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Abstract

The central problem in computational mechanism de-
sign is the tension between incentive compatibility and
computational ef�ciency. We establish the �rst signif-
icant approximability gap between algorithms that are
both truthful and computationally-ef�cient, and algo-
rithms that only achieve one of these two desiderata.
This is shown in the context of a novel mechanism de-
sign problem which we call the COMBINATORIAL PUB-
LIC PROJECT PROBLEM (CPPP). CPPP is an abstraction
of many common mechanism design situations, ranging
from elections of kibbutz committees to network design.

Our result is actually made up of two complementary
results � one in the communication-complexity model
and one in the computational-complexity model. Both
these hardness results heavily rely on a combinatorial
characterization of truthful algorithms for our problem.
Our computational-complexity result is one of the �rst
impossibility results connecting mechanism design to
complexity theory; its novel proof technique involves an
application of the Sauer-Shelah Lemma and may be of
wider applicability, both within and without mechanism
design.

1 Introduction

In real networks, routing is done by routers that
choose paths other than shortest, and this results in dis-
tance matrices that do not satisfy the triangle inequality.
In such a situation, it is often desirable to construct an
overlay: A set of k nodes spread throughout the net-

work and with high-quality routing between them, so
that other nodes can improve the distance between them
by routing through the closest overlay node. An over-
lay is bene�cial to different nodes in different degrees,
and we wish to design the overlay that maximizes total
welfare.

This is a typical instance of a general problem we de-
�ne, called COMBINATORIAL PUBLIC PROJECT PROB-
LEM, or CPPP. There are n agents and m resources, and,
for each agent i, a private valuation function vi which
speci�es i's value for every subset of the resources. We
assume that all valuations are nondecreasing and sub-
modular (a case that encompasses among many others
the overlay network example above, see de�nitions in
Subsec 1.1). The objective is to �nd a subset of the re-
sources S of size k, where k is a parameter, which max-
imizes the social welfare, i.e., the sum of agents' values
for the chosen subset Σi vi(S).

Computationally speaking, this problem is relatively
benign; while many of its special cases are NP-hard [10]
it is well known [22] that the greedy algorithm achieves
a constant approximation ratio (speci�cally, 1− 1

e ).
But the fact that valuations are private presents us

with a formidable problem: unless otherwise incen-
tivized, agents are likely to lie, exaggerating the degree
to which they prefer one alternative over another1, and
this misrepresentation makes optimization impossible.
There is a very general method for providing incentives
for the agents to reveal their true valuation, namely the
Vickrey-Clarke-Groves (VCG) mechanism [34, 4, 14].
However, VCG requires that we solve exactly (typically

1According to a March 26 2008 Gallup poll, 28% of Clinton's sup-
porters declare that they will not vote for Obama in a presidential elec-
tion.
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many instances of) the CPPP � an NP-hard problem.
We could of course turn to approximation, as we always
do when faced with intractability. The tragedy of this
area is that approximation and truthfulness do not mix:
Running VCG with approximate solutions is, in general,
not incentive compatible [24].

In other words, ef�cient approximability and incen-
tive compatibility seem to be at loggerheads. This ten-
sion underlies much of the work in algorithmic mecha-
nism design [24, 25, 16, 5]. In this paper, we establish
a huge gap between the quality of the solutions that can
be obtained by algorithms for CPPP that are both poly-
nomial and truthful, and by algorithms that satisfy only
one of these two desiderata. We show this by proving
that no truthful and computationally-ef�cient algorithm
for CPPP can obtain any reasonable approximation ra-
tio, speci�cally, a ratio better than

√
m (this holds even

for the case of two agents)2. Our inapproximability re-
sult settles a long-standing open question in algorith-
mic mechanism design [13, 29]: we exhibit a problem
(CPPP) that is easy from a computational perspective (a
constant approximation algorithm exists), and from an
economic perspective (an optimal truthful algorithm ex-
ists), but is hard (does not allow for constant approxima-
tions) if we care about both3.

Our result is actually made up of two complementary
results � one in the communication-complexity model
and one in the computational-complexity model. Tech-
nically speaking, each of these results must overcome
two main challenges [29]: First, we must provide a com-
binatorial characterization of truthful algorithms. Then,
once we have such a characterization, we can exploit it
to prove an inapproximability result.

An interesting way to view our results is the follow-
ing: Over the past four decades, complexity theory has
been successful in classifying optimization problems
into various classes, such as P, NP, NP-hard, and APX
(those problems that can be approximated within some
constant factor in polynomial time). Mechanism design
is about incentive-compatible optimization, in which the
inputs are provided by agents who have their own objec-
tives. In this new regime, for social-welfare maximiza-
tion problems,4 classical VCG theory implies that P, NP,
and NP-hardness are preserved under truthfulness. Our
computational-complexity result essentially states that
APX is not preserved (our communication-complexity

2We note that a simple truthful polynomial-time algorithm that ob-
tains a√m approximation ratio for CPPP shows that our result is tight
in both models. [32]

3It is known that algorithms that are both truthful and
computationally-ef�cient might not perform (in terms of approxima-
tion ratio) as well as algorithms that only meet one of these two re-
quirements. However, it was unclear by how much their performance
is harmed. In fact, so far researchers have only been able to establish
a gap of 2 between these two types of algorithms [16, 8].

4See discussion about other optimization goals in [21].

result proves an analogous statement in the communica-
tion model).

Communication-complexity lower bound. Our �rst
main contribution is an exponential lower bound on the
amount of communication required by any truthful algo-
rithm that approximates the CPPP within any reasonable
ratio:

Theorem: Any truthful algorithm for the CPPP that ob-
tains an approximation ratio of O(m

1
2−ε) requires com-

munication that is exponential in m (for every ε > 0 and
even for n = 2).

The �rst step of the proof is showing that any truth-
ful algorithm for CPPP must be an af�ne maximizer. An
af�ne maximizer is an algorithm de�ned by a �xed set
of solutions, and which, given a set of valuations, picks
the solution in the set that maximizes social welfare. A
celebrated result by Roberts [28] essentially states that
if an algorithm is truthful for all valuations, then it has
to be an af�ne maximizer. However, this result does not
necessarily hold when restricted to special settings (sub-
modular valuations, etc.). In fact, for many restricted
settings, truthful algorithms that are not af�ne maximiz-
ers are known (e.g. [3, 2]). In the present case, by care-
fully applying machinery from Roberts's (long and deli-
cate) proof � actually, its recent interpretation by Lavi,
Mu'alem and Nisan [16, 17] � we are able to prove that
any truthful algorithm for the nondecreasing submodu-
lar case of the CPPP is an af�ne maximizer. The proof
explores the geometric and topological properties that
must hold for any truthful algorithm for CPPP to prove
af�ne maximization.

After providing this combinatorial characterization of
truthfulness the second step is proving a lower bound for
af�ne maximizers. We do this by proving a lower bound
on the number of solutions in the range of the mech-
anism, and then exploiting af�ne maximization to to
establish our communication-complexity lower bound.
The proof of the theorem draws ideas from works in
many different �elds of research (e.g., [28, 26, 23, 16,
17, 5, 8, 11, 19]), and so we defer a discussion of the
related work to Section 2.

Computational-complexity lower bound. Our previ-
ous result is a communication-complexity lower bound.
Informally, the agents are assumed to compute their val-
uations based on exponentially large data, and then it is
shown that too much of this data must be exchanged for
the algorithm to be truthful. However, many interesting
valuations depend on very succinct data (recall the in-
troductory overlay problem, in which the input is a dis-
tance matrix), and computational-complexity techniques
would be needed to establish lower bounds for these; no
such results had been known (with the possible excep-
tion of Theorem 5 in [16]). Our next major result does
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exactly this: We consider a class of nonnegative sub-
modular (though not nondecreasing) valuations, that are
succinctly described. We show that, despite the fact that
a 1 − 1

e approximation exists for this class, no truthful
and polynomial-time algorithm can obtain an approxi-
mation ratio (asymptotically) better than √m.

As in our communication-complexity result, the
proof of this result consists of two parts: Proving that
any truthful algorithm must be an af�ne-maximizer, and
proving a hardness result for af�ne-maximizers. The
main challenge now lies in the second part (the �rst part
is basically derived from the characterization of truth-
fulness in our communication complexity result). The
heart of our proof is therefore showing the following in-
approximability result for a class of succinct submodular
functions we call �coverage-penalty valuations�:

Theorem: For CPPP with coverage-penalty valua-
tions there is no polynomial-time af�ne maximizer with
O(m

1
2−ε) approximation ratio unless NP ⊆ BPP (for

every ε > 0).

To establish this, we �rst show, very much as in the
proof of our communication-complexity result, an ex-
ponential lower bound on the number of solutions, and
then we use a probabilistic version of the Sauer-Shelah
Lemma [30, 33]5 to obtain a hardness result. This re-
sult has interesting projections on complexity theory as
discussed in section 3.

Organization of the paper. In the balance of this sec-
tion we introduce the CPPP and the communication-
and computational-complexity notions. In the next
section we prove our exponential communication-
complexity lower bound, while in Section 3 we prove
our computational-complexity lower bound. In Sec-
tion 4 we discuss our results and present several open
questions.

1.1 Definitions

In CPPP there is a set of n agents {1, ..., n}, and a
set of m resources {1, ..., m}. Each agent has a pri-
vate valuation function vi : 2[m] → <≥0. We de-
note by Vi the space of possible valuations of agent
i, and by V the domain of valuations V1 × . . . × Vn.
We shall assume that vi(∅) = 0. We assume that
every vi is submodular, i.e., for every S, T ⊆ [m]
vi(S∪T )+vi(S∩T ) ≤ vi(S)+vi(T ). Submodularity
is known to be equivalent to the following easily ver-
i�able property, called �decreasing marginal utilities�:
For every S ⊂ T ⊆ [m], and for every j ∈ [m] such
that j /∈ T vi(S ∪{j})− vi(S) ≥ vi(T ∪{j})− vi(T ).
Submodularity arises in many contexts � both economic

5This lemma is closely related to the notion of the Vapnik-
Chervonenkis (VC) dimension.

and computational (see [18, 6, 7, 9, 12, 11, 35] and refer-
ences therein). This paper focuses on submodular func-
tions that are nondecreasing6 in that S ⊆ T implies
v(S) ≤ v(T ). Nondecreasing submodular functions are
known to have particularly good properties; for exam-
ple, they can be approximated within a ratio of 1 − 1

e
(for general nonnegative submodular functions a con-
stant approximation ratio exists [11]).

The objective in the CPPP is to �nd a subset of size
k, where k is a parameter of the problem, of resources
which maximizes the social-welfare. That is, we wish to
�nd T ∈ argmaxS⊆[m], |S|=k Σivi(S).

We are interested in algorithms (mechanisms) for
CPPP satisfying three desiderata:

Quality of solution. We want our mechanisms to return
a solution (set of resources) whose social welfare is as
close, in terms of ratio, to the optimum as possible.

Computational ef�ciency. Our algorithms should run
in time that is polynomial in the natural parameters of
the problem � m and n. However, as the �input� (the
data enabling each agent to compute the valuation) can
be exponential in m we must specify how it can be ac-
cessed. In mechanism design one often takes a �black
box� approach (see [6]): We assume that valuations are
computed by an oracle that can answer a certain type of
queries, and we restrict algorithms to ask a polynomial
number (in n and m) of such queries. There are two
common types of queries:

• In the value query model a query is a subset of re-
sources S ⊆ [m], and the answer is simply vi(S);
This weaker model is mainly used for designing al-
gorithms.

• The general query model is equivalent to Yao's
communication model [36, 15], in which the agents
take turns announcing messages; a message by
agent i is any function (even a computationally in-
tractable one) of the values of vi and of the previous
messages. We use this stronger model for impossi-
bility results.

A different approach would be to consider cases in
which the �input� (valuations) can be concisely repre-
sented, i.e., can be encoded in a natural way that is poly-
nomial in m and n. We follow this approach in Sec-
tion 3.

Truthfulness. We want an algorithm (mechanism) A to
be such that the agents are rationally motivated to truth-
fully answer the algorithm's queries. This is achieved by
a payment function p which, for every n-tuple of valua-
tion functions v = (v1, ...vn) ∈ V , demands a payment

6We slightly relax this assumption in Section 3.
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from each agent. p is such that no agent can increase
his utility (the value of the set chosen by the algorithm
minus the payment assigned to him) by misreporting his
valuation7. Formally, for every i ∈ [n] we have that:

∀vi, v
′
i ∈ Vi,∀v−i ∈ V−i,

vi(A(vi, v−i))−p(vi, v−i) ≥ vi(A(v′i, v−i))−p(v′i, v−i),

where V−i is the cartesian product of all Vj's such that
j 6= i, (vi, v−i) is the valuations pro�le in which i has
vi and the other agents have v−i, (v′i, v−i) is de�ned
similarly, and A(v) is the set A outputs for the valuation
pro�le v.

2 Communication-Complexity of Mecha-
nism Design

In this section we prove the following:

Theorem 2.1 Any truthful algorithm for CPPP that ob-
tains an approximation ratio of O(m

1
2−ε) requires ex-

ponential communication (for every ε > 0 and even for
n = 2).

The proof proceeds in two steps: We �rst establish
(Lemma 2.3) that any truthful algorithm for the CPPP
must be of a very restricted kind called an af�ne max-
imizer. We then show that any af�ne maximizer for
the CPPP requires exponential communication (Lem-
mas 2.16 and 2.17). This second part uses techniques
introduced by Dobzinski and Nisan [5] for proving com-
munication complexity lower bounds for af�ne maxi-
mizers.

The Characterization Lemma is the heart of our
proof. It establishes that the CPPP has a rich enough
structure, and appropriately strong interaction between
the agents, so that a subtle variant of Roberts's proof
[28] is enabled. The line of argument used in our proof
follows that of Roberts', as presented by Lavi, Mu'alem,
and Nisan [17]. However, applying this machinery to
our setting is not straightforward as we are dealing with
a restricted domain of valuation functions (submodu-
lar, nondecreasing). Therefore, we must handle various
technical dif�culties: We must ensure that the valuation
functions we construct belong to this restricted domain.
We must also take measures to deal with the fact that our
valuation domain is not open (in the standard topological
sense). Unlike Roberts' proof, our proof makes repeti-
tive use of the strong monotonicity constraint introduced
in [16] (also see [8]).

7The notion of truthfulness we consider is the standard notion of
truthfulness in dominant strategies. All our results apply to the weaker
notion of truthfulness in ex-post Nash.

2.1 The Characterization Lemma

Let A be an algorithm for the nondecreasing submod-
ular CPPP with m resources and parameter k. We de�ne
A's range RA to be the resource subsets of size k that
are output by A for some input, i.e., RA = {S| ∃v =
(v1, ..., vn) s.t. A(v) = S}. Informally, A is an af�ne-
maximizer if it always optimizes over its entire range
RA.

De�nition 2.2 ([28]) An algorithm A is said to be an
af�ne maximizer if there exist nonnegative agent weights
w1, ..., wn (not all equal to 0), and outcome weights
{CS}S∈RA

such that

∀v = (v1, ..., vn)

A(v) ∈ argmaxS∈RA
[(Σiwivi(S)) + CS ].

Lemma 2.3 Any truthful algorithm for the nondecreas-
ing submodular CPPP with n = 2 is an af�ne-maximizer.

Remark 2.4 We note that, as we are aiming for an im-
possibility result, we prove the characterization lemma
only for the 2-agent case. We shall later show that our
inapproximability result holds even for this special case.

Proof: As is common in such proofs (see for example
[28, 17]), we study the topological structure of vectors
of valuation differences. For any pair of valuation func-
tions v = (v1, v2), we shall denote by v(S) − v(T ) the
vector in <2 (v1(S)− v1(T ), v2(S)− v2(T )). We also
de�ne

P (S, T ) = {α ∈ <2 |∃ v s.t. A(v) = S and

v(S)− v(T ) = α}.
If A is an af�ne maximizer that outputs a set S for the

valuation functions v = (v1, v2) then it must hold that
for every T 6= S in RA (for some �xed agent-weights
w1, w2 and outcome-weights {CR}R∈RA

)

(Σiwivi(S)) + CS ≥ (Σiwivi(T )) + CT ,

which implies that

Σiwi(vi(S)− vi(T )) + (CS − CT ) ≥ 0.

Informally, observe that the inequalities above sug-
gest that if A is an af�ne maximizer, then there is a line
l in <2 of the form w1x + w2y = 0 such that every
P (S, T ) has l as its lower boundary (possibly shifted by
some constant γ(S, T ) = CS − CT from the centre of
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the axes). So, to prove that a truthful algorithm A is an
af�ne maximizer, we need to show that there are weights
w1, w2 (and {CR}R) that induce such a line l (the same
l for all choices of S 6= T ∈ RA). This is precisely what
we mean to show. The reader is referred to [17] for an
explanation of the geometric intuition behind the proof
of Roberts' Theorem (which also underlies our proof).

Strong monotonicity. We shall require the strong
monotonicity property.

De�nition 2.5 An algorithm satis�es strong-
monotonicity if for every i ∈ [n], vi, v

′
i ∈ Vi, and

v−i ∈ V−i, if A(vi, v−i) = S and A(v′i, v−i) = T 6= S
then it must hold that vi(S)− vi(T ) > v′i(S)− v′i(T ).

Not any truthful algorithm is necessarily strongly-
monotone (and vice-versa), yet we shall prove the theo-
rem for strongly-monotone algorithms. At the end of the
proof we shall revisit this assumption and explain why it
can be removed. The following proposition shall play a
crucial role in our proofs.

Proposition 2.6 Let A be a strongly monotone algo-
rithm, and let v ∈ V be such that A(v) = S. If v′ ∈ V
and v(S)− v(T ) ≤ v′(S)− v′(T ) (i.e., ≤ in each coor-
dinate) then A(v′) 6= T .

Proof: Assume, for point of contradiction, that the con-
ditions stated in the theorem hold and A(v′) = T . Let
v = (v1, v2) and v′ = (v′1, v

′
2). Let α1 = v1(S)−v1(T ).

We shall prove the proposition for the case that α1 ≥ 0
(the other case requires a very similar construction). Let
j ∈ S\T (since all sets are of equal size such a j is guar-
anteed to exist). We de�ne a valuation function v′′1 ∈ V1

as follows (for some arbitrarily large β > 0):

∀R v′′1 (R) = α1|R ∩ {j}|+ β|S||T |
−β(|S| − |S ∩R|)(|T | − |T ∩R|)

It is easy to verify that this is indeed a nondecreas-
ing submodular function (this construction is inspired
by [11, 19]). We shall now show that A(v′′1 , v2) = S.
This is because if A(v′′1 , v2) = Q 6= S then, by strong
monotonicity, v1(S) − v1(Q) > v′′1 (S) − v′′1 (Q). It is
easy to show that if Q 6= S, T then this results in a con-
tradiction (as we can set the value of β to be as high as
we like). Observe that if we set Q = T then this too
results in a contradiction. Similarly, we can show that
A(v′′1 , v′2) = T . However, in this case by strong mono-
tonicity we have that v2(S)− v2(T ) > v′2(S)− v′2(T ).
A contradiction.

Main part of the proof.

Claim 2.7 Let α ∈ P (S, T ) for some S, T ∈ RA. Let
ε = (ε1, ε2) ≥ 0. Then, α + ε ∈ P (S, T ).

Proof: Since α = (α1, α2) ∈ P (S, T ) then, by de�ni-
tion, there are valuation functions v = (v1, v2) such that
A(v) = S and v(S)−v(T ) = α. We prove the claim for
the case α ≥ 0 (other cases are handled similarly). Let
j ∈ S \ T . We de�ne valuation functions v′ = (v′1, v

′
2)

as follows:

∀R v′1(R) = (α1 + ε1)|R ∩ {j}|+ β|S||T |
−β(|S| − |S ∩R|)(|T | − |T ∩R|)

∀R v′2(R) = (α2 + ε2)|R ∩ {j}|+ β|S||T |
−β(|S| − |S ∩R|)(|T | − |T ∩R|)

The use of strong monotonicity (as in the proof of
Proposition 2.6) and of Proposition 2.6 itself shows that
A(v′1, v2) = S. Similarly, we can then show that
A(v′1, v

′
2) = S. Observe that v′(S) − v′(T ) = α + ε.

Therefore, by de�nition, α + ε ∈ P (S, T ).

Claim 2.7 tells us something important about the
structure of the different P (S, T ) sets in <2: If a point is
in P (S, T ) then so are all points �above� it and �to the
right� of it. Hence, each P (S, T ) is de�ned by a lower
boundary with a nonincreasing slope. However, we do
not yet know that this nonincreasing slope is a straight
line (and certainly not that it is the same straight line for
all choices of S, T ). We shall require the two following
technical propositions:

Proposition 2.8 For any S 6= T ∈ RA α ∈ P (S, T ) iff
−α /∈ P (T, S).

Proof: Let α = (α1, α2) ∈ P (S, T ). Then, by def-
inition, there exists v = (v1, v2) such that A(v) = S
and v(S) − v(T ) = α. Suppose, for point of con-
tradiction, that −α ∈ P (T, S). Then, by de�nition,
there exists v′ = (v′1, v

′
2) such that A(v) = T and

v′(T ) − v′(S) = −α (or, v′(S) − v′(T ) = α). How-
ever, by Proposition 2.6 this is impossible (A(v′) cannot
equal T ).

We now prove the other direction, which is equiva-
lent to showing that if α /∈ P (S, T ) then−α ∈ P (T, S).
Since S is in RA there must be valuation functions v =
(v1, v2) such that A(v) = S. Let αW = v(S) − v(W ).
We prove the proposition for the case α ≥ 0 (other cases
are handled similarly). Let j ∈ S \ T . We de�ne val-
uation functions v′ = (v′1, v

′
2) as follows (we choose β

to be huge, and in particular higher than the values of all
coordinates of all the different αW 's):

∀R v′1(R) = α1|R ∩ {j}|+ β|S||T |
−β(|S| − |S ∩R|)(|T | − |T ∩R|)
∀R v′2(R) = α2|R ∩ {j}|+ β|S||T |

5



−β(|S| − |S ∩R|)(|T | − |T ∩R|)

The repeated use of Proposition 2.6 for every W ∈
RA such that W 6= S, T shows that A(v′1, v

′
2) must

be in {S, T}. However, since v′(S) − v′(T ) = α and
α /∈ P (S, T ), it must be that A(v′) = T . Observe that
v′(T ) − v′(S) = −α. So, by de�nition of P (T, S),
−α ∈ P (T, S).

Proposition 2.9 For any S, T, W ∈ RA, such that no
two are equal, if α ∈ P (S, T ) and α′ ∈ P (T, W ) then
α + α′ ∈ P (S, W ).

Proof:
Let α = (α1, α2). Let α′ = (α′1, α

′
2). Let Y be an

additive valuation function such that ∀j /∈ S ∪ T ∪ W
Y ({j}) = 0 and the two following properties hold:

• Σj∈SY ({j})− Σj∈T Y ({j}) = α1

• Σj∈T Y ({j})− Σj∈W Y ({j}) = α′1

Observe that because the number of variables is
greater than the number of equations such a function Y
exists. Since S, T,W are of equal size we can also as-
sume that Y only assigns nonnegative values (otherwise
increase the value of each j ∈ S ∪ T ∪ W by some
identical large enough constant).

Similarly, let Z be an additive valuation function such
that ∀j /∈ S ∪T ∪W Z({j}) = 0 and the two following
properties hold:

• Σj∈SZ({j})− Σj∈T Z({j}) = α2

• Σj∈T Z({j})− Σj∈W Z({j}) = α′2

We de�ne (for some huge β to be determined later)
the following valuations v′ = (v′1, v

′
2):

∀R v′1(R) = Y (R) + β|S||T |−
β(|S| − |S ∩R|)(|T | − |T ∩R|)
∀R v′2(R) = Z(R) + β|S||T |−
β(|S| − |S ∩R|)(|T | − |T ∩R|)

Since α ∈ P (S, T ) there must be some valuations
v = (v1, v2) such that A(v) = S. The repeated use
of Proposition 2.6 (as in the proof of Proposition 2.8)
shows that A(v′) ∈ {S, W}. Similarly, by taking ad-
vantage of the fact that α′ ∈ P (T, W ) one can show
(using similar arguments) that A(v′) ∈ {S, T}. We con-
clude that A(v′) = S. Observe that v′(S) − v′(W ) =
(v′(S)− v′(T )) + (v′(T )− v′(W )) = α + α′. Hence,
by de�nition of P (S, W ) α + α′ ∈ P (S, W ).

We shall prove our result for the case that −→0 =
(0, 0) ∈ P (S, T ) for every S 6= T ∈ RA. This greatly
simpli�es the exposition and enables us to convey the
main idea of the proof. The proof for the more general
case is achievable via the exact same logic as presented
in [17] (claim 4 and the following claims in the �rst
proof in that paper follow from what we have proven
thus far).

Corollary 2.10 For every S 6= T, U 6= W ∈ RA it
holds that P (S, T ) = P (U,W ).

Proof: Let α ∈ P (S, T ). As −→0 ∈ P (T, W ), we
have that α = α +

−→
0 ∈ P (S, W ). We also know that−→

0 ∈ P (U, S), and so α =
−→
0 + α ∈ P (U,W ).

That is, all the P (S, T ) sets (for every choice of S, T )
are, in fact, the very same set, that we shall refer to as
X . We shall now prove that X is convex, thus showing
that the (lower) boundary of X (which we know is non-
increasing) must be a straight line8. Our proof for the
convexity of X relies on the assumption that the domain
of valuations V is open. Unfortunately, it is not true that
the domain of nondecreasing submodular valuations is
open. At the end of the Characterization Lemma's proof
we revisit this assumption and show how it too can be
removed.

De�nition 2.11 A domain of valuations V is open if for
each v = (v1, ..., vn) ∈ V , there is some ε > 0 such
that for all v′ = (v′1, ..., v

′
n), if ∀S ⊆ M and ∀i ∈ [n],

|v′i(S)− vi(S)| ≤ ε then v′ ∈ V .

Proposition 2.12 X is convex.

Proof: We �rst show that if α, α′ ∈ X then α+α′
2 ∈ X .

Suppose, by contradiction, that α, α′ ∈ X but α+α′
2 /∈

X . By Proposition 2.9 α + α′ ∈ X , and by Proposi-
tion 2.8 −α+α′

2 ∈ X . However, Proposition 2.9 now
implies that α+α′

2 = (α + α′) + (−α+α′
2 ) ∈ X . A

contradiction.
By repeatedly using this fact, we can, for any α, α′ ∈

X and λ ∈ (0, 1) build a series of points that approach
λα+(1−λ)α′, such that any point in the series has a ball
of small radius that is fully contained in X . This (and the
openness of V ) suf�ces to prove that λα + (1− λ)α′ ∈
X .

Now we know that X is convex and therefore has a
lower boundary in the form of a straight line l. More-
over, l goes through the origin of the axes −→0 , as by

8Observe that if we de�ne −X = {−α| α ∈ X} then the con-
vexity of X implies the convexity of −X . If X and −X are convex,
their union is <2, and their interiors are disjoint (by Proposition 2.8),
then they must be separated by a straight line.

6



Proposition 2.8 α ∈ X iff −α /∈ X . So, l can be de-
scribed by w1x + w2y = 0 for some positive constants
w1, w2 (recall that l's slope is nonincreasing). There-
fore, we get that A is an af�ne maximizer (for agent-
weights w1, w2 and by setting all outcome-weights to
be 0). This concludes the proof of the lemma.

Removing the Strong Monotonicity and Open Do-
main Assumptions. So far, the proof of the Charac-
terization Lemma relied on the assumptions that the al-
gorithms in question are strongly monotone and that the
domain of valuations is open. Here we exploit the fol-
lowing machinery to do away with these:

Theorem 2.13 [16] If a domain of valuations V is
open, then for every truthful algorithm A there exists an
algorithm A′ that satis�es strong monotonicity such that
if A′ is an af�ne maximizer then so is A.

Theorem 2.13 implies the following modus operandi:
We shall focus on a �rich� open subdomain of the do-
main of all nondecreasing submodular valuation func-
tions. We shall show that all our arguments actually ap-
ply to that domain. Since in that domain truthfulness
is equivalent to strong monotonicity (in the sense stated
by Theorem 2.13) this will conclude the proof. We now
provide a way to slightly tweak all constructions of valu-
ation functions in Subsections 2.1 and 2.2 to ensure that
they all belong to this open domain.

Speci�cally, we de�ne the strict domain V strict to
be the domain of all valuations that are strictly non-
decreasing (i.e., ∀S ⊂ T ⊆ [m] and ∀i ∈ [n]
vi(S) < vi(T )) and have strictly decreasing marginal
utilities. (i.e., ∀S ⊂ T ⊆ [m], ∀j /∈ T and ∀i ∈ [n]
vi(S ∪ {j})− vi(S) > vi(T ∪ {j})− vi(T )).

Claim 2.14 V strict is an open domain.

Proof: Consider some v = (v1, ..., vn) ∈ V strict. Let
δ be the minimal gap caused by the above strict inequal-
ities (taken over all possible sets of resources, agents,
etc.). It is easy to see that ε = δ

3 meets the requirement
in the de�nition of an open domain.

We now show that any nondecreasing and submod-
ular valuation function can be slightly tweaked to �t in
V strict. Hence, we can prove our theorem for the case
that all valuations ar slightly tweaked in this manner.
The reader may verify that (for suf�ciently small choices
ε) all the arguments in this section also apply to these
slightly different constructions of valuation functions.

Claim 2.15 For any nondecreasing and submodular
valuation function vi ∈ Vi, and any ε > 0, there exists a

valuation function v′i ∈ Vi that is strictly nondecreasing
and has strictly decreasing marginal utilities such that
∀S ⊆ [m] |vi(S)− v′i(S)| ≤ ε.

Proof: Fix some ε > 0 and valuation function vi

that is nondecreasing and submodular. Let ε′ << ε.
Let gε′ be a valuation function such that ∀R ⊆ [m]
gε′(R) = |R|ε′ − 2|R|

2m+1 ε′. The reader can verify that
this function is strictly nondecreasing and has strictly
decreasing marginal utilities. Moreover, for any nonde-
creasing submodular valuation function v and for any ε′

it holds that v′i = vi + gε′ is strictly nondecreasing and
has strictly decreasing marginal utilities.

2.2 Lower Bound for Affine Maximizers

Let k, the number of chosen resources in the CPPP, be
�xed to √m throughout this subsection. We shall now
show that any algorithm A that obtains a reasonable ap-
proximation ratio must have a range RA of exponential
size. We will then exploit af�ne maximization to show
that the size of the range is a lower bound on the com-
munication complexity.

Lemma 2.16 For any algorithm A that obtains an ap-
proximation ratio of m

1
2−ε to the optimal social welfare

it must hold that |RA| = Ω(emε

), even for n = 1.

Proof: (Sketch) Consider an algorithm A with range
RA. Choose a set of resources V ⊆ [m] by sampling [m]
independently with probability p = m− 1

2+ε, where ε >
0 is small and �xed, and consider the valuation function
v(S) = |S ∩ V |. We claim that, unless RA contains at
least Ω(emε

) sets, with high probability it approximates
v very poorly.

Indeed, it follows from the Chernoff bound that, for
any small δ > 0, with probability at least 1 − |RA| ·
exp(δ2m

1
2+ε), in this instance of CPPP the optimum |V |

is at least (1 − δ)m
1
2+ε, while the solution returned by

the af�ne maximizer will be at most (1 + δ)mε). The
lemma follows.

The following now concludes the proof of our main
result:

Lemma 2.17 Any af�ne maximizer A with range RA re-
quires Ω(|RA|) communication, even for n = 2.

Proof: (Sketch) Consider an af�ne maximizer A with
range RA. We shall construct two submodular valuation
functions which require Ω(|RA|) communication in or-
der to achieve optimality in the range RA. Recall that A
maximizes w1v1(S) + w2v2(S) + CS over all S ∈ RA;
it is easy to see that one can assume w1 = w2 = 1
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for all S, w.l.o.g. Now, suppose that each agent i has a
private set Ri

A ⊆ RA, which induces the following valu-
ation function: vi(T ) = β · (ΠS∈Ri

A
|S| −ΠS∈Ri

A
(|S| −

|S ∩ T |)) ∀T ⊆ [m]. Note that since β can be arbi-
trarily large, w.l.o.g. we can consider the case in which
CS = 0 for all S ∈ RA. Observe that if A maximizes
over the range RA, it implicitly distinguishes between
the case for which R1

A and R2
A intersect, and the case in

which R1
A ∩R2

A = ∅. Therefore this is a reduction from
the communication set-disjointness problem, establish-
ing that Ω(|RA|) communication is required.

3 Computational-Complexity of Mecha-
nism Design

We now describe a simple new technique for de-
riving computational-complexity (not communication-
complexity) lower bounds for mechanism design prob-
lems, which we believe has much broader applicabil-
ity. In particular, we show that, even if agents have
succinctly described valuations, CPPP is inapproximable
in polynomial time by truthful algorithms, unless NP ⊆
BPP. Speci�cally, we prove the following theorem:

Theorem 3.1 There is a class of succinctly-described,
nonnegative and submodular valuation functions C such
that:

• There is a polynomial-time algorithm for the CPPP
with valuations in C that approximates the optimal
social-welfare within a ratio of 1− 1

e .

• Any truthful and polynomial-time algorithm cannot
achieve an approximation ratio better than m

1
2−ε

unless NP ⊆ BPP (for every ε > 0).

We shall start by proving our lower bound for af�ne
maximizers. We shall then show how this result can be
extended to any truthful algorithm.

3.1 Lower Bound For Affine Maximiz-
ers.

We de�ne a class of succinctly described valua-
tion functions called �coverage-penalty valuations�. A
coverage-penalty valuation vF,T is de�ned by a family
F = R1, ...Rm of m subsets of a universe U , and a
subset T ⊆ [m]: ∀S ⊆ [m], vF,T (S) = |⋃j∈S Rj | −

ε
|T | (max{0, |S ∩ T | − |T |

2 }) (for some extremely small
value of ε). Intuitively, for every S ⊆ [m], vF,T assigns
a value that equals the number of elements in U covered
by the union of the sets in F with indices in S, minus
an insigni�cant �penalty� if S has �too many� elements

in common with T . It is easy to verify that this function
is indeed nonnegative9 and submodular (but not nonde-
creasing).

Observe that for any value of k, it is easy to obtain
a 1 − 1

e approximation ratio for CPPP with coverage-
penalty valuations (simply ignore the �penalty terms� in
the de�nitions of the vi's and apply the 1− 1

e greedy ap-
proximation algorithm). We shall now show that despite
this fact, any af�ne-maximizer fails to obtain a reason-
able approximation ratio:

Theorem 3.2 No polynomial-time af�ne maximizer for
CPPP with coverage-penalty valuations achieves an ap-
proximation ratio better than m

1
2−ε unless NP ⊆ BPP

(for every ε > 0 and even for n = 1).

Proof: (Sketch) Fix k =
√

m and n = 1. Let A
be an af�ne maximizer as in the statement of the the-
orem (w.l.o.g. assume that the agent-weights are 1 and
outcome-weights are 0). RA consists of subsets of [m]
of size

√
m that are assigned by A to different inputs.

Exactly as in Lemma 2.16, it can be shown that RA must
contain Ω(emε

) sets. We now recall the Sauer-Shelah
Lemma:

Lemma 3.3 ([30, 33]) For any family Z of subsets of a
universe R, there is a subset Q of R of size Θ( log |Z|

log |R| )
such that for each Q′ ⊆ Q there is a Z ′ ∈ Z such that
Q′ = Z ′ ∩R.

Hence, coming back to the af�ne maximizer, there is
a subset M ′ of [m] of size Θ( mε

log m ) that is �shattered�
by RA. The idea is now to embed a small, but still poly-
nomially large, instance of an NP-complete problem in
M ′. We shall do this for the problem in which we have a
family F ′ of t subsets of a universe U and wish to deter-
mine whether there are t

2 sets in F ′ whose union covers
the entire universe (which is known to be NP-complete).
The embedding is as follows: We construct a coverage-
penalty valuation function v for which each element in
M ′ corresponds to one of the t subsets in F ′, and all
other elements in [m] correspond to empty sets. We set
the �penalty set� T to equal M ′. Now, observe that the
value of the set output by the af�ne maximizer A equals
|U | iff there are t

2 sets in F ′ whose union covers U .
The above suggests a non-uniform reduction from an

NP-hard problem to the problem of calculating the out-
put of the af�ne maximizer in question. The reason the
reduction is non-uniform (and thus it does not establish
NP-completeness) is because we do not know how to
�nd M ′ (see [27, 31, 20] on the complexity of making

9This may not be true if some of the Ri's are the empty set. How-
ever, this is easily handled by simply adding ε to vF,T (S) for every
S.
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Sauer-Shelah Lemma constructive). However, this non-
uniform reduction is suf�cient to show that if A obtains
an approximation ratio better than m

1
2−ε in polynomial

time then NP has polynomial-size circuits, i.e., NP ⊆
P/poly.

By using the probabilistic version of the Sauer-
Shelah Lemma presented by Ajtai [1] we can turn the re-
duction described above into a probabilistic polynomial-
time reduction (thus concluding the proof of the theo-
rem).

Lemma 3.4 ([1]) Let Z be a family of subsets of a uni-
verse R that is regular (i.e., all subsets in Z are of equal
size) and Q ≥ 2|R|

α (for some 0 < α ≤ 1). There
are integers q, l (where |R|, q and l are polynomially
related) such that if we randomly choose q pairwise-
disjoint subsets of R, Q1, ..., Qq, each of size l, then,
w.h.p., for every function f : [q] → {0, 1} there is a sub-
set Z ′ ∈ Z for which |Z ′ ∩Qj | = f(j) for all j ∈ [q].

The probabilistic polynomial-time reduction from
our NP-complete problem is very similar to the non-
uniform reduction shown above. The key idea is �nd-
ing pairwise-disjoint subsets of [m] as in the statement
of Lemma 3.4, and then associating each subset of the
universe in the NP-complete problem with all elements
in one of the pairwise-disjoint subsets.

3.2 Connection to Complexity Theory

This technique has an interesting projection in com-
plexity theory: Call a language L ⊆ {0, 1}∗ exponen-
tially dense if there is some α > 0, and some inte-
ger N , such that for any integer n > N it holds that
|L ∩ {0, 1}n| ≥ 2nα . For a language L ⊆ {0, 1}∗, de-
�ne SATL to be the problem: �Given a CNF, is there a
truth assignment in L that satis�es it?� The proof tech-
nique implies that:

Theorem 3.5 Let L be any exponentially dense lan-
guage. If SATL is in P, then NP ⊆ P/poly.

Observe that we do not know how to relax the com-
putational hardness assumption to NP ⊆ BPP (e.g., via
the probabilistic version of the Sauer-Shelah Lemma).
For the problem CIRCUIT SAT, however, we can prove
this stronger result via a different technique:

Theorem 3.6 Let L be any exponentially dense lan-
guage. If CIRCUIT SATL is in P, then NP ⊆ BPP.

Proof: (Sketch) To solve a given CNF φ on n variables,
start with a large enough N so that L contains at least
2n2 strings of length N . Now hash these N bits (by a

circuit computing a sampled universal hashing function)
into n bits. With very high probability, the 2n2 bitstrings
in L of length N will cover, after hashing, all 2n bit-
strings of length n. Then feed these n bits into a veri�er
circuit for φ. It is not hard to see that, with high proba-
bility, this overall circuit, with N inputs, has a satisfying
truth assignment in L if and only if φ is satis�able.

It would be very interesting to extend this idea (or the
ideas in the proof of Lemma 3.4) to SATL.

3.3 Extension to All Truthful Algo-
rithms

We extend our lower bound to all truthful algorithms
by relying on the following simple observation: All the
submodular functions that are constructed as part of the
proof of the Characterization Lemma (Lemma 2.3 in
Section 2) are, in fact, succinctly described. We can
therefore de�ne a class of succinctly described valua-
tion functions C, that contains the families of functions
constructed in Lemma 2.3 and all coverage-penalty val-
uations.

It is easy to see that an approximation of 1 − 1
e is

achievable for the CPPP when the valuation functions are
in C (this is because coverage-penalty valuations are ar-
bitrarily close to nondecreasing submodular valuations
and all other valuations in C are nondecreasing and sub-
modular). Because of the way we de�ned C one can
show (by carefully applying the proof of Lemma 2.3 to
this case) that any truthful algorithm for the CPPP with
valuations in C is an af�ne-maximizer. We can now use
Theorem 3.2 to obtain our result.

4 Discussion and Open Problems

What are the limitations of our techniques? It would
be very interesting to explore for which mechanism de-
sign problems one can prove characterizations similar to
that shown in Lemma 2.3 (for the CPPP), thus proving
unconditional lower bounds. It would also be very inter-
esting to extend the proof technique of Theorem 3.2 to
other succinctly described settings. We believe that such
computational hardness results can be shown for many
other mechanism design problems, such as combinato-
rial auctions. Finally, a big computational-complexity-
related open question is proving that mechanism design
is computationally intractable under weaker computa-
tional assumptions. We suspect that this is possible, but
the precise way of doing this eludes us at the moment.
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