, this study investigate 
twenty internal attributes of eight open source software 
systems. This study compares four different classifications. 
It also applies a feature selection technique to find the 
subset of metrics that are sufficient to predict faulty classes 
in open-source software projects. 

 

2.1 Feature Selection 
Hall and Holmes [2] categorized feature selection 

algorithms to (1) algorithms that evaluate  individual  
attributes and (2) algorithms that evaluate subset of  
attributes.  The first category of feature selection 
algorithms identifies which metric is able to serve as 
discriminatory attribute for indicating an external quality. 
The second category selects a subset of features that are 
best to identify the class label. In this study, the second 
category is selected since the goal is to identify which 
subsets of metrics are better in identifying faulty classes 
in open source software systems. 

Feature ranking algorithms evaluate attributes 
individually based on a certain measure and order them 
accordingly. Although that some attributes may be less useful 
by themselves but the can make a substantial contribution 
when combined with other attributes. Feature subset selection 
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methods handle that by selecting and searching for subsets of 
attributes that collectively have good performance. We utilized 
correlation- based feature selection (CFS) technique to find 
important metrics. CFS uses a search algorithm along with a 
function to estimate the worth of feature subsets, similar to the 
most of feature selection algorithms. CFS measures the 
individual predictive ability of each feature to estimate the 
value of a subset of attributes taking into account the 
redundancy between them. Based on a previous study [3] 
higher performance was achieved using correlation-based 
feature selection. 

 

2.2 Classification Algorithms 

Several modeling techniques are available to build fault- 
proneness models like regression and classification techniques. 
Classification is one of the most commonly used machine 
learning techniques. It is also known as supervised statistical 
learning. In supervised learning, the model needs to be first 
trained using data with predetermined classes. This data is 
used to train the learning algorithm, which creates a model 
that can then be used to label/classify the testing instances, 
where the values of the class labels are unknown. We compare 
four different classifiers namely Naive Bayes (NB), Bayesian 
Networks (BNet), J48, and Random Forests (RF). These 
classification algorithms are known to be high-performance 
fault predictors [1]. The WEKA default settings of these 
algorithms were used in this study [4]. 

 

2.3 Data Collection 

The data of defects used in this study was gathered by 
Jureczko and Spinellis [5] and is available online at the 
PROMISE repository. For that study, the defects were collected 
using BugInfo1 tool, from the selected software systems source 
code repositories. BugInfo analyzes the logs of the code 
repositories and decides if a commit is a bug fix or not based on 
the log content. These data were widely used to construct fault-
proneness predictive models in the literature [6], [7], [8]. 

 

2.4 The Internal Attributes 

The internal attributes of software namely coupling, co- 
hesion, inheritance and size are the independent variables used 
in this study. The metrics come from several metrics suites. We 
focus on object-oriented metrics to be independent variables in a 
prediction model, which is accessible at early stages of software 
development. The selected internal attributes (metrics) of open 
source software systems are shown in more detail in Table I. 

 

2.5 Subject Software Systems 

To select the systems for the empirical analysis, four 
selection criteria have been used. First, the selected systems had 
to be well-known systems that are very widely used. Second, 
the systems had to be sizable, so the systems can be realistic and 
have multi-developers. Third, the systems had to be actively 
maintained. Finally, the data of these systems had to be publicly 
available. Eight various-sized systems have been chosen from 

different domains. Characteristics of the selected software 
systems are listed in Table II. 

 
TABLE II. SELECTED SOFTWARE SYSTEMS 

 
 

 

System Ver Classes 

Camel 1.6 965 
Ant 1.7 745 

Xerces 1.4.4 587 

jEdit 4.3 493 

POI 3.0 442 

Ivy 2.0 352 

Lucene 2.4 340 

Synapse 1.2 256 

 

 
 

3. Experimental Evaluation 

In this experimental evaluation, several machine 
learning algorithms are investigated. The goal is to see 
which one of them achieves better results in the case of 
open source systems. Then, we show the results of the 
feature selection study. 

 

3.1 Classification Metrics 

To build and evaluate the prediction models, 10-fold 
cross validation has been performed to obtain unbiased 
evaluation results. Comparisons between classifiers are 
based on two measures namely AUC and F-measure. AUC 
is the area under the receiver operating characteristics curve 
whereas F-measure is the harmonic mean of Precision and 
Recall. AUC is the most informative indicator of predictive 
accuracy within the field of software defect prediction [9]. 

4  

3.2 Classification Results 

To investigate which classifier lead to best fault 
prediction performance, prediction models are built using 
all the internal attributes (twenty software metrics). Table 
III shows the F- measure and AUC values for each project. 
Using the F- measure, both BNet and RF achieve better 
results compared to the other two classifiers. As stated 
earlier, the analysis primarily focuses on the AUC value for 
the different classifiers. The results show that Xerces has 
the highest AUC value whereas jEdit has the smallest AUC 
value. The AUC values found in the experiments are 
relatively high. We found that in most cases, the RF 
classifier is the best performing technique based on AUC 
while the J48 classifier is the worst. The median value of 
the RF classifier is 0.78 which is the highest. 

 

TABLE III. CLASSIFICATION    RESULTS 

 

System 
AUC F-measure 

 

 

 

 

 NB BNet J48 RF NB BNet J48 RF 

Camel 0.675 0.638 0.616 0.722 0.766 0.746 0.753 0.775 
Ant 0.806 0.81 0.665 0.807 0.809 0.782 0.792 0.806 

Xerces 0.845 0.922 0.913 0.941 0.677 0.825 0.938 0.927 

jEdit 0.594 0.447 0.467 0.72 0.95 0.967 0.967 0.966 

POI 0.805 0.879 0.772 0.872 0.524 0.812 0.779 0.781 

Ivy 0.765 0.79 0.681 0.736 0.852 0.842 0.855 0.857 

Lucene 0.728 0.697 0.687 0.757 0.583 0.633 0.678 0.695 

Synapse 0.756 0.744 0.692 0.796 0.743 0.747 0.741 0.738 

Median 0.761 0.767 0.684 0.777 0.755 0.797 0.786 0.794 
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TABLE I. METRICS    DEFINITIONS 

 
 

 

Metric Name Definition 

Weighted    methods 
per class (WMC) 

Based on the assumption of unity weights of methods, WMC is the number of methods in the class. 

Depth of 
Inheritance Tree 
(DIT) 

The DIT metric provides for each class a measure of the inheritance levels from the object hierarchy top. 

Number of Children 
(NOC) 

The NOC metric measures the number of immediate descendants of the class. 

Coupling    between 
object classes 
(CBO) 

The CBO metric represents the number of classes coupled to a given class. This couplings can occur through method calls, field 
accesses, inheritance, method arguments, return types, and exceptions. 

Response for a 
Class (RFC) 

The RFC metric measures the number of different methods that can be executed when an object of that class receives a message. 

Lack of cohesion in 
methods (LCOM) 

The LCOM metric counts the sets of methods in a class that are not related through the sharing of some of the class fields. 

Lack of cohesion in 
methods (LCOM3) 

LCOM3 varies between 0 (high cohesion) and 1 (no cohesion). 0 means that each method accesses all variables (i.e., highest 
possible cohesion), whereas 1 indicates extreme lack of cohesion. 

Afferent   couplings 
(Ca) 

The Ca metric represents the number of classes that depend upon the meas-ured class. 

Efferent    couplings 
(Ce) 

The Ca metric represents the number of classes that the measured class is depended upon. 

Number   of   Public 
Methods (NPM) 

The NPM metric counts all the methods in a class that are declared as public. 

Data Access Metric 
(DAM) 

This metric is the ratio of the number of private (protected) attributes to the total number of attributes declared in the class. 

Measure  of  Aggre- 
gation (MOA) 

The metric is a count of the number of class fields whose types are user defined classes. 

Measure of 
Functional 
Abstraction (MFA) 

This metric is the ratio of the number of methods inherited by a class to the total number of methods accessible by the member 
methods of the class. 

Cohesion Among 
Methods   of   Class 
(CAM) 

This metric computes the relatedness among methods of a class based upon the parameter list of the methods. 

Inheritance 
Coupling (IC) 

This metric provides the number of parent classes to which a given class is coupled. A class is coupled to its parent class if one 
of its inherited methods functionally dependent on the new or redefined methods in the class. 

Coupling    Between 
Methods (CBM) 

The metric measures the total number of new/redefined methods to which all the inherited methods are coupled. 

Average Method 
Complexity (AMC) 

This metric measures the average method size for each class. 

McCabe’s cyclo- 
matic complexity 
(CC) 

CC is equal to number of different paths in a method (function) plus one. 

Lines of Code 
(LOC) 

LOC is the sum of number of fields, number of methods and number of instructions in every method of the investigated class. 

 

 

3.3 Correlation Results 
To understand the relationships between software metrics, 

their correlation coefficient (the strength of relationship among 
their counterparts) can be measured. Metrics that correlate 
with each other means that they measure similar  aspects  
of software modules. The Spearman correlation is preferred 
instead of Pearson correlation because the former ignores 
any assumptions about the data distribution. Table IV 
shows the Spearman rank correlations between coupling 
metrics. Correlations greater than 0.69 are highlighted since 
they indicate strong correlation. The Table also shows that 
the following coupling metrics are strongly correlated with 
each other: 

• WMC strongly correlates with RFC, LCOM, NPM, LOC, 

CAM. 

• DIT strongly correlates with MFA. This strong cor- relation 

can be explained since DIT and MFA are measures of 

inheritance. 

• RFC strongly correlates with LOC, CAM, AMC, and 

maxCC. 

• LOC strongly correlates with WMC, RFC, and Ce. 

• LCOM3 strongly correlates with DAM. This strong 

correlation can be explained since these measures tries to 

explore the cohesion of methods and attributes inside a 

class. 

• LOC strongly correlates with AMC and maxCC. This 

strong correlation can be explained since AMC and 

maxCC are measures of complexity. 

• CAM strongly correlates with WMC, RFC, NPM, and 

LOC. 

• IC strongly correlates with CBM. This strong correlation 

can be explained since a class is coupled to its parent class 

(in case of IC) if one of its inherited methods is 

functionally dependent on the new or redefined methods, 

while CBM is the total number of new/redefined methods. 

• maxCC strongly correlates with avgCC. This strong 

correlation can be explained since these two measures are 

a variation of the McCabe’s cyclomatic complexity. 

 

A. Internal Attribute Selection Results 

In this section, correlation-based feature selection (CFS) 
was used to find germane metrics. Based on the execution of 
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CFS, these product metrics were selected (CBO, RFC, LCOM,  
Ca,  Ce,  LCOM3,  MFA,  CAM,  IC).  Based  on  the 
classification results shown in Table III, the Random Forrest 
classifier achieved the best median value with comparison 
with the remainder of the classifiers. To evaluate the new 
predictive model that contains only a subset of the product 
metrics, Random Forest with 10-fold cross validation is 
performed. The results of the prediction accuracy are shown in 
Table V. 

 
TABLE V. RANDOM FORREST CLASSIFICATION RESULTS WITH 

FEATURE  SELECTION 

 

System AUC F-measure 

Camel 0.68 0.77 
Ant 0.8 0.786 

Xerces 0.937 0.924 

jEdit 0.967 0.714 

POI 0.869 0.781 

Ivy 0.741 0.857 

Lucene 0.746 0.682 

Synapse 0.801 0.73 

 
TABLE VI.       THE RESULTS OF TWO KRUSKAL-WALLIS TESTS FOR AUC 

AND F-MEASURE 

 

 Test 1 AUC Test 2 F-measure 

chi-squared 7 7 
degree of freedom 7 7 

p-value 0.429 0.429 

 

To investigate whether the difference between using all 
metrics data or the reduced metrics data in building predictive 
models is significant or not, the Kruskal-Wallis test is executed. 
The Kruskal-Wallis test  [10] is  a  nonparametric  alternative 
to the one-way analysis of variance (ANOVA). The 
Kruskal- Wallis’s test fits this case because it has eight 
independent samples of AUC and F-measure values for each 
software project. The Kruskal-Wallis’s test was executed 
individually for AUC and F-measure values (see Table VI). 
In both tests, the p-value is large, which indicates that the 
difference between the AUC values is statistically 
insignificant. In other words, we can use the reduced data 
set (9 metrics) instead of using all data set (20 metrics) in 
building predictive models. This result shows that by 
collecting only these product metrics (CBO, RFC, LCOM, 
Ca, Ce, LCOM3, MFA, CAM, IC), the resulting predictive 
model accuracy does not decrease significantly if you 
collect all the studied metrics. This shows that only these 
selected metrics are important in distinguishing between faulty 
and non-faulty classes. 

 

4. Threats to Validity 

In this section, we identify and discuss the main threats 
to the validity of this empirical study. To mitigate conclusion 
validity, we performed the experiments 10 times to achieve 
reliable results. Tests were performed using 10-fold cross 
validation. Two measures were used to evaluate the 
performance of different classifiers namely the Area Under 
Receiver Operating Characteristics Curve (AUC) and F-
measure. To mitigate construct validity, previously validated 

and well-known software metrics were used. The used 
metrics were satisfactory and widely used in software 
fault prediction. 

 

5. Related Work 

This section reviews the studies that discussed internal 
attribute and fault proneness of open source systems. 
Briand et al. [11] conducted a case study that 
investigated the relationships between quality factors of 
object-oriented design and fault-proneness of an open 
source system (LALO). They found a number of metrics 
from the Chidamber and Kemerer (CK) metrics suite 
were statistically associated with the fault- proneness of 
classes. In a later study, they replicated the study [12], 
and found different results, including the relations 
between DIT, NOC and fault-proneness of classes. 

Gyimothy et al. [13] conducted an empirical 
investigation of eight object-oriented metrics for fault 
prediction of the Mozilla project. They used several 
statistical methods such as linear and logistic regression, 
decision trees and neural net- works. Their results 
showed strong statistically significant correlations between 
most of the CK metrics and fault-proneness. Olague et al. 
[14] conducted an empirical investigation using three 
object-oriented metrics suites and the Mozilla Rhino 
project. Their study showed that some of metrics used in 
the study are consistent predictors of class fault-
proneness. 

Zhou and Leung [15] took into account the 
severity of faults. They conducted their study on a 
public dataset from the NASA Metrics Data Program. 
Their results showed a great number of strong 
correlations between the CK metrics and high, low and 
ungraded severity faults. In this work, several pre-
validated metrics are used to predict the fault-proneness 
of eight open source systems. This study is different  than 
these previous studies since it uses eight large open 
source software systems that come from different 
domains. The other difference is the fact that the 
dataset used in this study is publicly available and has 
been used before to construct fault prediction models. 

6. CONCLUSION 

This work empirically investigated to what extent and 
how fault-proneness could be explained by means of 
internal quality attributes. Software quality was measured 
in terms of 20 internal quality attributes. This case study 
showed that most of the internal attributes of open source 
project correlate with each other. Internal attributes that 
correlate with each other means that they measure 
similar concepts. The results also showed that selecting 
only a subset of these internal attributes achieved similar 
accuracy results compared to using all the internal 
attributes. This shows that certain internal attributes can 
be collected and investigated, which saves the project time. 
This allows software quality assurance teams to 
concentrate on a subset of internal attributes. 
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[11] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis, 
“Investigating quality factors in object-oriented designs: an 
industrial case study,” in Proceedings of the 21st international 
conference on Software engineer- ing.   ACM, 1999, pp. 345–354. 
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TABLE IV. SPEARMAN CORRELATION RESULTS 

 

 WMC DIT NOC CBO RFC LCOM Ca Ce NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC maxCC avgCC 

WMC 1.00                    DIT 0.11 1.00                   
NOC 0.17 -0.01 1.00                  
CBO 0.46 0.05 0.24 1.00                 
RFC 0.83 0.20 0.13 0.57 1.00                

LCOM 0.77 0.09 0.15 0.37 0.60 1.00               
Ca 0.23 -0.17 0.31 0.62 0.14 0.18 1.00              
Ce 0.46 0.25 0.09 0.69 0.67 0.36 0.10 1.00             

NPM 0.89 0.09 0.12 0.34 0.65 0.69 0.19 0.31 1.00            
LCOM3 -0.31 -0.10 -0.08 -0.17 -0.38 0.09 -0.05 -0.24 -0.25 1.00           

LOC 0.76 0.18 0.13 0.51 0.93 0.49 0.15 0.60 0.57 -0.42 1.00          
DAM 0.42 0.16 0.14 0.27 0.48 0.12 0.05 0.35 0.34 -0.78 0.48 1.00         
MOA 0.43 0.07 0.11 0.39 0.45 0.22 0.21 0.44 0.32 -0.34 0.46 0.40 1.00        
MFA -0.04 0.93 -0.02 -0.01 0.08 -0.02 -0.20 0.20 -0.07 -0.05 0.06 0.08 -0.01 1.00       
CAM -0.78 -0.07 -0.12 -0.45 -0.72 -0.58 -0.22 -0.49 -0.65 0.28 -0.69 -0.36 -0.43 0.07 1.00      

IC 0.28 0.63 -0.01 0.14 0.32 0.18 -0.07 0.29 0.21 -0.16 0.31 0.17 0.13 0.58 -0.23 1.00     
CBM 0.30 0.61 -0.01 0.13 0.32 0.21 -0.06 0.29 0.24 -0.15 0.31 0.16 0.12 0.56 -0.25 0.97 1.00    
AMC 0.35 0.17 0.04 0.38 0.71 0.14 0.01 0.52 0.15 -0.40 0.84 0.38 0.31 0.15 -0.38 0.24 0.23 1.00   

maxCC 0.54 0.05 0.09 0.43 0.71 0.36 0.16 0.48 0.39 -0.32 0.76 0.35 0.33 -0.04 -0.47 0.21 0.20 0.69 1.00  
avgCC 0.44 -0.09 0.05 0.36 0.57 0.30 0.18 0.34 0.33 -0.16 0.59 0.21 0.22 -0.18 -0.35 0.09 0.09 0.53 0.89 1.00 

 
  

 


