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Abstract

I develop two new types of portfolio efficiency when returns are predictable. The first type
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conditional mean-variance preferences and differs from unconditional efficiency unless, addi-

tionally, the maximum conditional Sharpe ratio is constant. Using stock data, I quantify and

test their performance differences with respect to unconditionally and fixed-weight efficient
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I Introduction

The seminal paper of Hansen and Richard (1987) analyzes the tension between the

conditional implications of asset pricing theory and the use of unconditional moments in

empirical work. Perhaps their best-known result is that unconditionally efficient (UE)

returns are a subset of the conditionally efficient (CE) returns. For instance, this result

shows that the conditional capital asset pricing model (CAPM) implies that the market

portfolio is CE but not necessarily UE.

The difference between CE and UE returns is well-known in empirical asset pricing1 but

the latter represent the only subset of CE returns that has been studied. Several papers

have used UE returns to guide portfolio choice. For example, Ferson and Siegel (2001)

and, adding a benchmark, Chiang (2009). Other papers, such as those of Brandt and

Santa-Clara (2006) and Bansal, Dahlquist, and Harvey (2004), approximate UE returns

through managed portfolios. My main contribution is a comprehensive analysis of two new

types of CE returns that are more relevant from an empirical and theoretical perspective.

Unconditional Sharpe ratios and Jensen’s alphas of excess returns with respect to the

safe asset return are commonly used in empirical work. For this reason, I characterize

a new set of efficient returns that achieve the maximum unconditional Sharpe ratio or,

equivalently, display zero unconditional Jensen’s alphas as a pricing factor. I therefore

refer to this new subset of CE returns as performance—efficient (PE) returns. I show

that, for a given target of expected return, PE returns minimize the variance of the excess

return instead of the total return variance, which is minimized by UE returns. These two

variances do not coincide in the presence of a safe asset such as the Treasury-bill, whose

return is conditionally riskless but unconditionally risky.2

Ferson and Siegel (2009) construct an efficiency test based on the maximum uncondi-

tional Sharpe ratio with conditioning information. My results indicate that such a test is

actually testing if a particular return is PE instead of UE. The authors assume a constant

safe asset return when they develop their test and, in this case, both types of efficiency are

1Lettau and Ludvigson (2001) is an influential reference on the distinction between conditional and
unconditional asset pricing models.

2As a by-product, I carefully describe UE returns in the presence of this safe asset. Hansen and
Richard (1987) study a general set-up that may or not include a safe asset. However, they only make the
role of a safe asset explicit to clarify certain ideas, such as the safe return is CE but not necessarily UE.
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equivalent. In fact, I show that this is the only case where UE and PE returns coincide.

I also develop a second type of efficient returns that can be rationalized by conditional

mean-variance preferences that are commonly used in finance theory. If we decompose the

unconditional variance of a return as the average conditional variance plus the variance

of the conditional mean, then these optimal returns minimize only the first component.

I use the term residually efficient (RE) returns because the average conditional variance

is equal to the variance of the residual from a predictive regression. RE returns achieve

the maximum Sharpe ratio and display zero Jensen’s alphas as a pricing factor if the

required variances and covariances are based on the residuals instead of the returns them-

selves. I define these new performance measures as the residual Sharpe ratio and alpha,

respectively.

Abhyankar, Basu, and Stremme (2012) empirically evaluate several return predictors.

For this purpose, they approximate the slope of the UE frontier asymptotes by the second

moment of the slope of the CE frontier, that is, the maximum conditional Sharpe ratio.

My results indicate that this second moment has a exact relation with the slope of the

RE frontier instead, which is given by the maximum residual Sharpe ratio. I also show

that the UE and RE return frontiers are equal if and only if both the safe asset return

and the maximum conditional Sharpe ratio are constant over time.

Interest rates and Sharpe ratios change over time and hence UE, PE and RE returns

represent different ways of exploiting conditioning information. On the other hand, how

different they are is an empirical question and I use stock data to quantify and test their

performance differences. I work with the three Fama-French factors as excess returns and

three prominent predictors: the dividend price ratio, the default spread, and the term

spread. To study the role of the investment set, I also work with the six and 25 size and

book-to-market sorted Fama-French portfolios.

I study monthly returns during two periods, 1954—1983 and 1984—2012, because some

features of return predictability may differ across data periods. We can associate the

first period with stronger market predictability and the second one with weaker market

predictability. However, the size and value effects are relatively more predictable in the

second period.

I estimate and test the differences in unconditional Sharpe ratios between PE and
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UE returns. My theoretical results show that UE returns do not display a unique un-

conditional Sharpe ratio. This ratio may change considerably for return targets around

the safe asset but, as we increase the target, this ratio converges toward its value for PE

returns. For this reason, in the empirical application I study a low and a high target for

UE returns, 6% and 10%, respectively, in annualized terms. The performance gaps are

economically and statistically significant with the 25 portfolios and the low target 6%,

with a stronger gap in the first period than in the second one.

I extend the standard econometric set-up of unconditional Sharpe ratios to residual

Sharpe ratios. I estimate and test the differences in the residual Sharpe ratios of RE

returns with respect to UE returns. Once again, the performance gap is especially strong

for the low target and the 25 portfolios.

The return frequency is another relevant dimension to the differences across efficiency

types. Annual returns show larger differences across the subsets of CE returns. In fact, UE

returns are considerably different with respect to PE or RE returns for a small investment

set, namely, the three Fama-French factors.

Finally, I also connect my theoretical results and empirical methodology to the testing

of conditional asset pricing models. I use the same data to revisit the evidence against the

CAPM, which is a classic example of efficiency and asset pricing tests that still attracts

attention. For instance, there is still controversy about the relative performance of the

unconditional and conditional CAPM, where the former model is the textbook one with

fixed-weight efficient (FE) returns that do not exploit return predictability.

When we only use the three factors as the investment set, in the first period the market

is much more inefficient with FE returns than with PE or RE returns, but the second

period provides the opposite situation. Then the increases in Sharpe ratios when adding

the size and value portfolios to the PE and RE strategies are much higher than those with

FE strategies, which are not statistically significant. My findings also indicate that it is

good empirical practice to compute the performance of both PE and RE returns when

testing asset pricing models.

The rest of the paper is organized as follows. Section II describes the theoretical

framework with conditioning information and defines CE returns. Section III provides a

theoretical analysis of two new types of efficient returns as subsets of CE returns that
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generally differ from UE returns. Next, Section IV develops the empirical application.

Finally, Section V summarizes the conclusions and discusses some avenues of further

research. The auxiliary results are gathered in the online appendix.

II Conditionally Efficient (CE) Returns

The investment set is defined by a safe asset with return R0 and some risky assets

with return vector R. If we subtract R0 from each return in R, then we obtain the vector

of excess returns r = R−R01, where 1 is a vector of ones. The case where no safe asset

is available is studied in Appendix C. The investors’ information set is given by a vector

z of predictors that are informative about future asset payoffs.

The safe asset return is conditionally riskless, V ar (R0|z) = 0, but it may be uncondi-

tionally risky with V ar (R0) > 0. For ease of exposition, I assume the conditional variance

V ar (r|z) is nonsingular with probability one. This implies that none of the primitive risky

assets is actually conditionally riskless or redundant. I also assume that the vector of risk

premia E (r|z) has at least one nonzero entry to avoid trivial efficient returns.

If an investor is endowed with positive wealth, which we can normalize to one without

loss of generality, then the investor will be interested in portfolio strategies that cost

one for every possible value of z. Let w denote the vector of portfolio weights on the

risky returns R, where each weight is a decision variable of the investor conditional on

her information set and hence a function of z. The weight on the safe asset return R0

must be 1−w′
1 in a unit-cost portfolio. Therefore, the payoff of such a portfolio can be

represented by the return

R = R0 (1−w
′
1) +R′

w = R0 + (R− R01)
′
w,

which can be interpreted as a unit weight on the safe return and weights w on the vector

of excess returns

R = R0 + r
′
w. (1)

In this setting, the conditionally efficient (CE) returns of Hansen and Richard (1987)

are the returns with minimum conditional variance for a given target of conditional ex-
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pected returns, that is, the set of returns (1) that solve the optimization problem

min
R
V ar (R|z) for a given E (R|z) , (2)

which I denote RC .

This problem is the conditional counterpart of the classic Markowitz (1952) portfolio

problem, where the mean and variance are unconditional and the weights w in (1) are real

numbers instead of functions of z. Similarly, the safe asset is interpreted as unconditionally

riskless. In that well-known context, the efficient returns can be represented by

R0 + ωr
′ϕ, (3)

where3

ϕ = [V ar (r)]−1E (r) (4)

and ω is a real number that depends on the mean target E (R). I refer to these returns

as fixed-weight efficient (FE) because investors are constrained to fixed-weight strategies.

In our more general set-up where investors exploit return predictability, the returns

(1) that solve (2) have a similar structure

RC = R0 + ωCr
′ϕC , (5)

where

ϕC = [V ar (r|z)]
−1E (r|z) , (6)

and ωC is a function of z that depends on the conditional mean target E (R|z).

We can also define Sharpe ratios and Jensen’s alphas in this setting. We can translate

a return R into an excess return r = R−R0 and define the conditional Sharpe ratio of r

as

SC = E (r|z) /
�
V ar (r|z),

which is a function of z. These Sharpe ratios and other types in the following sections are

3Stevens (1998) interprets the vector ϕ in terms of hedging regressions. Each entry of ϕ is equal to
the ratio of the intercept and the residual variance of the regression of that excess return onto a constant
and the rest of excess returns in r.
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defined for r different from zero or, equivalently, for R different from R0. The conditional

Jensen’s alpha of r with respect to the pricing factor rβ is defined as

αC = E (r|z)− βCE (rβ|z) , βC = Cov (r, rβ|z) /V ar (rβ|z) .

Similarly to Sharpe ratios, Jensen’s alphas are defined for rβ different from zero.

The CE returns have interesting properties in terms of the previous two measures.

The excess returns of CE returns different from R0 are characterized by achieving the

maximum squared conditional Sharpe ratio, denoted S2C and given by

S2C = E (r|z)
′ [V ar (r|z)]−1E (r|z) . (7)

These excess returns are also characterized by αC = 0 when they are used as a factor to

price any r.

These properties translate the textbook Markowitz properties into conditional mo-

ments. The CE returns lie along two straight lines in the [
�
V ar (R|z), E (R|z)] space for

each possible value of z. These two lines intersect on the vertical axis at R0 and their

slope is given by SC . I will refer to this conditionally linear relation between the optimal
�
V ar (R|z) and E (R|z) as the CE frontier.

III Two New Types of CE Returns

This section develops the theory of two subsets of CE returns, each one associated

with a different construction of ωC in (5). I define these two types of efficient returns,

show their properties, and study their differences with respect to a third subset of CE

returns, the only one that has been studied in the literature.

A Performance—Efficient (PE) Returns

The analysis of unconditional moments is also relevant when returns are predictable.

Unconditional moments, estimated by sample averages, are often used in empirical work.

The performance evaluation of a portfolio manager is another example of the use of uncon-

ditional moments because the evaluator may not have access to the manager’s information
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set.

In particular, unconditional Sharpe ratios and Jensen’s alphas of excess returns are

commonly used in empirical finance. For instance, see Ferson and Siegel (2009) and

the classic references therein such as Jobson and Korkie (1982) and Gibbons, Ross, and

Shanken (1989). The unconditional Sharpe ratio of an excess return r is defined as the

real number

SU = E (r) /
�
V ar (r)

and the unconditional Jensen’s alpha of an excess return r with respect to a pricing factor

rβ is defined as

αU = E (r)− βUE (rβ) , βU = Cov (r, rβ) /V ar (rβ) .

The Sharpe ratio above is computed from the variance of the excess return V ar (r) =

V ar (R− R0), which is not equal to the variance of the return V ar (R) when the safe

asset is unconditionally risky. On the other hand, even though V ar (R0) > 0, the safe

asset is riskless in terms of V ar (r) because V ar (R0 −R0) = 0. Following the use of

V ar (R− R0) in empirical finance, I define the PE returns as the returns (1) that solve

the problem

min
R
V ar (R −R0) subject to E (R) = ν (8)

and I denote them RP . The following proposition analyzes the PE returns.

Proposition 1 The representation and properties of PE returns RP defined by (8).

1. The PE returns are CE returns (5) with

ωC =



ν −E (R0)

E
�

S2
C

1+S2
C

�



 1

1 + S2C
, (9)

which is a function of z because it depends on S2C.

2. The excess returns of PE returns different from R0 are characterized by achieving
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the maximum S2U , denoted S2U and given by

S2U =
E
�

S2C

1+S2
C

�

1− E
�

S2
C

1+S2
C

� . (10)

These excess returns are also characterized by αU = 0 when they are used as a factor

to price any r.

Point 2 of Proposition 1 shows that the PE returns have similar properties to the classic

Markowitz set-up with a safe asset in terms of Sharpe ratios and alphas. However, this

is not the case for unconditionally efficient (UE) returns, the only subset of CE returns

that has been studied before. Hansen and Richard (1987) define them as the returns

with minimum unconditional variance V ar (R) for each target of unconditional expected

return E (R). Thus the UE returns are the set of returns (1) that solve the problem

min
R
V ar (R) subject to E (R) = ν (11)

and I denote them RU . Adapting their results to the existence of a safe return R0 that

may be unconditionally risky, the UE returns RU are CE returns (5) with

ωC =




ν + E

�
R0

S2C

1+S2
C

�
− E (R0)

E
�

S2
C

1+S2
C

� − R0



 1

1 + S2C
, (12)

which is a function of z because it depends on R0 and S
2
C .

From point 1 of Proposition 1, the difference between PE and UE returns with the

same mean is

RP − RU =



R0 −
E
�
R0

S2C

1+S2
C

�

E
�

S2
C

1+S2
C

�



 1

1 + S2C
r
′
ϕC . (13)

When the safe asset return is unconditionally riskless, there is no conflict between the

criteria V ar (R) and V ar (R− R0) and we have RP − RU = 0 in (13). The following

corollary to Proposition 1 states that this is the only case where the subsets of UE and

PE returns are equal.

Corollary 1 Given the representations of UE and PE returns above, these two subsets
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of CE returns are equal if and only if

V ar (R0) = 0.

In this special case the intercept of the CE frontier R0 cannot change over time, but

the slope SC may change. In this regard, Proposition 1 provides a general relation (10)

between S2U and S
2
C . Jagannathan (1996) obtained a similar relation for the unconditional

Sharpe ratio of UE returns with a constant safe asset return. My results show that PE

returns are the only ones that achieve S2U independently of the behavior of R0.

Ferson and Siegel (2001) also study UE returns under the assumption of a constant

R0. Their equation (12) provides the optimal vector of weights w in (1) that solves the

UE problem (11), which is equal to

�
ν −R0

E
	
E (r|z)′ [E (rr′|z)]−1E (r|z)




�

[E (rr′|z)]
−1
E (r|z) .

When the safe asset is such that R0 = E (R0), it is easy to show that these optimal

weights are equal to ωCϕC , with ωC from (9), by exploiting the relation
4

E (rr′|z) = V ar (r|z) + E (r|z)E (r|z)′ .

The weights must be equal because Corollary 1 states that UE and PE returns coincide

in this special case.

Similarly, Ferson and Siegel (2009) construct an efficiency test that is based on SU . My

theoretical results indicate that such a test is actually testing wether a particular return

is PE, not UE. The empirical application in Section IV.C shows that the performance gap

between UE and PE returns can be sizeable.

I will refer to the relations between the standard deviations of UE and PE returns and

the mean target as the UE and PE frontiers, respectively. Figure 1 displays the UE and

PE frontiers in two different spaces, using the data and empirical methods of Section IV.

In the left plot of Figure 1, the PE frontier is a straight line with slope SU for positive risk

4This relation implies that [E (rr′|z)]−1E (r|z) = ϕC/
�
1 + S2

C


and

E
�
E (r|z)′ [E (rr′|z)]−1E (r|z)

�
= E

	
S2
C
/
�
1 + S2

C



.
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premia in the [
�
V ar (r), E (r)] space and provides the best performance in that space.

<Figure 1>

We can relate the excess returns of UE and PE returns with the same mean ν by

RU − R0 = (RP − R0)− (RP − RU)

with RP − RU displayed in (13). This term is uncorrelated with RP − R0 and hence we

have the following variance decomposition

V ar (RU − R0) = V ar (RP − R0) + V ar (RP − RU) .

The difference between V ar (RU − R0) and V ar (RP − R0) is the same across different

values of ν because RP − RU does not depend on the chosen ν. On the other hand, as

is common practice, the plots in Figure 1 are based on standard deviations instead of

variances. We can see in the left plot that the unconditional Sharpe ratio of RU − R0

converges to the ratio for RP − R0 as ν increases.

In the right plot of Figure 1, we can compare the PE and UE frontiers on the

[
�
V ar (R), E (R)] space, where the latter is the most efficient. We can relate the PE

and UE returns with the same mean ν by

RP = RU + (RP − RU)

with RP − RU displayed in (13). This term is uncorrelated with RU and hence the

difference between both frontiers follows from

V ar (RP ) = V ar (RU) + V ar (RP − RU) .

The PE returns are located on a parabola that is parallel to the parabola of UE returns

in the [V ar (R) , E (R)] space. The difference between the two parabolas is equal to

V ar (RP − RU). However, the right plot of Figure 1 is based on standard deviations

instead of variances. In this plot, the UE and PE frontiers share the location of the

minimum and the asymptotes, being more different for lower values of ν.
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For comparison, the location of the Markowitz frontier is also displayed in Figure 1.

This frontier is defined by the FE returns in (3). In the left plot, the FE frontier is also

represented by a straight line and there is a region where FE returns perform better than

UE returns.

Finally, we can also compare the unconditional alphas of PE and UE returns. The

former yield zero αU as a factor when pricing any excess return, but αU is not generally

zero when we use UE returns as pricing factors. In fact, the value of αU depends on the

particular mean target of the UE return.

Nevertheless, Hansen and Richard (1987) show that UE returns satisfy a different

beta pricing equation. In a general set-up that may not include a safe asset, a return Rβ

different from the minimum unconditional variance one is UE if and only if, for every R,

E (R)− EU =
Cov (R,Rβ)

V ar (Rβ)
[E (Rβ)− EU ] (14)

where EU is a real number. This number is interpreted as the unconditional mean of the

corresponding zero-beta return and depends on the chosen UE pricing factor Rβ.

B Residually Efficient (RE) Returns

Appendix A analyzes the link between mean-variance preferences and frontiers with

conditioning information. Ferson and Siegel (2001) show that UE returns can be ratio-

nalized by preferences E (R|z)− (b/2)E (R2|z) for some positive real number b. However,

the most common conditional mean-variance preferences in finance theory are probably

E (R|z)− (θ/2)V ar (R|z)

for some positive real number θ. Areas such as market microstructure and rational expec-

tations equilibria often rely on these preferences. See, e.g., Easly and O’Hara (2004) or

Brunnermeier (2001) for a survey of asset pricing theory under asymmetric information.5

If we average these preferences over z then we obtain E (R) − (θ/2)E [V ar (R|z)]

and hence these preferences penalize only a component of the unconditional variance.

5They are also used in continuous time asset allocation (Basak and Chabakauri (2010) and the refer-
ences therein) and to study the complexity of the performance evaluation of an informed manager by an
uninformed agent (Dybvig and Ross (1985)).
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Specifically, we can decompose the unconditional variance of a return as

V ar (R) = E [V ar (R|z)] + V ar [E (R|z)] .

I refer to the first component E [V ar (R|z)] as the residual variance because it is the

variance of the residual R−E (R|z) from a predictive regression,

V ar (R− E (R|z)) = E
	
(R− E (R|z))2



= E [V ar (R|z)] .

Note that the safe asset return may be risky from the perspective of V ar (R0) > 0, but

not from the perspective of E [V ar (R0|z)] = 0.

Following the link between conditional mean-variance preferences and E [V ar (R|z)],

I define the RE returns as the set of returns (1) that solve the problem

min
R
E [V ar (R|z)] subject to E (R) = ν, (15)

which I denote RR. This link also motivates the use of residual Sharpe ratios and alphas,

where the required variances and covariances are based on the residuals of predictive

regressions instead of the returns themselves. I define the residual Sharpe ratio of an

excess return r as the real number

SR = E (r) /
�
E [V ar (r|z)]

and the residual Jensen’s alpha of an excess return r with respect to a pricing factor rβ

as

αR = E (r)− βRE (rβ) , βR = E [Cov (r, rβ|z)] /E
	
V ar

�
r
β
|z


.

The following proposition analyzes RE returns.

Proposition 2 The representation and properties of RE returns RR defined by (15).

1. The RE returns are CE returns (5) with

ωC =
ν − E (R0)

E (S2C)
, (16)
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which is a real number.

2. The excess returns of RE returns different from R0 are characterized by achieving

the maximum S2R, denoted S2R and given by

S2R = E
�
S2C

. (17)

These excess returns are also characterized by αR = 0 when they are used as a factor

to price any r.

Point 2 of Proposition 2 shows that RE returns have standard properties in terms of

residual Sharpe ratios and alphas. Once again, this is not the case for UE returns. We

can decompose the difference between RE and UE returns with the same mean as

RR − RU = (RR − RP ) + (RP −RU) ,

where RP is the PE return with the same mean. From point 1 of Propositions 1 and 2,

the second component RP − RU is computed in (13) and the first component is

RR −RP = [ν − E (R0)]



 1

E (S2C)
−

1

E
�

S2
C

1+S2
C

�
(1 + S2C)



 r′ϕC . (18)

The next corollary characterizes the special cases where the subset of RE returns is equal

to the subsets of PE or UE returns.6

Corollary 2 Given the representations of RE, UE, and PE returns above,

1. The RE and PE returns are equal if and only if

V ar (SC) = 0.

6There are other theoretically possible cases. The RE and UE returns share one element if and only
if there are two real numbers (a, b) such that

R0 = a+ bS
2

C ,

in which case the shared return has a constant conditional mean a. A simple example is a constant R0,
since then this return is also UE.
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2. The RE and UE returns are equal if and only if

V ar (R0) = V ar (SC) = 0.

In this case, these two subsets of CE returns are also equal to the PE returns.

Corollary 2 indicates the relevance of the Sharpe ratio SC , i.e., the slope of the CE

frontier, in the relation between RE returns and the other two efficiency types. For

instance, the difference RR − RP in (18) is driven by the fact that the RE returns are

constructed by scaling r′ϕC with real numbers, while the PE returns are constructed by

scaling r′ϕC/ (1 + S
2
C) instead.

Abhyankar, Basu and Stremme (2012) approximate the slope of the UE frontier as-

ymptotes by the second moment of the slope of the CE frontier in their analysis of ex -ante

gains from return predictability.7 That is, they approximate SU in (10) by the second

moment of SC . However, equation (17) in Proposition 2 shows that the second moment

of SC has a exact relation with the slope of the RE frontier SR. The relation between

SR and SC is more direct than the relation between SU and SC . Moreover, point 2 in

Corollary 2 states that the UE and RE returns are different subsets of CE returns unless

both R0 and SC are constant over time. The empirical application in Section IV.C shows

that the performance gap between UE and RE returns can be sizeable.

The RE frontier is given by two straight lines in the [
�
E [V ar (R|z)], E (R)] space

with zero residual variance at E (R) = E (R0), as displayed in the left plot of Figure 2.

The PE frontier is also linear in that space and shares the safe asset return with the RE

frontier.

<Figure 2>

The RE returns provide the best risk-return trade-off in that space, while UE returns

provide the best frontier in the right plot for the [
�
V ar (R), E (R)] space. We can relate

the RE and UE returns with the same mean ν by

RR = RU + (RR − RU) ,

7They also evaluate the ex- post unconditional performance of UE returns and claim that these returns
improve the performance with respect to a constant ωC in (5). My results show that such CE returns
are actually RE returns and hence they are efficient in terms of SR, but not SU .
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with RR − RU equal to the sum of (13) and (18) and thus dependent on the chosen ν.

The relative location of the RE and UE frontiers in the left plot of Figure 2 follows from

the residual variance decomposition

E [V ar (RU |z)] = E [V ar (RR|z)] + E [V ar (RR − RU |z)] ,

which follows itself from the zero residual covariance between the term RR−RU and RR.

On the other hand, the lack of correlation between the term RR −RU and RU yields the

variance decomposition

V ar (RR) = V ar (RU) + V ar (RR − RU)

and thus the location of RE returns to the right of UE returns in the right plot.

We can also see the location of the FE frontier in Figure 2. In this example, in some

regions the performance of FE returns is better than that of some CE returns. In fact,

RE returns look very similar to FE returns in the right plot, even though they are the

optimal returns in the left plot.

Finally, Appendix B derives the implications of the properties of PE and RE returns

for testing mean-variance efficiency and asset pricing models. In particular, we can test

conditional asset pricing models by comparing the maximum unconditional or residual

Sharpe ratios from two investment sets. We can test the validity of models with both

traded and non-traded factors. The conditional CAPM is an example of a traded factor

because in this model the market portfolio must be CE in equilibrium.8 In the case of

non-traded factors, we would work with the associated mimicking portfolios.

IV Empirical Application

This section develops an econometric framework for the estimation of unconditional

and residual Sharpe ratios. This framework is applied to testing the performance gaps

between the different efficiency types that are studied in Section III, and to testing asset

pricing models.

8The CAPMwas originally developed by Sharpe (1964), Lintner (1965), and Mossin (1966) in a context
without conditioning information.
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A Unconditional and Residual Sharpe Ratios

I extend the standard set-up in empirical finance for testing the difference between

the unconditional Sharpe ratios of two investment strategies (see Ledoit and Wolf (2008)

and the references therein) to residual Sharpe ratios. For some excess return ri and a

vector of predictors z, I define the influence functions

h
�
ri, z;µi,b

′

i, σ
2

i


=








 1

z



 (ri − µi − b′iz)

(ri − µi − b
′

iz)
2 − σ2i






with parameters (µi,b
′

i, σ
2
i ). The first block of influence functions pins down the condi-

tional mean of ri with µi + b
′

iz, while the last influence function pins down the residual

variance of ri. The linearity of the conditional mean is not really a constraint because

we could add powers of z or other functions of the predictors. Given time series data on

(ri, z), we can estimate the residual Sharpe ratio of ri by means of the moment conditions

E
	
h
�
ri, z;µi,b

′

i, σ
2

i



= 0,

which identify the ratio as µi/ (σ
2
i )
1/2
if we have subtracted the mean from the predictors

z and thus µi identifies the expectation of ri.

We can jointly estimate the residual Sharpe ratio of two excess returns r1 and r2 by

means of the moment conditions

E



 h (r1, z;µ1,b
′

1, σ
2
1)

h (r2, z;µ2,b
′
2, σ

2
2)



 = 0, (19)

with parameters to estimate (µ1,b
′

1, σ
2
1, µ2,b

′

2, σ
2
2). If we have subtracted the mean from

the predictors z, then we can identify the difference in residual Sharpe ratios by

µ2

(σ22)
1/2
−

µ1

(σ21)
1/2

and we can test if its true value is zero with a Wald test.

If we are interested in the difference in unconditional Sharpe ratios instead, then we
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can simply change the influence functions in (19) to

h
�
ri, z;µi,b

′

i, σ
2

i


=








 1

z



 (ri − µi − b′iz)

(ri − µi)
2 − σ2i





.

We could also simplify the upper block to ri − µi and hence we would not use z in the

influence functions. This would be the standard set-up in empirical finance.9

I use the generalized method of moments (GMM) of Hansen (1982) with the system of

moment conditions (19) to develop the corresponding inference. We can compute standard

errors of estimators and p-values of tests without assuming Gaussian or independent and

identically distributed returns. In particular, I use Newey-West (1987) standard errors

and p-values, which are robust to heteroskedasticity and autocorrelation.

In case the GMM asymptotic p-values do not provide a good approximation in these

tests, we can complement them with block bootstrap p-values. For that purpose, I sample

Wald statistics divided by their standard errors as follows. I run a first-order vector

autoregression (VAR(1)) of (r1, r2, z) and store the residuals. This VAR is my data

generating process (DGP) after changing the value of the estimated µ2 to satisfy the null

hypothesis of equal Sharpe ratios. I impose µ2 = (σ22)
1/2
µ1/ (σ

2
1)
1/2
in the DGP, which

only changes the level of r2 without altering its variance or dynamics. I sample blocks of

residuals with replacement to consider additional nonlinear dynamics in the data, such

as generalized autoregressive conditional heteroskedasticity (GARCH) effects. For each

sample of (r1, r2, z) generated in this way, I store the associated Wald statistic divided

by its standard error. I repeat this process several times, which provides a sample of

t-statistics. Then I compute the corresponding p-value of the t-statistic obtained from

the actual data.

This block bootstrap on the residuals of a VAR(1) is similar to that of Ledoit and Wolf

(2008). On the other hand, these authors only consider unconditional Sharpe ratios and

therefore resample (r1, r2) instead of (r1, r2, z). They do not impose the null hypothesis

in the DGP either. Another difference is that they consider automatic approaches to pin

9We need a good approximation to the true conditional mean of r1 and r2 to identify the residual
Sharpe ratios, which is not required for the computation of unconditional ratios. However, neither of the
two ratios requires a good approximation of the true conditional variances of r1 and r2.
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down the number of lags in the Newey-West standard errors and the number of blocks in

the bootstrap. I consider several combinations of values instead to check the robustness

of the computations.

B Data Description

I use monthly returns from 1954 to 2012 available from Ken French’s data library. In

particular, I use the Treasury bill return as R0 and different combinations of the Fama-

French size and book-to market sorted portfolios as the vector r. To make the analysis

more transparent, I often focus on the three Fama-French factors, whose first factor is the

excess return on the market, while the two additional excess returns are associated with

the size and value effects. These are called SMB (long in small capitalization stocks and

short in big ones) and HML (long in high book-to-market stocks and short in low ones)

respectively. Given their widespread use in empirical work, I also consider the six and 25

Fama-French portfolios to study the role of the investment set in the differences across

types of efficient returns. I subtract the safe asset return from their returns to obtain the

corresponding excess returns. See Ken French’s web page and Fama and French (1993)

for further details.

I use three predictors to define the vector z: the US dividend price ratio, the default

spread, and the term spread. The first predictor is taken from Robert Shiller’s web page,

while the other two predictors are constructed from the Federal Reserve Economic Data.

The default spread uses yields on AAA- and BAA-rated bonds and the term spread uses

10- and one-year constant maturity Treasury bond yields. These predictors are widely

used in empirical finance (e.g., see Ferson and Siegel (2009)).

As a first description of the data, Table 1 analyzes the mean predictability in each

one of the three Fama-French factors. I divide the full sample into two halves (1954—1983

and 1984—2012) because some features of return predictability may differ across different

periods. On the other hand, a formal empirical analysis of predictability changes across

time is beyond the scope of this paper.

<Table 1>

Panel A of Table 1 reports the coefficient of determination R2 from each predictive
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regression as a statistical measure of predictability. In the case of the market factor,

we can associate the first period with stronger predictability and the second one with

weaker predictability. See Ferson and Siegel (2009) and the references therein for similar

evidence up to the early 2000s, with weaker predictability in the 1990s. In particular,

these authors study the periods 1963—1994 and 1995—2002 and find lower predictability

in the second period. However, the weaker market predictability in the second period

does not necessarily mean that predictability is disappearing, since SMB and HML do

not follow the same pattern. The predictive regressions of SMB and HML show a stable

or even increasing R2.

Panel B of Table 1 displays an economic measure of return predictability for each

Fama-French factor. We can test the gains from conditioning information by using FE

returns as r1 and PE or RE returns as r2 in the econometric framework of Section IV.A.

If we apply the representation of FE returns (3) to a single Fama-French factor r then the

excess returns of FE returns are spanned by scaling rϕ with real numbers, or equivalently

by scaling r because ϕ is also a real number. The unconditional and residual Sharpe ratios

do not depend on such scaling as far as it does not change the sign of the ratio. Therefore

we can simplify the computation of Sharpe ratios of FE returns by using r1 = r directly,

i.e., we associate r1 with holding the factor. Regarding r2, if we apply the representation

of PE returns in (5) and (9) to a single Fama-French factor r, then the excess returns

of PE returns are spanned by scaling rϕC/ (1 + S
2
C) with real numbers. Therefore, we

can use r2 = rϕC/ (1 + S
2
C) to compute the unconditional and residual Sharpe ratios of

PE returns. Following the representation of RE returns in (5) and (16), we can choose

r2 = rϕC to compute the Sharpe ratios of RE returns.

The computation of r2 depends on objects like ϕC and S
2
C (defined in (6) and (7),

respectively) and hence it requires the conditional mean and variance of the Fama-French

factors. If we use the true conditional mean and variance, then we identify the true

maximum Sharpe ratios. If this is not the case, r2 still exploits conditioning information,

albeit not optimally. Following the spirit of predictive regressions, I model the conditional

mean vector as linear in the predictors and the conditional variance matrix as constant.

We can identify the former vector by running least squares of excess returns on a constant

and the predictors and the latter matrix by the unconditional variance of the residuals.
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Here I focus on mean predictability, but I consider GARCH effects in the next sections.

Statistical significance with asymptotic p-values is denoted by the symbol *, while +

is used to denote bootstrap p-values based on 1000 bootstrap samples.10 I compute the

p-values for six and 12 lags in the Newey-West standard errors (the cubic root of the

sample size is around seven) and, similarly, blocks of size six and 12 in the bootstrap. To

conserve space, in Table 1 I only report the statistical significance for six lags, and blocks

of size six in the case of bootstrap p-values. I do the same in the following tables. The

significance is similar for other combinations of lags and block sizes, which are available

upon request.

The findings in Panel B of Table 1 follow the patterns of R2 in Panel A. In terms

of both unconditional and residual Sharpe ratios, we find high and statistically signifi-

cant gains from conditioning information for the market in the first period and high and

statistically significant gains for SMB in the second period. The increase in annualized

Sharpe ratios is around 0.6 in both cases. The low unconditional and residual Sharpe ra-

tios of holding SMB in the second period are due to a sharp decrease in its unconditional

risk premium. The gains for HML are also higher in the second period, but we find no

statistical significance.

C Sharpe Ratios of Efficient Returns

This section studies the Sharpe ratios of efficient returns constructed from the three

Fama-French factors and the associated six and 25 sorted portfolios. I keep the conditional

mean of the corresponding vector r linear in the predictors, but I study both a constant

and a time-varying conditional variance of r. In the second case, that random matrix

should be positive semidefinite at every realization. For this purpose, I follow the spirit of

Bollerslev’s (1990) constant conditional correlation model. I proceed in two steps: First I

fit a GARCH(1,1) to each residual from the predictive regressions to obtain the conditional

variance of each excess return in r.11 Second, I compute the conditional correlations of r

10The econometric framework is the standard one in which the econometrician compares the Sharpe
ratios of two time series of excess returns, r1 and r2. The econometrician does not have information
on or simply does not consider how these returns were constructed. To consider the estimation of their
portfolio weights in our inference, we should add the corresponding moments to the system (19). This
would complicate the computations, especially the bootstrap.
11I compute the unconditional variance of the residuals and use it as the steady state of the conditional

variance. I estimate the remaining two parameters of the GARCH(1,1), usually denoted α and β, by
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as the unconditional correlations of the residuals scaled by their GARCH volatilities.

Table 2 compares the unconditional performance of PE returns against FE and UE

returns. The statistical significance of the differences in Sharpe ratios follows the econo-

metric framework of Section IV.A. For instance, when we compare the Sharpe ratios of

FE and PE returns, we can use r1 = r
′ϕ from the representation of FE returns in (3)

and r2 = r
′ϕC/ (1 + S

2
C) from the representation of PE returns in (5) and (9). Panel A

displays the results when PE returns do not exploit GARCH effects and Panel B displays

the results when they do.

<Table 2>

In Panel A of Table 2 the performance gap of PE returns with respect to FE returns is

high and statistically significant in the first period and increases with the number of assets.

This pattern does not hold in the second period, where the gap becomes lower than in the

first period for the six and 25 portfolios. In fact, the performance gap is not statistically

significant for the six portfolios. Similarly, Ferson and Siegel (2009) reject the lack of gains

from conditioning information in the period 1963—1994, but not in the period 1995—2002.

Considering GARCH effects in Panel B increases the performance of PE returns with the

six portfolios and the 25 portfolios, both economically and statistically.

Corollary 1 states that UE and PE returns are equivalent if and only if the intercept

of the CE frontier is constant. However, the unconditional variance of R0 is not zero. The

rate of return of the safe asset has a mean of 0.430 and a standard deviation of 0.264 in the

first period. Both statistics decrease in the second period to 0.340 and 0.216, respectively.

Table 2 quantifies the difference between PE and UE returns in terms of Sharpe ratios.

It reports the performance gap for two mean targets E (R) = ν, a low one of 6% and a

high one of 10% in annualized terms, because the Sharpe ratio of UE returns depends on

the chosen target. Following the representation of UE returns in (5) and (12), we can use

r1 = ωCr
′ϕC in the econometric framework of Section IV.A. The scaling ωC depends on

the target ν and some expectations that are estimated by their sample counterparts.

Gaussian quasi-maximum likelihood. I explored the joint estimation of the conditional mean and variance
and the estimation of the steady state variance without variance targeting. The results are similar, but
the computations are much more time-consuming.
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In the left plot of Figure 1 the unconditional Sharpe ratios of UE returns converge to

the ratio for PE returns as ν increases. Therefore, the performance gap should be more

relevant for targets closer to the safe asset. Panel A of Table 1 shows that the gaps are

economically and statistically significant with the 25 portfolios and the low target 6%,

with a stronger gap in the first period than in the second. For that target, the gap is

higher than 0.1 for the six portfolios, but only statistically significant in the second period,

with asymptotic p-values. In that period, we also find a statistically significant difference

for the 10% target and the 25 portfolios, but only with the asymptotic p-value. In the first

period, some differences for that target become slightly negative, but this simply reflects

how similar these UE returns are to PE returns.

The main patterns from Panel A still hold when we consider GARCH effects in Panel

B. PE and UE returns are especially different for the lowmean target and the 25 portfolios,

with a larger gap in the first period. This investment set is widely used in empirical work

(e.g., Ferson and Siegel (2009)).

Table 3 studies the residual performance of RE returns against FE and UE returns.

In the econometric framework of Section IV.A, we can use r2 = r
′ϕC to compute the

Sharpe ratios of RE returns following their representation in (5) and (16). Similarly to

PE returns in Table 2, the performance gap with respect to FE strategies is especially

large in the first period. Interestingly, Panel B of Table 3 shows that considering GARCH

effects clearly improves RE returns with the six and 25 portfolios, especially in the second

period. This translates into large and significant performance gaps with respect to FE

returns in the second period, which are not found without considering the GARCH effects

in Panel A.

<Table 3>

Corollary 2 states that UE and RE returns are equivalent if and only if both the

intercept and slope of the CE frontier are constant, but none of these variables has a zero

unconditional variance. In particular, when we work with the three Fama-French factors

and we do not consider GARCH effects, the slope of the CE frontier (whose square is

given by (7)) has a mean of 0.373 and a standard deviation of 0.172 in the first period.

Both statistics decrease in the second period to 0.285 and 0.117, respectively.
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Since UE and RE returns are not equivalent for these data, Table 3 shows the esti-

mates and tests of their performance differences. The performance gap is particularly

large for the low target and the 25 portfolios, as in Table 2. In Panel A the gap is not

statistically significant in the second period, but this changes when we consider GARCH

effects in Panel B. The performance gaps with respect to UE returns increase considerably,

becoming strongly significant with the 25 portfolios and the low target in both periods.

Tables 2 and 3 focus on monthly returns, but the return frequency is another relevant

dimension for the differences across efficiency types. Appendix D reports the counterpart

of these tables with annual returns of the three Fama-French factors. Table D1 shows

that the differences across the subsets of CE returns are larger for annual returns. In

fact, UE returns are clearly different with respect to PE or RE returns for this small

investment set. In this regard, Figures 2 and 3, which illustrate Section III, correspond

to these annual returns in the first period, so that the different efficiency types are easier

to distinguish.

Appendix D also reports an out-of-sample exercise on the gains from conditioning

information during the second period. Table D2 confirms the weaker market predictability

and stronger SMB predictability in that period. We can also find gains of dynamic

strategies with respect to the equally weighted portfolios of the three factors and the six

and 25 portfolios.

Finally, the previous tables and the discussion focus on Sharpe ratios, but we can

run an equivalent analysis in terms of Jensen’s alphas. These computations are available

upon request. For instance, when we use UE returns as pricing factors, the value of αU

depends on the particular mean target and can be very different from zero.12 Similarly,

the zero-beta returns of UE returns, EU in the beta-pricing equation (14), can be very

different from the average safe asset return.

D Testing Asset Pricing Models

We can also apply the econometric methodology of Section IV.A to test conditional

asset pricing models. In particular, I use the previous data to test if the conditional

12Lewellen and Nagel (2006) analyze the unconditional alphas of CE returns. These alphas are generally
not zero, even though the conditional alphas of CE returns must be zero. However, they do not study
UE returns in particular.
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CAPM holds for a given vector r. The main implication of this model is that the market

return is CE, but we can use PE and RE returns. If we want to test the conditional CAPM

with RE returns, then we apply the representation of RE returns in (5) and (16) to the

market excess return r and the vector r to obtain r1 = rϕC and r2 = r
′ϕC , respectively.

If we want to test the conditional CAPM with PE returns, which are represented in (5)

and (9), then the computations are similar but using excess returns like r′ϕC/ (1 + S
2
C)

instead. I do not use UE returns because they do not have a unique unconditional or

residual Sharpe ratio. On the other hand, we can test the unconditional CAPM by means

of the FE returns in (3), using r1 = r and r2 = r
′ϕ.

If we use the true conditional mean and variance of r and r in the previous computa-

tions, then we identify the true efficient returns and test the conditional CAPM. If this is

not the case, then we are not strictly testing the CAPM but we are still testing the effi-

ciency of the market portfolio for some (not necessarily optimal) portfolio strategy. Even

with misspecified conditional moments, finding significant improvements in performance

should cast some doubts on the validity of the CAPM.

Table 4 reports the tests of the CAPM,13 comparing the performance of the market

portfolio against the three investment sets of Section IV.C. Panel A displays the tests

with unconditional Sharpe ratios, while Panel B displays the tests with residual ratios.

In each panel, PE and RE returns are constructed for both a constant and a time-varying

conditional variance (denoted C and V, respectively).

<Table 4>

Let us start with the first period and the three Fama-French factors in both panels

of Table 4. The market is more inefficient with FE returns in that period. Both the

unconditional and residual Sharpe ratios of the FE returns with the three factors are

more than double those with the market only and this increase is statistically significant.

But the increase for PE and RE returns is not that strong. Table 1 shows that the market

return is relatively more predictable than the other factors in this period and hence the

latter may not add value in a dynamic strategy. We find some statistical significance with

13If we want to consider the estimation of portfolio weights in the test, then we should add the corre-
sponding moments to the system (19). Similarly, if we want to test an asset pricing model with non-traded
factors, then we should add the moments that estimate the mimicking portfolios.
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RE returns in Panel B, however, which suggests that it would be good empirical practice

to report tests for both unconditional and residual Sharpe ratios.

Importantly, the second period represents the opposite situation. Then the increases in

Sharpe ratios when the SMB and HML returns are added to the PE and RE strategies are

much higher than those with FE strategies, the latter not being statistically significant.

Table 1 shows that the size effect is more predictable than the market in this period and

hence it may add value in a dynamic strategy.

If we extend the investment set to the six or 25 sorted portfolios, then the CAPM is

rejected with any of the strategies in both periods. Nevertheless, we can still find a similar

pattern between the two periods with the six portfolios. The market’s performance gap is

greater with FE strategies than with PE or RE strategies in the first period, but the gap

is higher with the latter strategies in the second period if we consider GARCH effects. If

we use the 25 portfolios, then the PE and RE strategies also provide stronger evidence

against the efficiency of the market portfolio than FE strategies in the first period.

Ferson and Siegel (2009) also reject the conditional CAPM in the periods 1963—1994

and 1995—2002 using the 25 Fama-French portfolios. Lewellen and Nagel (2006) use

average alphas from short-window regressions to conclude that the conditional CAPM

and the classic unconditional CAPM yield a similar bad performance in the period 1964—

2001. My empirical evidence shows that such a conclusion depends on the investment set

and the time period.

V Conclusions and Further Research

My main contribution is a thorough theoretical and empirical analysis of two new

types of efficient returns when returns are predictable. The first type maximizes the

unconditional Sharpe ratio that is commonly used in empirical work. Equivalently, these

efficient returns display zero unconditional Jensen’s alphas when they are used as a pricing

factor. The second type maximizes the conditional mean-variance preferences that are

commonly used in theoretical work. These efficient returns motivate the definition of

residual Sharpe ratios and alphas, where the required variances and covariances are based

on the residuals of predictive regressions instead of the returns themselves.
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I show that the two efficiency types differ from unconditional efficiency, which is the

only type that has been studied in the literature, when the safe asset return and the max-

imum conditional Sharpe ratio change over time. Since interest rates and Sharpe ratios

change over time, we have three different ways of exploiting conditioning information,

but the magnitude of their differences is an empirical question. I therefore develop an

econometric framework to quantify and test differences in both unconditional and residual

Sharpe ratios.

In particular, I study monthly stock returns during two periods, 1954—1983 and 1984—

2012. These data show that the differences between unconditionally efficient returns and

the two new types of efficient returns are more relevant the more assets we consider in the

investment set and the lower the mean target, with a larger gap in the first period than

in the second. These differences are stronger for annual returns, which suggests that the

return frequency is another relevant dimension.

My theoretical results and empirical methodology can also be used to test conditional

asset pricing models. These data show that, if we test the CAPM with the three Fama-

French factors, then there is more evidence against the unconditional CAPM in the first

period and against the conditional CAPM in the second period. This change in the relative

evidence against the two variants of the model can be associated with the change in the

relative predictability across the Fama-French factors. We can associate the first period

with stronger market predictability and the second one with weaker market predictability.

However, the size and value effects are relatively more predictable in the second period.

Finally, there are some interesting avenues for further research. I derive the efficiency

properties for an investment set that includes a safe asset, which is common in empirical

work. If such an asset is not available to investors, then we cannot work with Sharpe ratios

as in my empirical application. The relevant tests are studied by Peñaranda and Sentana

(2011, 2012) in a framework that does not explicitly take into account information and

I plan to develop the corresponding extensions. In this regard, Appendix C studies the

relation between mean-variance frontiers with and without a safe asset for the different

types of efficient returns.

My analysis has provided new efficiency measures that can be useful in performance

evaluation and model selection. Similarly, we could use the new efficient returns to com-
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pute mimicking portfolios following Ferson, Siegel, and Xu (2006). The analysis of more

general preferences that consider higher-order moments and intertemporal efficiency are

additional topics of further research. Appendix D provides an out-of-sample analysis,

but not a formal real-time Bayesian framework such as the one of Avramov and Chordia

(2006) or Johannes, Korteweg, and Polson (2013). It would be interesting to study the

new types of efficient returns as a practical portfolio strategy in such settings.
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Proofs

The weight vector ϕC and the squared Sharpe ratio S
2
C are defined in (6) and (7),

respectively. We can use them to construct two excess returns

rv = r
′ [V ar (r|z)]−1E (r|z) = r′ϕC , re = r

′ [E (rr′|z)]
−1
E (r|z) =

1

1 + S2C
r
′ϕC (20)

that will simplify the proofs. Importantly, re is the unique excess return that satisfies

E (rer|z) = E (r|z) and rv is the unique excess return that satisfies Cov(rv, r|z) = E (r|z)

for every excess return r. The means of these excess returns are related to S2C as follows

E (rv) = E
�
S2C

, E (re) = E

�
S2C

1 + S2C

�
. (21)

Proposition 1

1) For any return R, we can decompose the excess return r = R − R0 into two

components

r = ηre + ǫ, η =
E (rer)

E (r2e)
=
E (r)

E (re)
,

where the first component is the unconditional projection of r onto the unconditional span

of re and ǫ is the projection error. The error satisfies E (ǫ) = 0 because E (reǫ) = 0 and

thus the error does not affect E (r) but increases E (r2).

The returns that solve problem (8) cannot have an error term in the previous projection

and hence the solution can be represented as

RP − R0 = ηre, η =
ν −E (R0)

E (re)
.

Substituting from (20) and (21), we have the equivalent expression

RP = R0 +



ν − E (R0)

E
�

S2
C

1+S2
C

�



 1

1 + S2C
r
′ϕC .

2) First, any PE return RP �= R0 satisfies these properties. From the proof of point

1, the excess returns of a PE return RP �= R0 can be expressed as RP − R0 = ηre with
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η �= 0. The squared unconditional Sharpe ratio S2U of these excess returns is

E2 (RP − R0)

V ar (RP −R0)
=

η2E2 (re)

η2E (re) (1− E (re))
=

E (re)

1− E (re)

and, as a pricing factor, they provide αU = 0 for any excess return r because

Cov (r, RP −R0)

V ar (RP − R0)
E (RP −R0) =

ηE (r) (1− E (re))

η2E (re) (1− E (re))
ηE (re) = E (r) .

Second, any return that satisfies these properties must be a PE return. From the

decomposition of excess returns in the proof of point 1, we can decompose any excess

return rβ �= 0 into an underlying RP − R0 = ηre plus an error ǫ. Thus the Sharpe ratio

of rβ satisfies
E2 (rβ)

V ar (rβ)
=

E2 (RP −R0)

V ar (RP −R0) + V ar (ǫ)

and the beta-pricing of the underlying RP − R0 with rβ as the pricing factor yields

Cov (RP − R0, rβ)

V ar (rβ)
E (rβ) =

V ar (RP −R0)

V ar (RP − R0) + V ar (ǫ)
E (RP −R0) .

Therefore, an excess return rβ such that

E2 (rβ)

V ar (rβ)
=

E (re)

1−E (re)

or such that
Cov (r, rβ)

V ar (rβ)
E (rβ) = E (r)

for any excess return r must satisfy V ar (ǫ) = 0, which translates into ǫ = E (ǫ) = 0. We

conclude that rβ must be equal to a particular RP − R0. �

Proposition 2

1) This proof relies on the residual inner product E [Cov(x, y|z)] between random

variables x and y and its corresponding residual norm
�
E [V ar(x|z)]. This may not be

a proper norm in the sense that V ar(x|z) = 0 implies x = E (x|z) but not necessarily

x = 0. However, this is not a concern in our setting because in the space of excess
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returns we must have x = 0 under the usual assumption of no arbitrage opportunities.

As commented in Section III.B, I use the term residual because E [V ar(x|z)] is equal to

the variance of the residual x− E (x|z) from a predictive regression.

For any returnR, we can decompose the excess return r = R−R0 into two components:

r = λrv + ε, λ =
E [Cov (r, rv|z)]

E [V ar (rv|z)]
=
E (r)

E (rv)
,

where the first component is the residual projection of r onto the unconditional span

of rv and ε is the projection error. The error satisfies E (ε) = 0 because, by construc-

tion, E [Cov (rv, ε|z)] = 0. The error does not affect E (r) but increases E [V ar (r|z)] =

E [V ar (R|z)].

Therefore, the optimal returns that solve problem (15) cannot have an error term in

the previous projection and they can be represented as

RR −R0 = λrv, λ =
ν − E (R0)

E (rv)
.

Substituting from (20) and (21), we have the equivalent expression

RR = R0 +
ν − E (R0)

E (S2C)
r
′ϕC .

2) First, any RE return RR �= R0 satisfies these properties. From the proof of point

1, the excess return of an RE return RR �= R0 can be expressed as RR − R0 = λrv with

λ �= 0. The squared residual Sharpe ratio S2R of these excess returns is

E2 (RR − R0)

E [V ar (RR − R0|z)]
=
λ2E2 (rv)

λ2E (rv)
= E (rv)

and, as a pricing factor, they yield αR = 0 for any excess return r because

E [Cov (r,RR − R0|z)]

E [V ar (RR − R0|z)]
E (RR − R0) =

λE (r)

λ2E (rv)
λE (rv) = E (r) .

Second, any return that satisfies these properties must be an RE return. From the

decomposition of excess returns in the proof of point 1, we can decompose any excess

return rβ �= 0 into an underlying RR − R0 = λrv plus an error term. Following a similar
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argument to the proof of point 2 of Proposition 1, we can show that if rβ satisfies

E (rv) =
E2 (rβ)

E [V ar (rβ|z)]

or

E (r) =
E [Cov (r, rβ|z)]

E [V ar (rβ|z)]
E (rβ)

for any excess return r, then the error term must be zero and thus rβ must be equal to a

particular RR −R0. �
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Table 1

Predictability in the Fama-French factors

MMR SMB HML MMR SMB HML

Panel A. Predictive regressions

R
2

0.071 0.024 0.001 0.008 0.023 0.011

Panel B. Unconditional and residual Sharpe ratios (SU and SR)

SU

PE 1.023 0.644 0.693 0.617 0.651 0.464

FE 0.433 0.419 0.678 0.444 0.075 0.331

PE-FE 0.590 0.225 0.015 0.174 0.576 0.134

***, ++ ***, +++

SR

RE 1.073 0.701 0.695 0.620 0.647 0.471

FE 0.450 0.424 0.678 0.445 0.076 0.333

RE-FE 0.623 0.276 0.017 0.175 0.571 0.138

***, ++ ***, +++

1954–1983 1984–2012

Note: This table shows the predictability in the monthly excess returns on the Fama-French

factors, which are the market portfolio (MMR) and the portfolios that capture the size and

value effects (SMB and HML respectively). Panel A reports the R2 of the predictive regression

of each factor on the predictors, which are the dividend price ratio, the default spread and

the term spread. Panel B displays the unconditional Sharpe ratios of PE and FE returns on

each factor, and the residual Sharpe ratios of RE and FE returns. The PE and RE returns are

constructed with the conditional mean of excess returns given by the predictive regressions

and a constant conditional variance. The differences in Sharpe ratios and their statistical

significance with Newey-West standard errors are also displayed (*, ** and *** indicate

significance with asymptotic p-values at 10%, 5%, and 1%, respectively; +, ++ and +++

indicate significance with block bootstrap p-values at 10%, 5%, and 1%, respectively).
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Table 2

Unconditional Sharpe ratios 

FF3 FF6 FF25 FF3 FF6 FF25

Panel A. Constant conditional variance of excess returns

PE 1.288 1.436 2.256 1.047 1.508 2.517

FE 0.955 1.092 1.484 0.670 1.390 2.211

PE-FE 0.334 0.344 0.772 0.376 0.118 0.306

**, ++ **, ++ ***, +++ *, + **, ++

UE6 1.203 1.325 1.281 1.005 1.366 1.909

PE-UE6 0.085 0.111 0.975 0.042 0.142 0.608

***, +++ ** ***, ++

UE10 1.300 1.460 2.220 1.035 1.472 2.375

PE-UE10 -0.011 -0.025 0.036 0.012 0.036 0.142

**

Panel B. Time-varying conditional variance of excess returns

PE 1.264 1.450 2.308 1.032 1.659 2.614

FE 0.955 1.092 1.484 0.670 1.390 2.211

PE-FE 0.309 0.358 0.824 0.362 0.270 0.403

**, + **, + ***, +++ **, + **, ++

UE6 1.148 1.304 1.162 1.004 1.525 2.026

PE-UE6 0.116 0.145 1.147 0.028 0.134 0.588

***, +++ * ***, ++

UE10 1.264 1.479 2.205 1.025 1.628 2.498

PE-UE10 0.000 -0.029 0.104 0.007 0.031 0.116

*

1954–1983 1984–2012

Note: This table shows unconditional Sharpe ratios from the monthly excess returns on three

investment sets: the three Fama-French factors (FF3) and the six and 25 Fama-French

portfolios (FF6 and FF25, respectively). In particular, the table reports the unconditional

Sharpe ratios of PE, FE, and UE returns. The UE returns are reported for annualized mean

targets of 6% and 10%. Panel A displays the results when PE and UE returns are constructed

with the conditional mean of excess returns given by the predictive regressions and a

constant conditional variance, while Panel B considers a time-varying variance. The

differences in Sharpe ratios and their statistical significance with Newey-West standard errors

are also displayed (*, ** and *** indicate significance with asymptotic p-values at 10%, 5%,

and 1%, respectively; +, ++ and +++ indicate significance with block bootstrap p-values at 10%,

5%, and 1%, respectively).
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Table 3

Residual Sharpe ratios

FF3 FF6 FF25 FF3 FF6 FF25

Panel A. Constant conditional variance of excess returns

RE 1.382 1.515 2.298 0.675 1.391 2.226

FE 0.969 1.112 1.494 1.046 1.491 2.316

RE-FE 0.413 0.403 0.805 0.371 0.100 0.090

**, ++ **, ++ ***, +++ *, +

UE6 1.281 1.416 1.443 1.019 1.408 2.102

RE-UE6 0.100 0.099 0.855 0.027 0.083 0.214

***, +++

UE10 1.348 1.513 2.259 1.046 1.496 2.462

RE-UE10 0.034 0.002 0.039 0.000 -0.005 -0.146

Panel B. Time-varying conditional variance of excess returns

RE 1.353 1.542 2.354 1.011 1.656 2.652

FE 0.969 1.112 1.494 0.675 1.391 2.226

RE-FE 0.384 0.430 0.860 0.336 0.264 0.426

**, ++ **, ++ ***, +++ *, + ***, ++

UE6 1.219 1.382 1.327 1.01 1.543 2.164

RE-UE6 0.133 0.160 1.026 0.001 0.113 0.488

***, ++ ***, ++

UE10 1.306 1.534 2.285 1.030 1.634 2.535

RE-UE10 0.047 0.008 0.068 -0.020 0.022 0.118

1954–1983 1984–2012

Note: This table shows residual Sharpe ratios from the monthly excess returns on three

investment sets: the three Fama-French factors (FF3) and the six and 25 Fama-French

portfolios (FF6 and FF25, respectively). In particular, the table reports the residual Sharpe

ratios of RE, FE, and UE returns. The UE returns are reported for annualized mean targets of

6% and 10%. Panel A displays the results when RE and UE returns are constructed with the

conditional mean of excess returns given by the predictive regressions and a constant

conditional variance, while Panel B considers a time-varying variance. The differences in

Sharpe ratios and their statistical significance with Newey-West standard errors are also

displayed (*, ** and *** indicate significance with asymptotic p-values at 10%, 5%, and 1%,

respectively; +, ++ and +++ indicate significance with block bootstrap p-values at 10%, 5%, and

1%, respectively).
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Table 4

Efficiency of the market portfolio against the Fama-French portfolios

Panel A. Unconditional Sharpe ratios

FE PE C PE V FE PE C PE V

MMR 0.433 1.023 1.000 0.444 0.617 0.574

FF3 0.955 1.288 1.264 0.670 1.047 1.032

FF3-MMR 0.521 0.265 0.264 0.227 0.429 0.458

**, ++ **, ++ **, ++

FF6 1.092 1.436 1.450 1.390 1.508 1.659

FF6-MMR 0.659 0.412 0.450 0.946 0.891 1.086

***, +++ **, + **, + ***, +++ ***, +++ ***, +++

FF25 1.484 2.256 2.308 2.211 2.517 2.614

FF25-MMR 1.051 1.232 1.309 1.768 1.900 2.040

***, +++ ***, +++ ***, +++ ***, +++ ***, +++ ***, +++

Panel B. Residual Sharpe ratios

FE RE C RE V FE RE C RE V

MMR 0.450 1.073 1.029 0.445 0.620 0.577

FF3 0.969 1.382 1.353 0.675 1.046 1.011

FF3-MMR 0.519 0.309 0.323 0.230 0.426 0.434

**, ++ * *, + **, + **, ++

FF6 1.112 1.515 1.542 1.391 1.491 1.656

FF6-MMR 0.662 0.442 0.513 0.946 0.871 1.079

***, +++ **, + **, ++ ***, +++ ***, +++ ***, +++

FF25 1.494 2.298 2.354 2.226 2.316 2.652

FF25-MMR 1.044 1.225 1.324 1.781 1.696 2.075

***, +++ ***, +++ ***, +++ ***, +++ ***, +++ ***, +++

1954–1983 1984–2012

Note: This table shows efficiency tests from the monthly excess returns on the market portfolio (MMR)

and three investment sets: the three Fama-French factors (FF3) and the six and 25 Fama-French

portfolios (FF6 and FF25, respectively). Panel A displays the unconditional Sharpe ratios of PE and FE

returns and Panel B the residual Sharpe ratios of RE and FE returns. Here PE C and RE C are constructed

with the conditional mean of excess returns given by the predictive regressions and a constant

conditional variance, while PE V and RE V consider a time-varying variance. The differences in Sharpe

ratios and their statistical significance with Newey-West standard errors are also displayed (*, ** and ***

indicate significance with asymptotic p-values at 10%, 5%, and 1%, respectively; +, ++ and +++ indicate

significance with block bootstrap p-values at 10%, 5%, and 1%, respectively).
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Figure 1: UE and PE returns

Note: Means and standard deviations are measured in annual %.
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Figure 2: UE, PE, and RE returns

Note: Means and standard deviations are measured in annual %.
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