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Abstract—In recent years, there has been a significant amount of work done in developing low-complexity scheduling schemes

to achieve high performance in multi-hop wireless networks. A centralized sub-optimal scheduling policy, called Greedy Maximal

Scheduling (GMS) is a good candidate because its empirically observed performance is close to optimal in a variety of network settings.

However, its distributed realization requires high complexity, which becomes a major obstacle for practical implementation. In

this paper, we develop simple distributed greedy algorithms for scheduling in multi-hop wireless networks. We reduce the complexity

by relaxing the global ordering requirement of GMS, up to near-zero. Simulation results show that the new algorithms approximate the

performance of GMS, and outperform the state-of-the-art distributed scheduling policies.

Index Terms—Wireless scheduling, distributed system, greedy algorithm.
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1 INTRODUCTION

In the past few years, there have been significant
advances made in our understanding of the wireless
scheduling problem [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. Scheduling is a process that determines which
links transmit, at what times, and at what power levels.
Throughput optimal scheduling is in general a non-
linear, non-convex optimization problem mainly due to
interference constraints between links, and thus requires
high computational complexity. In addition, the nature
of multi-hop wireless networks demands a distributed
solution based on local information, which often causes
additional complexity.

The scheduling problem is especially important be-
cause it has been shown that the scheduling compo-
nent results in the highest complexity among various
network functionalities (e.g., see recent studies on cross-
layer optimization [3], [13], [14]). Although the opti-
mal scheduling solution has been known for a long
time [2], it requires a high order polynomial complexity
even under the simplest 1-hop interference model1 [15],
and is in general NP-Hard [16]. Hence, it is difficult
to implement the optimal solution. To this end, more
practical scheduling solutions, i.e., simpler sub-optimal
solutions, have been developed [4], [5], [6], [7], [8], [9],
[10], [11], [12] in order to reduce the complexity and
at the same time, with the aim of approximating the
optimal performance.

One of the most well-known sub-optimal scheduling
policy is the Greedy Maximal Scheduling (GMS) policy or
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1. Under the 1-hop interference model, any two links sharing a node

cannot transmit simultaneously. It is also known as the node-exclusive
interference model or the primary interference model.

Longest Queue First (LQF) policy. GMS schedules links
in decreasing order of the queue length conforming to
interference constraints. It has been known to achieve
an efficiency ratio of 1

2 under the 1-hop interference
model [17], where the efficiency ratio is defined as the
largest fraction of the optimal capacity region that the
scheduling policy can support. GMS is an important
scheduling policy because it has a good provable perfor-
mance bound superior to many distributed scheduling
policies and it empirically achieves the same perfor-
mance as throughput-optimal scheduling in a variety of
network settings [12]. For practical implementation in
multi-hop wireless networks, GMS has been realized as
a distributed algorithm [4], [5], [18]. However, these al-
gorithms are quite complex to ensure the precise queue-
length ordering of links.
Towards the goal of developing simple and efficient

scheduling algorithms, many approaches have been
taken in the literature. We classify them into four cat-
egories: (1) Maximal Scheduling policies [19], [20], [21]:
these select a schedule that is maximal in the sense
that it is not possible to add a link to the schedule
without violating the interference constraints. GMS is an
example of such policy. (2) Pick and Compare Approach
[6], [7], [8], [9]: a scheduling policy in this class picks
a schedule at random, and decides on the current or
the previous schedule by comparing their performance.
By choosing a better (or no worse schedule), it even-
tually results in optimal scheduling. (3) Carrier-Sensing-
Multiple-Access/Collision-Avoidance (CSMA/CA) based Ap-
proach [22], [23], [24] finds the optimal scheduling with-
out directly comparing the schedules, under the as-
sumption that wireless nodes can detect transmissions
of their interfering neighbors by using carrier sensing
technology.Q-CSMA in [24] falls in this category. Under
Q-CSMA, a link schedules itself in a probabilistic
manner unless its transmission does not interfere
with any on-going transmissions. The convergence of
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stationary distribution of link activities to an optimal
solution has been shown. While policies in class (2) and
class (3) achieve optimal throughput performance, they
suffer from high complexity (i.e., high-order message
exchanges), long convergence time, low delay perfor-
mance, and/or requirement for carrier sensing function-
ality. (4) Scheduling policies in the class of Constant-time
Random Access Approach provide an explicit tradeoff be-
tween complexity and performance [10], [11], [12]. They
need local message exchanges to resolve contention, and
the performance bound is expressed in terms of the
complexity (i.e., overhead for message exchanges); the
higher complexity they have, the better performance
they guarantee. While their empirical performance ap-
proaches the optimal, it only happens at the cost of
high complexity. Queue-length based random access
scheduling (QL-RAS) proposed in [12] belongs to this
class. QL-RAS schedules a link with a probability that
is proportional to the ratio of its queue length to the
sum of queue lengths over its neighboring links.

In this paper, we propose local greedy algorithms that
achieve good throughput performance with lower com-
plexity and delay. The proposed algorithms are not only
amenable to distributed implementations with local mes-
sage exchanges but also approximate the performance of
GMS with a much lower complexity. We successfully re-
duce the complexity based on the observation that links
with the largest queue length within their interference
range are crucial in characterizing the capacity region of
GMS.

The rest of the paper is organized as follows. The
system model is described in Section 2. In Section 3,
the local greedy scheduling schemes are described and
their performance analyzed. The idea is extended in
Section 4 to the development of a simpler scheme with
near-zero complexity. The complexity of the proposed
local greedy algorithms is analyzed in Section 5. Per-
formance evaluation comparing with GMS and other
random access scheduling policies is shown in Section
6. Finally, we conclude our paper in Section 7.

2 NETWORK MODEL AND GREEDY MAXIMAL

SCHEDULING

We consider a network graph G(V,E, I) having a set V
of nodes, a set E of links, and an interference constraint
matrix I . We assume that the network is a time-slotted
system with global synchronization. Each time slot is
divided into a contention period and a transmission
period. A schedule is determined during the contention
period, which consists of a number of mini-slots, and
served during the transmission period. We model the
interference constraints between the links by the K-hop
interference model, under which any two links within
a K-hop distance cannot be scheduled in the same
time slot. Note that the different interference models
approximate different network systems; e.g., the 1-hop

interference model is appropriate for Bluetooth or FH-
CDMA networks [25], [26] and the 2-hop interference
model is often used for IEEE 802.11 Distributed Coor-
dination Function (DCF) wireless networks [19], [20].
Let Nl denote the set of links interfering with link l
(including itself). We say that link j is a (K-hop) neighbor
of link l if j ∈ Nl and j 6= l.
Let λl denote the offered load at link l, and let ~λ :=

[λ1, λ2, . . . , λ|E|]. The capacity region of a scheduling
policy can be defined as the set of offered loads under
which the scheduling policy can stabilize the network2.
Let ΩP denote the capacity region of scheduling policy
P . We define the optimal capacity region Ω∗ as the union
of the capacity regions of all feasible policies, i.e.,

Ω∗ := ∪P ΩP .

The throughput-optimal scheduling policy can be de-
fined as a scheduling policy achieving Ω∗ or as a com-
bination of policies P resulting in the throughput region
Ω∗.
Assume that each link l has a fixed link capacity rl. It

has been known that the throughput-optimal schedul-
ing policy can be realized by maximizing the queue
weighted rate sum at each time slot t [2], i.e.,

~S∗(t)← argmax
~S∈F

∑

l∈E

Ql(t) · rl1{l∈~S}, (1)

where ~S∗(t) is the vector of rate assignment of the
throughput-optimal scheduling policy, Ql(t) is the queue
length of link l, ~S is a feasible schedule, which is defined
as the set of links that can make simultaneous trans-
missions without violating the interference constraints,
F is the set of all feasible schedules, and 1{l∈~S} is an

indicator function that equals to 1 if l ∈ ~S and 0 if l /∈ ~S.
As mentioned earlier, it has been shown that the opti-
mal solution has enormous computational complexity;
O(|V |3) under the 1-hop interference model [15], where
|V | is the number of nodes in the network, and NP-Hard
under the K-hop interference model for K ≥ 2 [16].
A simpler sub-optimal scheduling policy called GMS

was originally proposed in [27]. GMS makes a schedul-
ing decision by choosing the link with the longest queue
first. Specifically, at time slot t, it determines its schedule
as follows. Starting with an empty set ~S(t), it first
includes in ~S(t) the link with the largest queue length,
and removes from the network graph this link and
all its K-hop neighbors. Then from the new network
graph, it finds the link with the largest queue length
and adds it to ~S(t). Again it removes the added link
and all its K-hop neighbors from the network graph.
The procedure repeats until there is no remaining link.
The resulting schedule ~S(t) is the final schedule. It is
well-known that under the 1-hop interference model,
GMS achieves at least 1

2 of the optimal performance [17],
and under the K-hop interference model, it guarantees

2. Under a given offered load, a scheduling policy stabilizes the
network if it keeps all average queue lengths in the network finite.
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only a much smaller fraction, i.e., 1
(∆l)K−1 , where ∆l is

the maximum link-degree. Recent studies have shown
that the performance limits of GMS depend on some
topological properties [28], [29], [30], [31] as well as
the underlying interference model. For example, under
the K-hop interference model, GMS achieves the full
capacity region in tree network topologies [30] and at
least 1

6 in geometric unit-disk network graphs [31].
While GMS exhibits good provable performance and

achieves empirical performance indistinguishable from
the optimal throughput in a variety of settings [12], it
still requires centralized information to achieve global
link ordering. However, practical demands in multi-hop
wireless networks require distributed implementation.
In this direction, some distributed versions of GMS
have been proposed [4], [5], [18]. The state-of-the-art
distributed GMS [5] obtains its schedule by regulating
each node to do a series of operations based on local
information. Specifically, it has the following procedure.
Each node i requests a matching to node j, where j
is selected such that link (i, j) has the largest weight
among eligible (i.e., not matched yet) neighbors of node
i. It waits for a response from node j; if node j accepts
the request, link (i, j) gets matched and both nodes
i, j broadcast the new matching information to their
neighbors and refuse other requests; if node j refuses
the request, which means that node j gets matched with
some other node and no longer eligible, node i finds
another neighbor k, where link (i, k) has the largest
weight among remaining eligible neighbors, and sends
new matching request to node k. This procedure repeats
until node i gets matched or there is no eligible neighbor.
The resulting set of matched links is the schedule of
GMS. Note that this decentralization incurs additional
complexity because a link cannot make a scheduling
decision until all its neighboring links with a larger
weight make a decision. Although the process can be
accelerated using parallel executions, it still requires
O(|V |) complexity in the worst case [18].
In the following section we propose a distributed

scheduling policy that approximates the performance
of GMS and has a significantly lower computational
complexity than distributed GMS. The main idea is to
schedule links with the largest queue lengths among
their local neighbors.

3 LOCAL GREEDY SCHEDULING

We start with an algorithmic description with an exam-
ple, and show how it approximates the performance of
GMS. We also extend the basic algorithm for improved
performance.

3.1 Basic algorithm

We consider a network graph G(V,E, I) with a set V of
nodes, a set E of links, and an interference constraint
matrix I . Let ~S denote a feasible schedule and let F
denote the set of all feasible schedules on G(V,E, I).

Let D denote a subset of F , i.e., D = {~S1, ~S2, . . . , ~S|D|},
satisfying the following two constraints:

• ~Si ∩ ~Sj = ∅ for all i 6= j,

• ∪|D|
i=1

~Si = E.
(2)

Each link in E belongs to one and only one schedule in
D, and any two interfering links cannot belong to the
same schedule. Let i(l) denote the index of the schedule
in D that contains link l, i.e., l ∈ ~Si(l).
We assume that the set D is predetermined and that

each link knows the index of the schedule that it belongs
to. A distributed algorithm that assigns the indexes
satisfying (2) will be provided in Section 5.2. We
also assume that each link has backlog information of
its interfering neighbors. Later we will introduce an
efficient algorithm to find D in Section 5.2, and also relax
the latter assumption in Section 5.3 when we discuss
complexity issues.
We first design a scheduling policy, called Local Greedy

Scheduling (LGS), which schedules only links with the
locally longest queue. Other links that have a smaller
queue length than their neighbors are simply not sched-
uled under LGS. Clearly, this restriction will reduce
complexity at the cost of some performance. However,
we show later that the cost is not significant and the
new policy provides a good approximation to the per-
formance of GMS.
Note that the worst-case complexity of LGS still re-

mains high, which occurs when all the links have the
same queue length. In order to determine which link to
be scheduled among links with the same queue length,
we make use of the predetermined set of feasible sched-
ules D. Specifically, if two interfering links l1 and l2 have
the same largest queue length, the link with the smaller
index will be scheduled, i.e., without loss of generality,
if i(l1) < i(l2), link l1 is allowed to transmit. The
detailed algorithm is provided in Algorithm 1, where
f(x) on line 5 denotes some function such that f(x)→ 0
slowly as x → ∞. The function is for the purpose of
analysis only and will be replaced by 0 in practical
implementation. In this section, we also choose it to be
0 to simplify our description. In a network-wide point
of view, LGS has a two-tier decision procedure:

1) At each time slot, links with the locally longest
queue have the right to transmit.

2) If more than two interfering links have the same
largest queue length, they are added to the sched-
ule in an increasing order of index unless they
interfere with some links that were added earlier.

To make the decision procedure clear, we provide a
scheduling example for LGS. We consider the network
graph shown in Fig. 1(a) under the 1-hop interference
model. We assume that all links have identical link
capacity. The index of each link is pre-assigned and
presented in parentheses. Note that the index assignment
satisfies the interference constraints, i.e., two links shar-
ing a node have a different index.
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(a) Network topology (b) Links with longest queue at a
time slot

(c) Resultant schedule {l1, l7}

Fig. 1. An example schedule of LGS under the 1-hop interference model. Fig. (a) shows the network topology where

all links have the same link capacity. The index of each link is pre-assigned and presented in the parenthesis. Since
the index assignment satisfies the interference constraints, any two links sharing a node have a different index. Fig. (b)

illustrates the queue length of links at a time slot t. The set of links with the longest queue, i.e., L(t) = {l1, l3, l5, l6, l7},
are marked with solid lines. Fig. (c) presents the final schedule ~S(t) = {l1, l7}. It is deterministically obtained by

choosing first the link of the smallest index among links in L(t).

Algorithm 1 Local Greedy Scheduling (LGS).

At each time slot, each link l does

1: sched← 0
2: if Ql(t) > 0 then
3: eligible← 0
4: end if

5: if Ql

rl
≥

(

maxk∈Nl

Qk

rk

)1−f(maxk∈Nl
Qk)

then

6: eligible← 1
7: end if
8: for each contention mini-slot m (1 ≤ m ≤ |D|), do
9: if eligible = 1 and i(l) = m then
10: sched← 1
11: Broadcast a control message to its K-hop neigh-

bors
12: eligible← (−1)
13: else
14: if Receive a control message then
15: eligible← (−1)
16: end if
17: end if
18: end for
19: for transmission period do
20: if sched = 1 then
21: Transmit data packets
22: end if
23: end for

Suppose that at a time slot t, each link has queue
length as shown in Fig. 1(b). Let L(t) denote the set
of links with the largest queue length, i.e., L(t) =
{l1, l3, l5, l6, l7}, are marked as solid lines in Fig. 1(b).
Since links with the locally longest queue are eligible
(lines 5-7 in Algorithm 1 above), all links in L(t) are
eligible and participate in the contention. All other links
{l2, l4} remain inactive. Each eligible link is given a

chance to attempt at a mini-slot following the index
order, i.e., link l1 attempts in the 1-st mini-slot (lines 8-9).
Since the index assignment satisfies the interference
constraints (from D ⊂ F ), the links attempting trans-
missions in the same mini-slot do not interfere with each
other, and hence, there is no collision. Once link l1 makes
an attempt, it is included in the schedule (line 10) and
broadcasts a control message (line 11). Links l2, l3 that
receive the message disable themselves, and they are
no longer eligible (lines 14-16). The procedure repeats
with the reduced set of eligible links. At the 2-nd mini-
slot, link l7 attempts and it is added to the schedule.
The broadcast message from link l7 makes links l5, l6
ineligible. At the 3-rd mini-slot, no one can attempt and
the scheduling ends. The resulting schedule is {l1, l7} as
shown in Fig. 1(c). Scheduled links transmit data packets
in the transmission period (lines 19-23).
The key idea is to schedule links with the locally

longest queue and to resolve the contention between
them without collision using a predetermined link order-
ing. Achieving the collision-free resolution is important
since it ensures that the resultant schedule is maximal on
the set of links with the locally longest queue. We show in
the next section that if an appropriate function f(·) can
be chosen, this property actually allows LGS to achieve a
capacity region which is equivalent to GMS. Other links
with a smaller queue length than their neighbors do
not play a significant role in characterizing the capacity
region.

3.2 Throughput performance

We take an analytical view of LGS in terms of achievable
throughput performance as compared to GMS. We char-
acterize throughput performance of a scheduling policy
by its efficiency ratio, and show that the efficiency ratio
of LGS is no smaller than that of GMS under a certain



5

assumption. To this end, we make use of a recently
developed topological characterization of the network
capacity called local-pooling factor [31].
We begin with the following definitions:
Definition 1: A scheduling policy P is said to achieve

an efficiency ratio of γ∗
P if it can support γ∗

P
~λ for all ~λ ∈ Ω∗,

i.e.,
γ∗
P := sup{γ | γ~λ ∈ ΩP for all ~λ ∈ Ω∗},

where ΩP is the capacity region of the policy and Ω∗ is
the optimal capacity region.
Let ML denote the set of all maximal schedules on
a subset L of links, where a maximal schedule is a
feasible schedule such that no link can be added to the
schedule without violating the interference constraints.
Let Co(ML) denote the set of convex combinations of
maximal schedules, i.e.,

Co(ML) := { ~φ | ~φ =
∑

i wi ~mi,

where wi ≥ 0,
∑

iwi = 1, and ~mi ∈ML} .
Let ~x � ~y denote that ~x is component-wise greater than
or equal to ~y. It is known that for each ~λ ∈ Ω∗, there
exist a subset L and a vector ~µ such that ~µ ∈ Co(ML)
and ~µ � ~λ.
Definition 2: A set of links L satisfies σ-local pooling, if

σ~µ � ~ν for all ~µ, ~ν ∈ Co(ML). In other words, for each
~µ, ~ν ∈ Co(ML), there must exist some k ∈ L such that
σµk < νk.
Definition 3: The local-pooling factor of a graph

G(V,E, I) is the supremum of all σ such that every
subset L ⊂ E satisfies σ-local pooling. In other words,

σ∗ := sup{σ| σ~µ � ~ν for all L and all ~µ, ~ν ∈ Co(ML)}
= inf{σ| σ~µ � ~ν for some L and ~µ, ~ν ∈ Co(ML)}.

It has been shown that this topological notion character-
izes the performance limits of GMS as follows.
Proposition 1 ( [31], [32]): Given a network graph

G(V,E, I), the efficiency ratio γ∗
GMS of GMS is equivalent

to the local-pooling factor σ∗ of the graph, i.e.,
γ∗
GMS = σ∗.
Let ql(t) denote the fluid limit of Ql(t), which can be

defined as

ql(t) = lim
n→∞

Ql(nt)

n
.

The fluid limit exists and is differentiable almost every-
where under any scheduling policy if the arrival process
satisfies the strong law of large number [33]. We further
define the following subsets of links: let L denote the
set of links with the locally longest queue in fluid limits,
and let G denote the set of links with the globally longest
queue, respectively, i.e.,

L :=
{

l | l = argmaxk∈Nl

qk
rk

}

,

G :=
{

l | l = argmaxk∈E
qk
rk

}

.

Note that G ⊆ L. The following Lemma is a by-product
of Proposition 1, and of importance to characterize the

throughput performance of LGS.
Lemma 1: Given a network graph G(V,E, I) that has

the local-pooling factor σ∗, policy P has an efficiency
ratio γ∗

P no smaller than σ∗ if its schedule is maximal on
the set of links with the globally longest queue, i.e., on
G.
Note that even if a schedule is maximal on G, it does
not mean that the schedule is maximal on E, and thus it
is different from the schedule of GMS. The proof of the
lemma can be obtained by following the line of analysis
for Proposition 1. We refer interested readers to [32]. The
result of Lemma 1 leads to the following proposition.
Proposition 2: If f(·) is chosen appropriately in Algo-

rithm 1 such that all the links in L are either scheduled
or interfered by some other links in L, then LGS achieves
an efficiency ratio γ∗

LGS that is no smaller than γ∗
GMS.

Proof: We assume a network graph G(V,E, I) that
has the local-pooling factor σ∗. Suppose that the function
f(·) is chosen such that n−f(n) → 1 slowly as n→∞.
For a link l /∈ L, if maxk∈Nl

qk(t) > 0, then
there exist a small ǫ > 0 and a large n0 such

that Ql(nt)
rl

≤ maxk∈Nl

Qk(nt)
rk

(1 − ǫ) for all n >

n0, because ql(t)
rl

< maxk∈Nl

qk(t)
rk

from the definition
of L. Note that from maxk∈Nl

qk(t) > 0, we have
maxk∈Nl

Qk(nt) = Θ(n). Then we can obtain that Ql

rl
<

(maxk∈Nl

Qk

rk
)1−f(maxk∈Nl

Qk) from the property of f(·),
which results in that links l /∈ L become ineligible from
line 5 in Algorithm 1.

Similarly, if l ∈ L and ql(t) > 0, from ql(t)
rl

=

maxk∈Nl

qk(t)
rk

, there exists some function g(n) ↑ 1 such

that Ql(nt)
rl

= maxk∈Nl

Qk(nt)
rk

· g(n). Then we can ob-

tain that g(n) ≥ (maxk∈Nl

Qk(nt)
rk

)−f(maxk∈Nl
Qk(nt)) for

large enough n from the slow convergence of n−f(n).
Hence, there exists a large constant n1 such that Ql

rl
≥

(maxk∈Nl

Qk

rk
)1−f(maxk∈Nl

Qk) for all n ≥ n1, which results
in that links l ∈ L become eligible.
Therefore, after an initial period, Algorithm 1 will

schedule only links in L, and at each time slot, it ensures
for each eligible link either to be scheduled or to be
interfered by some scheduled links. Then, the resulting
schedule is maximal on L, i.e., there is no link on L
that can be added to the schedule without violating the
interference constraints.
Note that G ⊆ L and that no link in G interferes

with links in L\G. The latter can be easily proved by
contradiction using the definitions of L and G. Then, it
is clear that for every maximal schedule ~S ∈ ML, the
projection of the schedule to G is maximal on G, i.e.,
[~S]G ∈ MG , where [·]G denotes the projection operation
on to G. Hence, Lemma 1 holds for LGS. Combining it
with Proposition 1, we obtain

γ∗
LGS ≥ σ∗ = γ∗

GMS. (3)

Remark: The result of Proposition 2 depends on the
finding of an appropriate function f(·). Unfortunately,
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in practice, it is hard to find such a function, since it
should approach 0 more slowly than the rate at which
the queue length of links in L converge to their fluid
limits. Hence, if we can obtain a lower bound on the
rates at which the fluid limits converge, then LGS can
achieve the performance bound (3). Similarly, the proof
shown in [1] is incomplete since it implicitly assumes
that such a function can be obtained. In our evaluation
in Section 6, we set the function to be zero, with which
LGS cannot guarantee the performance of Proposition 2.
However, empirical results shown in Section 6 suggest
that LGS is a good approximation of GMS.
Note that LGS intends to decrease the locally largest

queue length and increases other queue lengths smaller
than their local maximum, which results in the situation
where all queues eventually remain near the global
maximum of queue lengths. Hence, after some initial
time, LGS will serve links with the same set of maximal
schedules as GMS, which explains the reason why the
performance of LGS is close to that of GMS.

3.3 Enhancement

Since LGS schedules only links with the locally longest
queue, it is possible to enhance its performance by
scheduling additional links that remain inactive as long
as they can transmit without violating the interference
constraints. For example, let us recall the scheduling
example shown in Fig. 1. At the final schedule in
Fig. 1(c), link l4 can be scheduled without violating the
interference constraints, but it remains inactive because
its queue length is smaller than its neighbors. This can be
improved by scheduling extra links with a lower priority.
We embed the detailed algorithm shown in Algorithm 2
after the contention period and before the transmission
period of Algorithm 1.

Algorithm 2 Addition for Enhancement of Local Greedy
Scheduling (LGS-E).

Embed the following between lines 18 and 19 of
Algorithm 1.

1: for each contention mini-slot m (|D|+1 ≤ m ≤ 2|D|),
do

2: if eligible = 0 and i(l) = m− |D| then
3: sched← 1
4: Broadcast a control message to its K-hop neigh-

bors
5: eligible← (−1)
6: else
7: if Receive a control message from its neighbor

then
8: eligible← (−1)
9: end if
10: end if
11: end for

Algorithm 2 is almost the same as LGS except that it
considers all links as eligible. It adds links to the sched-

ule in increasing order of index unless they interfere with
some links added earlier to the schedule. This enhanced
version of LGS, or simply LGS-E, first schedules links
with the locally longest queue and then schedules other
eligible links. Hence, by given a priority to links in L
with an appropriately chosen f(·), its resulting schedule
is still maximal on G (and clearly it is also maximal on E).
This implies that Lemma 1 and Proposition 2 also hold,
and hence, LGS-E will approximate the performance of
GMS as LGS.

4 LOCAL GREEDY APPROXIMATION WITH

TWO CONTENTION MINI-SLOTS

Although LGS and LGS-E approximate the performance
of GMS, their time complexity depends on the underly-
ing network topology and the interference model, since
the size of D is related to the topological structure. (See
Section 5.) We propose another local greedy algorithm,
whose complexity does not depend on the network
graph, and is close to zero. The solution will be attractive
when the network graph has rich connectivity or when
the complexity overhead costs a significant amount of
the network resources.
Our algorithm is motivated by a recently developed

scheduling policy called Q-CSMA. It has been shown
in [24] that, if each link can detect transmissions of inter-
fering neighbors, the distributed CSMA/CA scheduling
algorithm (Q-CSMA) can achieve the optimal capacity
region in a time-slotted network system. We modify our
local greedy algorithm capturing important features of
Q-CSMA, but without the carrier sensing functionality.
The resultant algorithm requires only a couple of con-
tention mini-slots.
We begin by describing the basic operations of Q-

CSMA. At each time slot t, it first randomly chooses a
feasible schedule m(t), which is denoted by a decision
schedule, using a randomized matching [20], [24]. Let
M0 denote the set of all decision schedules. It should
satisfy that

∪~m∈M0
= E,

Prob{m(t) = ~m} > 0,
∑

~m∈M0

Prob{m(t) = ~m} = 1.
(4)

Let N◦
l := Nl\{l}. Given m(t), Q-CSMA decides its

schedule S(t) using m(t) and S(t− 1) in a probabilistic
manner:

1) For each link l /∈ m(t), link l is included in S(t), if
and only if l ∈ S(t− 1).

2) For each link l ∈ m(t), if N◦
l ∩ S(t − 1) 6= ∅, link l

is NOT included in S(t).
3) For each link l ∈ m(t), if N◦

l ∩ S(t − 1) = ∅, link l
is included in S(t) with probability pl, and l /∈ S(t)
with probability 1− pl.

Link l needs the carrier sensing functionality for the
scheduling information in its neighborhood at the pre-
vious time slot, i.e., for N◦

l ∩ S(t − 1). Repeating the
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procedure at each time slot, it has been shown that a
stationary distribution can be obtained in a product form
for all feasible schedules. Throughput optimality can be
achieved, with the time-scale separation assumption, if

pl = exp(wl(t))
exp(wl(t))+1 where wl(t) is a non-decreasing and

continuous function of Ql(t), e.g., wl(t) = log logQl(t).
We refer the interested readers to [22], [24] for details.

Algorithm 3 Local Greedy Scheduling with Two con-
tention mini-slots (LGS-Two)

At each time slot, each link l does

1: pre sched← sched
2: sched← 0
3: if Ql(t) > 0 and i(l) = t mod |D| + 1 (i.e., if link

l ∈ m(t)) then
4: if Ql

rl
≥ Qk

rk
for all k ∈ Nl ∩ S(t− 1) then

5: sched← 1
6: Broadcast a control message to its K-hop neigh-

bors
7: end if
8: end if
9: if Ql(t) > 0 and i(l) 6= t mod |D| + 1 (i.e., if link

l /∈ m(t)) then
10: ifNot receive a control message and pre sched = 1

then
11: sched← 1
12: Broadcast a control message to its K-hop neigh-

bors
13: end if
14: end if
15: for transmission period do
16: if sched = 1 then
17: Transmit data packets
18: end if
19: end for

We now modify our local greedy algorithm as shown
in Algorithm 3. First, instead of choosing the decision
schedule m(t) from the set of all feasible schedules, we
use the pre-determined set D, i.e., M0 = D, and select
m(t) = ~Si ∈ D in a round robin manner with i = t
mod |D|+1 (lines 3 and 9). Then from the construction of
D satisfying (2), it is clear that all the conditions of (4) are
satisfied. This modification is intended to improve the
delay performance by giving each link a chance within
a short time period, and to reduce the complexity by
removing the contention period.
Second, we change the probabilistic transmission at-

tempt of Q-CSMA to a deterministic one as follows. We
consider links as eligible for transmissions at time slot t,
if they belong to either m(t) or S(t− 1). To begin with,
each link l ∈ m(t) includes itself in S(t) if its queue is the
longest among those neighbors eligible for transmissions

(i.e., if Ql(t)
rl
≥ Qk(t)

rk
for all k ∈ Nl∩S(t−1)). These sched-

uled links broadcast a control message to inform their
neighbors of the scheduling decision (line 6). Then each
link l ∈ S(t − 1)\m(t) makes its scheduling decision by

including itself in S(t) if none of its neighbors broadcasts
a control message (lines 10-11). The newly scheduled
links also broadcast a control message to its neighbors
(line 12). The control messages are intended for the
neighboring links to update the scheduling information
N◦

l ∩ S(t), which will be used for scheduling decision
at the next time slot. It can easily be checked that the
resultant schedule is feasible since both m(t) and S(t−1)
are a feasible schedule. Note that the removal of the
probabilistic attempts will violate the assumption for the
stationary distribution, and hence throughput optimality
can no longer be proved using the techniques in [24].
However, our greedy approximation still captures the
key feature of Q-CSMA that a link with a longer queue
transmits with a higher probability.
Although we explained our algorithm using the

framework of Q-CSMA, it can be also considered as
a time expanded version of LGS. Instead of applying
all schedules of D in order, we apply one of them at
each time slot. We denote the new scheduling policy by
Local Greedy Scheduling with Two contention mini-slots
(LGS-Two) since it uses only two contention mini-slots.
Interestingly, even the two contention mini-slots can be
removed, if links have the carrier sensing functionality.
We will further discuss this in the next section.
The precise characterization of the performance of

local greedy approximations remains an open problem.
In this paper, we analyze their complexity, discuss im-
portant issues relevant for practical implementation, and
evaluate its performance through simulations comparing
with other scheduling policies such as centralized GMS
and Q-CSMA.

5 COMPLEXITY ANALYSIS

5.1 Contention overhead

By contention overhead, we mean the time complexity
required for a scheduling policy to determine its sched-
ule in terms of the number of contention mini-slots. We
first analyze the worst-case complexity of LGS under the
1-hop interference model, and extend it to the K-hop
interference model. The results can be directly applied
to LGS-E. We also discuss the complexity of LGS-Two.
The scheduling of LGS illustrated in Algorithm 1

requires at least |D| mini-slots to determine which link
would be included in the schedule. Hence, the complex-
ity of LGS depends on the cardinality of D, which is
the number of feasible schedules that enclose all links.
Under the 1-hop interference model, the bound on |D|
can be found from the following result on the link
coloring problem [34].
Theorem 1 (Vizing): The links of a network can be col-

ored so that no two links sharing a node have the same
color using at most ∆ + 1, where ∆ is the maximum
node-degree of the network graph.
Theorem 1 immediately implies that |D| ≤ ∆+1 because
each set of links with the same color can be used as a
feasible schedule in D satisfying (2). Assuming nodes are
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randomly located in a wireless network, the complexity
of LGS would be O(log |V |) under the 1-hop interference
model3.
We can extend the analysis to the K-hop interference

model. Note that under the 1-hop interference model, the
link coloring problem in G(V,E, I) is equivalent to the
vertex4 coloring problem in its conflict (or interference)
graph G′(V ′, E′, I ′), where the conflict graph G′ can
be obtained from the original graph G by changing
links into vertices and connecting two vertices if they
are interfering with each other. A theorem similar to
Theorem 1 holds for the vertex coloring problem, i.e., all
vertices can be colored with ∆v(G

′)+1 colors [34], where
∆v(G

′) is the vertex-degree in the conflict graph G′.
From the construction of the conflict graph, it is bounded
by ∆v(G

′) ≤ 2(∆ − 1) under the 1-hop interference
model.
Let us consider the same set of nodes V and links E

under the K-hop interference model. Let GK(V,E, IK)
denote the graph with the K-hop interference con-
straints. We can obtain its corresponding conflict graph
G′′

K(V ′′, E′′, I ′′K) from the conflict graph under 1-hop in-
terference model G′(V ′, E′, I ′) by adding links between
vertices within K-hop distance. The resulting graph has
the maximum vertex-degree ∆v(G

′′
K) ≤ 2((∆ − 1) +

(∆ − 1)2 + · · · + (∆ − 1)K) < 4(∆ − 1)K for ∆ ≥ 3.
Now the solution of the vertex coloring problem in
G′′

K would provide the complexity bound of LGS under
the K-hop interference model. Using a greedy coloring
algorithm presented in Section 5.2, we can find a set
D with |D| ≤ 4(∆ − 1)K . Therefore, in a network with
randomly located nodes, LGS hasO(logK |V |) scheduling
complexity5. Since LGS-E requires at most twice many
mini-slots as LGS, the order result for the complexity
does not change.
Before we discuss the complexity of LGS-Two, we

briefly address the complexity of Q-CSMA. While Q-
CSMA can get information of the previous schedule
using the carrier sensing functionality, it still needs to
resolve contention for the decision schedule m(t). Hence,
the complexity of Q-CSMA can be estimated by the
number of mini-slots used for calculation of the decision
schedule m(t). A randomized matching is used: at each
mini-slot, an eligible link can attempt to include itself
in m(t) by broadcasting a control message. If link l at-
tempts at a mini-slot that is chosen uniformly at random,

3. It has been shown in [35] that considering a network on a unit
area, the minimum transmission range of a node for connectivity

is O(
√

log |V |
|V |

). Then the number of nodes within the transmis-

sion area is O(log |V |) since the node density is O(|V |). Clearly,
|D| = O(log |V |) when the nodes are randomly located. In the
worst case topology, a node can have O(|V |) neighbors resulting
in |D| = O(|V |). However, for typical network topologies |D| is
much less than O(|V |)
4. We use the term ‘vertex’ to indicate node in the conflict graph to

easily distinguish it from node in the original graph.
5. Note that the time complexity is measured in the number of

contention mini-slots. Under the K-hop interference model, each mini-
slot requires additional K broadcasts unless nodes have the carrier-
sensing functionality.

its neighbors that receive the message set themselves
ineligible and they do not attempt during the rest of
the contention period. Then link l includes itself in m(t)
if none of its neighbors attempts at the same mini-slot.
Otherwise, there is a collision, and link l will receive a
control message and sets itself ineligible. The procedure
repeats at each mini-slot during the contention period.
When the contention period ends, the chosen links will
serve as the decision schedule m(t), and the rest of
Q-CSMA algorithm in the previous section proceeds.
Note that the performance of Q-CSMA is related to the
number of mini-slots. In general, the more mini-slots
it has, the more links will be included in the decision
schedule, which improves delay performance. Since the
randomized maximal matching needs O(logK |V |) com-
plexity [21],Q-CSMA will also need the same complexity
to achieve good delay performance.
LGS-Two, as its name indicates, requires only two

contention mini-slots (from lines 6 and 12 of Algorithm
3). Given queue length information, it allows each link to
determine its schedule from the schedule of the previous
time slot and the current decision schedule chosen in
a round robin manner. If each node has the carrier
sensing functionality that allows overhearing, it does
not even need the two contention mini-slots. In this
case, it suffices for the links in S(t) ∩ m(t) to transmit
data packets a little earlier, which can replace the first
broadcast (line 6). Then the other links (i.e., links in
S(t − 1)\m(t)) can determine their schedule based on
the overheard transmissions and S(t − 1). The second
broadcast (line 12) is also unnecessary since the neigh-
boring links will notice the transmission by overhearing.
Therefore, LGS-Two will be an attractive solution when
the time for a mini-slot is precious, or when the network
is heavily connected so that a large number of mini-
slots are required for LGS and LGS-E. Note that Q-CSMA
can also be implemented in a distributed manner with
a small contention period, e.g., with one or two mini-
slots. However, it will lead to a significant increase of
delay since each link has a smaller chance to be included
in m(t) (e.g., see Fig. 2(b)). We evaluate the algorithms
through simulations in Section 6, and observe that LGS-
Two achieves high throughput with moderate delays
under light traffics.
It is worth noting that the distributed GMS algorithms

in [4], [5] require a global link ordering, which results in
O(|V |) complexity. Although the process can be accel-
erated by parallel executions to find a local maximum
as in [18], the worst-case complexity still scales with the
network size. For example, in a linear network where
all nodes are placed in a line, it can also have O(|V |)
complexity.

5.2 Distributed greedy coloring algorithm

In this section, we provide a distributed greedy (vertex)
coloring algorithm in the conflict graph, which can be
used for all three local greedy algorithms to determine
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the set D. Its centralized version can be found in [34]. It
colors links such that any two interfering links do not
share a color. After finishing the coloring, we obtain the
sets of links with different colors, where each set of links
with the same color equals to an element of D.
Given a network graph G(V,E, I) with the maximum

node-degree ∆ ≥ 3, let G′(V ′, E′, I ′) denote its corre-
sponding conflict graph under the 1-hop interference
model with the maximum vertex-degree∆v(G

′) ≤ 2(∆−
1). Under the K-hop interference model, the conflict
graph can be extended to take into account the interfer-
ence constraints by adding links between vertices within
K-hop distance in G′. Let G′′

K(V ′′, E′′, I ′′K) denote the
resulting conflict graph, which has the maximum vertex-
degree ∆v(G

′′
K) < 4(∆ − 1)K for ∆ ≥ 3 as shown in

Section 5.1. Assume that all vertices in V ′′ (i.e. links in E)
are numbered as v1, v2, . . . , v|E|. We color vertices such
that any two interfering vertices do not have the same
color. Since we color one vertex in a round, the whole
coloring takes |E| rounds.
Suppose that we have a set C of colors c1, c2, . . . , c|C|.

Each vertex vi maintains a set Ci of available colors,
which is initially set to C. At each round r, we color
a vertex vr with the color of the lowest index in Cr,
i.e., cx where x = min{y | cy ∈ Cr}. For each vertex
vj interfering with the vertex vr, we remove cx from
its available color set, i.e., Cj ← Cj\{cx} for all j such
that (vr, vj) ∈ E′′. Note that each vertex has at most
∆v(G

′′
K) neighboring vertices. Hence, when we color a

vertex, we can always find a color index no greater than
∆v(G

′′
K) + 1. This means that ∆v(G

′′
K) + 1 colors suffice

for the coloring, i.e., |C| ≤ ∆v(G
′′
K) + 1. The distributed

version of this greedy coloring algorithm is shown in
Algorithm 4.

Algorithm 4 Distributed Greedy Coloring.

Each vertex (link) vi does

1: Initializes its available color set Ci ← {c1, . . . , c|C|}
2: for each round r (1 ≤ r ≤ |E|) do
3: if i = r then
4: x← min{y | cy ∈ Cr}
5: color the vertex vr with cx
6: Broadcast a control message with cx to its K-hop

neighbors
7: else
8: if Receive a control message with cz from its

neighbor then
9: Ci ← Ci\{cz}
10: end if
11: end if
12: end for

The distributed algorithm takes |E| rounds and re-
quires to transmit a control message to the K-hop
neighbors in each round (line 6). Since a message has
to be forwarded in GK(V,E, IK), it requires at least K
broadcasts in each round. Hence, the time complexity of

the coloring is O(K|E|). Note that we do not need to
do the coloring at each scheduling decision. Once colors
are assigned and D is obtained, we reuse the same D at
every scheduling decision unless the network topology
changes. In static settings like high-speed access net-
works, the overhead for coloring is negligible.

5.3 Exchange of queue information

In practical implementation of the local greedy algo-
rithms, the queue information of each link should be
distributed to its neighbors. Under the 1-hop interference
model, the information exchange can be done relatively
quickly, i.e., within |D| rounds; at the i-th round, all links
in ~Si ∈ D can be activated without interference and allow
their two end nodes to exchange the queue information.
Hence, the overall time complexity including the time
required for the information exchange remains O(log |V |)
for LGS and LGS-E. Under theK-hop interference model,
the queue information of a link has to be forwarded
to its K-hop neighbors. This will requires K rounds of
message exchanges, where each round has a time com-
plexity O(logK |V |), increasing the overall complexity to
O(K logK |V |).
For LGS-Two, it is more likely that the network system

requires a low complexity. In this case, it would be
better to utilize piggy-backing of queue information on
the data and acknowledgment packets. An appropriate
time-averaging method and/or an auxiliary periodic
broadcast of queue information can be useful to maintain
correct information of neighboring links.

6 SIMULATION RESULTS

We evaluate the performance of several scheduling po-
lices under the 1-hop and 2-hop interference models. We
compare our local greedy scheduling with several other
policies, including centralized GMS, Q-CSMA, and a
queue-length based random access scheduling (QL-RAS)
[11], [12], which will be explained shortly. We measure
the total queue lengths in the network changing the
traffic loads. For each scheduling policy, the results show
that the queue lengths rapidly increase when the traffic
loads approach the boundary of the capacity region.
They also show a typical level of queue lengths when
the network is stabilized, i.e., delay performance. Before
we explain our simulation settings, we brief the QL-RAS
algorithm.
QL-RAS algorithm is another approximation of cen-

tralized GMS and is a state-of-the-art distributed
scheduling scheme with O(1) complexity in the Constant-
time Random Access Approach category. Basically, it oper-
ates as the randomized matching that is used to find the
decision schedule of Q-CSMA. The difference is that un-
der QL-RAS, links attempt at each mini-slot with a prob-
ability, and each link has a different attempt probability
(instead of choosing one mini-slot uniformly at random).
The probability is given as a function p( ~Q(Nl),M),
where ~Q(Nl) is the queue length information of l’s
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Fig. 2. Performance of scheduling policies with different contention periods under the 1-hop interference model. The
centralized GMS, LGS and LGS-E achieve similar throughput performance. QL-RAS requires a massive amount of

contention mini-slots to achieve a comparable performance to LGS-E. Also, LGS-Two outperforms Q-CSMA achieving

moderate delays under light traffic loads. An interesting observation for Q-CSMA is that its performance improves with
a small increase of contention mini-slots (i.e., from M = 4 to 8), which, however, soon stops improving beyond some

point (i.e., after M = 64).

TABLE 1
Efficiency Ratios under the 1-hop Interference Model.

Scheduling Efficiency ratio

GMS σ∗

LGS/LGS-E ≥ (σ∗)†

Q-CSMA 1

QL-RAS ≥ 1/2− 1/
√
M

† Under assumption that we can find an appropriate

function f(·) as specified in Proposition 2.

neighbors and M is the number of mini-slots. It has been
shown that QL-RAS achieves at least (12 − 1√

M
) of the

optimal performance under the 1-hop interference model

with p( ~Q(Nl),M) =
√
M−1
2M · Ql/cl

maxN∈{N1,N2}
∑

k∈N Qk/ck
,

where N1 and N2 are the set of links connected to each
end node of link l, respectively. It is observed in [12] that
the empirical performance of QL-RAS approaches that of
GMS as M increases. (We refer to [12] for details.) The
performance of different scheduling schemes under the
1-hop interference model is summarized in Table 1.
Our simulation settings are as follows: we generate a

network graph on a 1x1 square area by randomly placing
50 nodes. Two nodes are connected by a link if they are
within a distance of 0.2 (over 120 links are generated).
We first consider the 1-hop interference model, under
which the network graph has a maximum node-degree
of 8. For the predetermined set of schedules D, we
randomly choose a set of matchings satisfying |D| ≤ 9.
(The greedy coloring algorithm shown in Section 5.2 can
be used, but it yields a looser bound of |D| ≤ 2(∆−1) =
14.) Each link has a capacity between [5, 10] (uniformly
distributed). For each link, we consider single-hop traffic

with mean arrival rate either 0 (with probability 0.2), 1
(with probability 0.6), or 2 (with probability 0.2). Packets
arrive at links following a Poisson distribution.

Each scheduling policy has M contention mini-slots
during the contention period. For example, LGS has
M = |D| = 9 and LGS-E has M = 2|D| = 18 under the
1-hop interference model. For QL-RAS and Q-CSMA, we
change the number of mini-slots, where Q-CSMA uses
the mini-slots to find the decision schedule m(t). We
assume that each link has the queue information of its
interfering neighbors, and do not take into account the
overhead of the contention mini-slots unless explicitly
stated. For Q-CSMA, we set wl(t) = log logQl(t) and
assume that each link has knowledge of the previous
schedule in its neighborhood from the carrier sensing.

Fig. 2(a) shows the total queue lengths under QL-RAS,
LGS, LGS-E, and centralized GMS. For the traffic load
vector randomly chosen as in the above, we scale the
load vector by multiplying a factor. The x-axis repre-
sents the scaling factor. We observe that the total queue
length rapidly increases over a certain threshold for
each scheduling policy. The load at the threshold can be
considered as the boundary of the capacity region of the
policy. Fig. 2(a) shows that the capacity region of GMS
is the largest. However, the performance gap between
GMS, LGS, and LGS-E is relatively small. In particular,
the capacity boundaries of LGS-E and GMS are almost
the same. Fig. 2(a) also shows that LGS-E (M = 18)
outperforms QL-RAS with M = 16 and M = 64. There is
a significant performance difference until QL-RAS uses
a large number of mini-slots (M = 256), which however
may result in excessive overhead.

We also compare the performance of LGS-Two, cen-
tralized GMS, and Q-CSMA. Fig. 2(b) shows the re-
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Fig. 3. Performance comparison of scheduling policies under different network scenarios. (a) Scenario 1 with
50 nodes, asymmetric traffic, and the 1-hop interference model. (b) Scenario 2 with 30 nodes, highly asymmetric
traffic, and the 2-hop interference model. (c) Scenario 3 with 100 nodes, symmetric traffic, and the 3-hop
interference model.

sults, where the performance differences between the
three algorithms are very clear showing that LGS-Two
outperforms Q-CSMA. An interesting point is that the
performance of Q-CSMA improves with a small increase
of the number of mini-slots (i.e., from M = 4 to 8), but
unlike QL-RAS, it does not improve beyond a certain
point (i.e., after M = 64). Moreover, Q-CSMA has large
queue lengths even at light loads, which indicates that
the delay performance of Q-CSMA is poor. The results
also suggest that the delay performance can improve if
local neighborhood queue information is used.

In Fig. 3, we directly compare all the scheduling
policies. Fig. 3(a) shows that under the same network
settings (denoted by Scenario 1), the performance (from
best to worst) is in the following order: centralized
GMS, LGS-E, QL-RAS, LGS-Two, and Q-CSMA. We
highlight that LGS-E achieves good performance with
small complexity M = 18, substantially better than
the other distributed policies. We also simulate the
scheduling policies in a couple of different network
scenarios of different network topologies, traffic loads,
and interference models. Scenario 2 has a network
topology of 30 nodes, whose locations are chosen at
random over 1x1 area. A link has been placed if any
two nodes are within distance 0.26 (total 61 links;
∆ = 7), and has a capacity between [5, 10]. We generate
highly asymmetric traffic by injecting single-hop traffic
packets (following a Poisson distribution) to each link
with a mean arrival rate chosen at uniformly random
between [0, 10]. We scale the traffic loads by multiply-
ing a varying scaling factor as before. We simulate
the scheduling policies under the 2-hop interference
model, and have |D| = 32. For Scenario 3, we simulate a
network topology of 100 nodes with random locations.
A link has been established between two nodes of
distance ≤ 0.14 (total 255 links; ∆ = 11), and has a
capacity between [5, 10]. We generate symmetric traffic
such that all links have packet arrivals following a
Poisson distribution with a unit mean rate (also scaled
by a scaling factor). We consider the 3-hop interference

0.0 0.2 0.4 0.6 0.8 1.0
100

1000

10000

100000

To
ta

l q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Load

 LGS-E (M=18)
 Q-CSMA (M=256)
 LGS-Two (M=2)
 QL-RAS (M=256)
 Centralized GMS

Fig. 4. Performance comparison under heavy traffic load
(Scenario 1; log scale).

model for Scenario 3 (|D| = 138).

Figs. 3(b) and 3(c) show the simulation results.
Overall, they are similar to those of Scenario 1 ex-
cept that the performance of QL-RAS substantially
decreases. This is in part because the same number
of mini-slots M = 256 is used in all three scenarios
despite the fact that QL-RAS usually requires a larger
number of mini-slots M under the 2 (or more)-hop
interference model [12]. However, although we can
improve the performance of QL-RAS by increasing M ,
we will see later that a larger number of mini-slot also
increases the overhead complexity. Another interesting
observation is that Q-CSMA and LGS-Two achieve
better performance (i.e., close to the performance of
GMS) as the traffic load becomes asymmetric.

Under heavy traffic loads, whose results for Sce-
nario 1 are shown in Fig. 4, the performance of the
scheduling schemes is now ordered differently (from
best to worst): centralized GMS, QL-RAS, and Q-

CSMA/LGS-Two/LGS-E. The differences between Q-

CSMA, LGS-Two, and LGS-E are not significant. Al-
though QL-RAS performs well both in light and heavy
loads, it requires the highest complexity. Later we
will see that the performance of QL-RAS is severely
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degraded when the overhead is taken into account.
While LGS-E shows the worst performance under
heavy loads, the performance cross-over occurs when
the queue lengths are very large. Hence, LGS-E is in-
deed very attractive providing good delay performance
when the traffic load is moderate and the network is
not heavily connected (for low complexity from small
|D|). The results for Scenarios 2 and 3 are very similar
and we omit them.
It is worth noting the limitation on the comparison

of simulation results with analytical results obtained in
the previous sections. Since the efficiency ratio is the
metric of worst-case performance, it is possible for two
scheduling policies, say P and Q, with γ∗

P ≤ γ∗
Q, to

have policy P outperforming policy Q for a particular
network scenario. Also, the analytical results do not
provide the precise queue length at which the network
stability threshold is reached. A scheduling policy may
have a large queue length while stabilizing the network.
For example, Fig. 4 shows that though Q-CSMA has
larger queue lengths than LGS-E in light loads, as the
traffic load increases, it performs relatively better and
outperforms LGS-E in heavy loads.
Fig. 5 shows the delay performance of the scheduling

schemes. We measure average packet delay under
Scenario 1. The results are similar to the queue length
results except for Q-CSMA in light traffic load. Un-
der Q-CSMA, it may take long for a packet to be
transmitted even in light traffic load, since the attempt
probability of a link depends only on its own queue
length and will be small when the queue length
is small. Hence, the results show that as the traffic
load increases up to 0.2, the delay performance of Q-

CSMA gets better owing to high attempt probability,
and then the performance decreases for traffic loads
greater than 0.25 because of high queueing delay. Q-

CSMA with wl = logQl(t) (instead of log logQl(t))
improves the delay performance in light traffic loads,
which, however, is still substantially worse than the
performance of the other scheduling schemes. GMS

and the class of LGS schemes pick links based on
relative queue length, and thus do not experience large
packet delay under light traffic loads.
Now we take into account the complexity overhead.

The contention period does in fact cause an overhead,
resulting in throughput performance of scheduling poli-
cies. If a contention mini-slot takes a fixed time length,
the number of mini-slots can be directly translated into
the amount of performance degradation. Fig. 6 shows the
performance of scheduling policies taking into account
the overhead assuming that each mini-slot takes 2−8

length of a single time slot. For QL-RAS and Q-CSMA,
we simulate them changing the number of mini-slots
and show the best results. The results show that the
performance of QL-RAS is significantly degraded and
lags behind the others under heavy traffic loads, while
it still outperforms the others under very light traffic
loads. Also the performance gap between Q-CSMA and
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Fig. 5. Delay performance of scheduling policies (Sce-

nario 1).
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Fig. 6. Performance of scheduling policies under the 1-

hop interference model taking into account the overhead
of contention mini-slots (log scale). A single mini-slot has

a 2−8 length of a time slot, and hence, each scheduling
policy has the overhead of 2−8M .

LGS-Two is enlarged since LGS-Two requires only two
contention mini-slots. Note that we take into account
only the overhead from the contention period, which
may result in overestimating the performance of the
scheduling schemes. In a real implementation, the
scheduling schemes require queue length information
of neighboring links, which can result in additional
complexity due to direct message exchanges, or per-
formance degradation due to inaccurate estimates of
queue length information, when the information is
piggy-backed. In this sense, Q-CSMA, which does not
require the queue information from its neighbors, has
a relatively lower complexity. Q-CSMA can reduce the
message passing overhead by requiring a carrier sens-
ing mechanism to sense simultaneous transmission of
other links.

Finally, we extend our simulations to the 2-hop inter-
ference model with a higher overhead. Each contention
mini-slot takes 2−6 length of a time slot. We omit the
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results of QL-RAS due to its relatively poor performance.
The greedy coloring algorithm shown in Section 5.2 is
used to find D. In this particular network scenario, the
greedy coloring algorithm finds a set of schedules with
|D| = 29. Hence, for LGS-E with M = 58, most of a time
slot (about 90%) is used for finding a schedule and only
10% for data transmission. Fig. 7 show that the overhead
highly affects the performance of scheduling policies. For
example, LGS outperforms LGS-E since it has a smaller
complexity, and for Q-CSMA, the parameter M needs
to be chosen appropriately for good performance. As
expected, LGS-Two significantly outperforms the other
scheduling policies. Its low complexity is very attractive
in particular when the network resources are scarce
and/or the network is heavily connected.

7 CONCLUSION

Greedy Maximal Scheduling (GMS) is a promising
scheduling solution in multi-hop wireless networks that
provably outperforms many distributed scheduling poli-
cies appears to empirically achieve optimal performance
ove a variety of different network topologies and traffic
distributions. However, its distributed implementation
requires high computational complexity of O(|V |). Re-
cently, a throughput-optimal scheduling scheme that
is amenable to distributed implementation, called Q-
CSMA, has been developed. However, it requires the
carrier sensing functionality and suffers from a large
delay even under a light traffic load.
In this paper, we propose local greedy algorithms

for scheduling, which approximate the performance of
GMS with lower complexity. The proposed algorithms
reduce the complexity of GMS by excluding from the
schedule links with a smaller queue length than their
local neighbors. Although the global link ordering of
GMS is replaced with a local ordering, we show that its
empirical performance is close to GMS. It comes from
the intuition that the links with locally longest queues
are important to characterize the capacity region.
The proposed algorithms acquire this property in a

distributed and collision-free fashion with minimal com-
plexity by pre-assigning an index to each link conform-
ing to the interference constraints. It turns out that for
LGS and LGS-E, the minimum cardinality of the assigned
index set determines the complexity, which has been
shown to be O(log |∆|), where ∆ denotes the maximum
node degree. For LGS-Two, we reduce the complexity to
two contention mini-slots, which can be further reduced
to near-zero if we employ carrier sensing. We also ad-
dress the issues of the distributed link coloring for the
index assignment and the queue information exchange.
We evaluate our local greedy scheduling through

simulations under the K-hop interference models for
K = 1, 2, 3. In all cases, they achieve the throughput
performance close to GMS outperforming the state-of-
the-art scheduling policies. In particular, LGS-E shows
good delay performance in moderate traffic loads, and
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Fig. 7. Performance of scheduling policies under the 2-
hop interference model (log scale) with a high overhead

per contention mini-slot. (A single mini-slot has a 2−6

length of a time slot.) We focus on LGS-Two and Q-CSMA
since they achieve high performance in heavy load with a

small number of contention mini-slot. Note that GMS is
unlikely to be implemented in such settings. We compare

the performance of GMS for benchmark purpose.

LGS-Two outperforms the other scheduling policies when
a very low complexity is required due to scarce network
resources. Our results also suggest that the delay per-
formance of a throughput-optimal scheduler such as Q-
CSMA can improve with additional queue information
of links’ interfering neighbors.
There remain several open problems. We are interested

in characterizing the exact throughput performance of
the local greedy algorithms and in analyzing their delay
performance. Understanding the fundamental tradeoff
between these performance metrics and complexity is
also of interests. In addition, our development is based
on the K-hop interference model, which capture the
essential features of the signal-to-interference-and-noise
ratio (SINR) based interference model. It is interesting
to extend the local greedy schemes to more general
interference models like the SINR based interference
model.
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