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Generalized Punctured Convolutional Codes
Bartolomeu F. Uchôa-Filho, Richard Demo Souza, Cecilio Pimentel, and Mao-Chao Lin

Abstract— This letter introduces the class of generalized punc-
tured convolutional codes (GPCCs), which is broader than and
encompasses the class of the standard punctured convolutional
codes (PCCs). A code in this class can be represented by a trellis
module, the GPCC trellis module, whose topology resembles that
of the minimal trellis module. The GPCC trellis module for a
PCC is isomorphic to the minimal trellis module. A list containing
GPCCs with better distance spectrum than the best known PCCs
with same code rate and trellis complexity is presented.

I. INTRODUCTION

ACONVOLUTIONAL code can be represented by a semi-
infinite trellis consisting, after a short transient, of

concatenated copies of a topological structure called trellis
module. A trellis module M for a rate R = k/n (i.e., a (n, k))
convolutional code C consists of n′ ≤ n trellis sections (from
depth 0 to depth n′), 2νt states at depth t, 2bt edges emanating
from each state at depth t, and lt bits labeling each edge from
depth t to depth t+1 (for 0 ≤ t ≤ n′−1). McEliece and Lin [1]
stated that the computational effort required by the Viterbi
algorithm to decode a convolutional code is proportional to
the total number of edge symbols per information bit in the
trellis module representing the code. This is said to be the
trellis complexity of the module M , denoted by TC(M).

There can be many trellis modules describing the same
code. The trellis complexity of the conventional trellis module
for the (n, k) convolutional code C with memory order ν,
denoted by Mconv, is given by TC(Mconv) = (n/k) 2ν+k

symbols per bit. Punctured convolutional codes (PCCs) [1]
form a special class of convolutional codes that can be
described by an alternative, low-complexity trellis module,
the PCC trellis module (MPCC), with trellis complexity
TC(MPCC) = (n/k) 2ν+1 symbols per bit. Some of the best
known PCCs were tabulated in [2].

A theory of minimal trellis for convolutional codes has been
developed in [1], [3]. The minimal trellis module M̃ for the
(n, k) convolutional code C consists of n′ = n trellis sections,
k of which have branch complexity b̃t = 1 and the remaining
(n− k) trellis sections are informationless, i.e., a single edge
leaves each state (̃bt = 0). There are 2ν̃t states at depth t,
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and lt = 1 for all t. Since a low-complexity Viterbi decoder
is desirable, we adopt henceforth the trellis complexity of M̃ ,
TC(M̃), as the trellis complexity of the convolutional code
C.

In this letter, we search for good (in a distance spectrum
sense) (n, k) convolutional codes with fixed TC(M̃). It ap-
pears that a convolutional code search taking this measure
of complexity has only been considered in the literature by
Tang and Lin [4]. The convolutional codes they found, all
of which of rate (n, n − 1), had better weight spectrum or
decoding complexity than the PCCs in [2]. Herein, we aim at
finding convolutional codes better than PCCs for other code
rates as well. To achieve this goal, we introduce a sufficiently
broad class of convolutional codes, the generalized punctured
convolutional codes (GPCCs), which encompasses the class
of PCCs. A code in this class can be represented by a trellis
module — the GPCC trellis module (MGPCC) — that shares
all of the topological characteristics of the minimal trellis,
except possibly the minimality property. It will be shown
that many of the (n, n − 1) codes found in [4] are GPCCs.
Moreover, it is possible to define a template for the scalar
generator matrix Gscalar of the GPCC which yields naturally
to the minimal-span form [1], allowing the predetermination
of the value of TC(M̃) for an ensemble of GPCCs.

II. GPCCS

A (n, k) GPCC is a time-varying convolutional code of
period n defined by the binary generator scalars gt

i , where
t = 0, 1, . . . , n − 1 is a phase index and, for each fixed t,
i = 0, 1, . . . , ν̂t, where ν̂t is the memory order at phase t,
with the following restrictions:

• gt
0 = 0 for all t ∈ J , and gt

0 = 1 for all t ∈ I\J ,
where J is some subset of size n − k of the set I =
{0, 1, . . . , n − 1};

• ν̂t+1 ≤ ν̂t + b̂t, for t = 0, 1, 2, . . . , n − 2, and ν̂0 ≤
ν̂n−1 + b̂n−1, where b̂t = 0 if t ∈ J , and b̂t = 1 if
t ∈ I\J .

Arranged in the “matrix module” (a vertical slice in Gscalar

corresponding to one trellis module [1, eq. (2.4)]), the gener-
ator scalars are seen as (only the non-zero rows are shown):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0
ν̂0
... gp−1

ν̂p−1

g0
1

. . .
... gp

ν̂p
gp+1

ν̂p+1

g0
0 gp−1

1

...
... gn−1

ν̂n−1

gp−1
0 gp

1 gp+1
1

. . .
...

gp
0 = 0 gp+1

0 gn−1
1

gn−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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where we have considered that p ∈ J . The lack of information
(̂bp = 0) at phase p causes a “leap” in (1), and gp+1

0 is placed
to the right of gp

0 (and not following the diagonal, as usual).
The GPCC trellis module (MGPCC ) for a rate (n, k)

GPCC has state complexity profile (obtained by examining the
columns of (1)) ν̂ = {ν̂0, ν̂1, . . . , ν̂n−1}, branch complexity
profile b̂ = {b̂0, b̂1, . . . , b̂n−1}, and a single bit (i.e., lt = 1)
labeling each edge for all t ∈ I . The bit value at depth t is
obtained from (1) in the usual way. The restrictions defined
previously were imposed to avoid unreachable states in the
GPCC trellis module. The trellis complexity of MGPCC is
given by:

TC(MGPCC) =
1
k

n−1∑
t=0

2ν̂t+b̂t (2)

symbols per bit.
We now show that the PCCs form a subclass of the

GPCCs. Consider for simplicity a (n, k) PCC with memory
ν where k > n/2. It is shown in [6] that this PCC can be
obtained by puncturing a rate 1/n time invariant convolutional
code of memory ν or, equivalently, a rate 1/2 periodically
time-varying convolutional code (PTVCC) of period k and
memory ν. Assuming the latter case, then, for the punctured
phases, the generator sub-matrices of the PCC are of the form
Gt

i = [Gt
i(1) x], where x represents a punctured output,

and, for the non-punctured phases, Gt
i = [Gt

i(1) Gt
i(2)]. The

generator scalars of the GPCC are obtained as follows. Let
ut denote the number of non-punctured phases in the PTVCC
occurring prior to phase t. By convention, u0 = 0. Then,
for 0 ≤ t ≤ k − 1, set gt+ut

i = Gt
i(1) and, if the t-th

phase is non-punctured, then also set gt+ut+1
i = Gt

i(2). The
state and branch complexity profiles of MGPCC for this PCC
are given as follows. For 0 ≤ t ≤ k − 1, set ν̂t+ut

= ν,
b̂t+ut

= 1 and, if the t-th phase is non-punctured, then also
set ν̂t+ut+1 = ν + 1, b̂t+ut+1 = 0. From the construction
of the minimal trellis module [1], we can see that the state
complexities of MGPCC and M̃ coincide, i.e., ν̂t = ν̃t for
all t. According to a property of the minimal trellis for block
codes (see, for instance, [5, Theorem 4.26]), which can be
adapted to convolutional codes, the equality above for all t
implies that the two trellis modules are isomorphic. Moreover,
for ν̂ and b̂ as defined above, the summation in (2) becomes
n · 2ν+1. Therefore, for any PCC, MGPCC is isomorphic to
M̃ , and TC(M̃) = TC(MGPCC) = TC(MPCC).

III. CODE SEARCH RESULTS

In order to find good GPCCs, we first calculated the value
of TC(M̃) for the existing PCCs [2]. We then proposed
templates for Gscalar of GPCCs. By placing in this matrix
0’s and 1’s in specific positions, while the others were set
free to assume any binary value, we could define ensembles
of GPCCs with the same TC(M̃) as for the existing PCCs.

As an example, consider the best (5,3) PCC with ν =
4, found by an exhaustive search in [2]. This code has
df = 6 and distance spectrum 18,0,139,0,1210,. . . The state
complexity profile of the GPCC trellis module for this PCC
is ν̂ = (4, 4, 5, 4, 5), and the branch complexity profile
b̂ = (1, 1, 0, 1, 0). Since this code is a PCC, by the property

presented at the end of Section II we have that ν̃ = ν̂ and
b̃ = b̂. So TC(M̃) = 53.33 symbols per bit. To exemplify our
code search, consider the following template for the “matrix
module” of a (5,3) GPCC with state and branch complexity
profiles of the GPCC trellis module ν̂ = (4, 4, 5, 5, 6) and
b̂ = (1, 1, 0, 1, 0): ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
∗ 1 1 1 1
∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 0 1 ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where the nontrivial binary entries are marked by asterisk,
and the positions of the leading (underlined) and trailing
(overlined) 1’s of each row impose state and branch complex-
ity profiles of the minimal trellis module ν̃ = (4, 4, 5, 4, 5)
and b̃ = (1, 1, 0, 1, 0), and thus guarantee the same trellis
complexity (TC(M̃) = 53.33 symbols per bit) for any GPCC
in this ensemble. After defining a non-exhaustive series of
such templates for a fixed rate and TC(M̃), we searched
exhaustively within the corresponding ensembles and looked
for the best GPCCs (note that it is not necessary to build the
minimal trellis during the search procedure, since TC(M̃) is
fixed a priori). We found from template (3) a (5,3) GPCC with
df = 6 and distance spectrum 15,0,136,0,1208,. . . Although
the GPCC trellis module for this code is more complex than
the GPCC trellis module for the PCC, the minimal trellis mod-
ules for the two codes have exactly the same state and branch
complexity profiles (ν̃ = (4, 4, 5, 4, 5) and b̃ = (1, 1, 0, 1, 0)).
Therefore, the two codes have the same trellis complexity, but
the GPCC we found has a better distance spectrum.

As a second example, consider the best (4,3) PCC with
ν = 4, listed in [2]. This code has df = 4 and distance
spectrum 5,42,134,662,3643, . . . Tang and Lin [4] have found
a (4,3) convolutional code with the same df and TC(M̃), but
with distance spectrum 3,44,160,638,3558,. . . To see that this
code is in fact a GPCC, first write its “matrix module”:

Gmod =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 1 0
0 0 1 1
1 0 0 0
0 0 1 1
1 1 0 1
0 1 1 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

We can perform row operations on (4). Let [κ] denote the κ-
th row of a matrix, where κ = 1, 2, . . .. Performing [3κ] ←
[3κ] + [3κ + 2], we turn Gmod in (4) into a GPCC form.
We thus have a GPCC whose GPCC trellis module has state
complexity profile (4,5,6,5) and branch complexity profile
(1,1,0,1), satisfying the topological restrictions. Note that this
code is not a PCC, and has distance spectrum better than that
of the best PCC of the same rate and trellis complexity.
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TABLE I

SOME GOOD GENERALIZED PUNCTURED CONVOLUTIONAL CODES

R ν G(D) TC(M̃) df Spectrum

2/3 3t [1 2 3; 6 1 3] 24.00 4 2,11,34,109,366

2/3 4t [1 3 3; 10 12 7] 48.00 5 4,17,54,192,681

3/4 3b [3 1 1 0; 0 3 1 1; 2 2 3 3] 21.33 4 29,0,532,0,10059

3/4 4t [1 1 2 3; 2 1 1 1; 4 6 4 1] 42.67 4 3,44,160,638,3558

3/5 3n [3 1 0 1 0; 0 3 3 3 2; 2 2 2 1 1] 26.67 4 1,5,11,38,112

3/5 4n [3 3 2 2 3; 2 3 3 1 0; 6 0 2 3 1] 53.33 6 15,0,136,0,1208

4/5 3t [1 1 1 1 0; 2 2 1 1 1; 0 2 2 1 1; 2 2 0 2 3 ] 20.00 3 5,36,200,1065,5893

4/5 4b [3 1 1 1 0; 2 3 0 1 1; 2 2 3 1 0; 0 0 2 3 2] 40.00 4 30,126,815,4822,29046

4/7 3n [1 1 0 1 1 1 1; 2 1 1 1 0 1 0; 0 2 2 3 3 1 0; 2 2 2 0 0 1 1] 28.00 5 4,13,33,81,203

4/7 4n [3 1 0 1 1 0 1; 2 3 3 3 2 0 1; 2 2 2 1 1 1 0; 0 2 0 2 0 3 3] 56.00 6 8,27,46,143,380

5/6 3t [1 1 0 1 0 0; 0 1 1 0 1 0; 2 0 0 1 0 1; 2 2 2 0 1 1; 0 0 0 0 2 3] 19.20 3 15,96,601,3903,25325

5/6 4b [1 0 0 1 1 1; 2 1 1 1 0 0; 0 2 1 1 0 1; 2 2 2 1 1 1; 0 2 0 2 1 1] 38.40 4 111,0,5628,0,293724

5/7 3n [1 1 0 0 1 1 1; 0 1 1 1 1 0 0; 2 0 0 1 1 1 0; 2 2 2 0 1 0 0; 0 0 2 2 0 1 1] 22.40 4 15,55,174,798,3214

5/7 4b [1 1 0 0 1 1 1; 2 1 1 1 0 1 0; 2 2 2 1 0 0 1; 0 2 0 2 1 1 0; 2 0 0 0 2 1 1] 44.80 4 2,27,109,445,1955

t Code found in [4], but with different G(D); b Code listed in [2]; n New code found in this study by a random search.

Some good GPCCs are tabulated in Table I for different
code rates R, and memory order ν of the corresponding
PCC (which has the same TC(M̃) of the listed GPCC). The
polynomial generator matrices G(D) are shown in octal form
with the highest power in D in the most significant bit of
the representation (e.g. 6 ≡ D + D2). Table I shows several
(n−1, n) GPCCs with the same distance spectrum of the best
(n − 1, n) codes listed in [4]. For other code rates, the new
GPCCs shown in Table I have better distance spectrum than
the corresponding PCCs [2] with the same trellis complexity.

IV. CONCLUSIONS

The trellis complexities considered in this paper were
restricted to those of the PCCs in [2]. The codes listed
in Table I only improved the distance multiplicity, however
a whole bunch of more complex convolutional codes with
greater df exist. The study of GPCCs with other code rates
and various trellis complexities is a research topic currently
being investigated by the authors. For example, by placing

in (3) the leading and trailing 1’s in specific positions we
found a (5,3) GPCC with df = 5 and distance spectrum
5,13,38,113,303,. . . , but with TC(M̃) = 37.33 symbols per
bit.
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