
IoT-A and FIWARE: bridging the barriers between the Cloud and
IoT systems design and implementation

Kostas Stravoskoufos1, Stelios Sotiriadis2, Euripides G.M. Petrakis1
1Intelligent Systems Laboratory Department of Electronic and Computer Engineering,

Technical University of Crete (TUC), Chania, Greece, GR-73100
2The Edward Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada

kgstravo@intelligence.tuc.gr, s.sotiriadis@utoronto.ca, perakis@ intelligence.tuc.gr

Keywords: Cloud Computing, Internet of Things, IoT-A, FIWARE, Cloud service interoperability

Abstract: IoT systems are designed and implemented to address specific challenges based on domain specific
requirements, thus not taking into consideration issues of openness, scalability, interoperability and use-case
independence. As a result, they are less principled, vendor oriented and hardly replicable since the same IoT
architecture cannot be used in more than one use-cases. To address the fragmentation of existing IoT
solutions, the IoT-A project proposes an architecture reference model that defines the principles and
standards for generating IoT architectures and promoting the interoperation of IoT solutions. However, IoT-
A addresses the architecture design problem, and does not focus on whether existing cloud platforms can
offer the tools and services to support the implementation of IoT-A compliant IoT systems. In this work we
attempt to fill this gap and we propose an architectural approach based on IoT-A that focuses (as a use case)
on the FIWARE open cloud platform that in turn provides the building blocks of Future Internet (FI)
applications and services. We further correlate FIWARE and IoT-A approaches to identify the key features
for FIWARE to support IoT-A compliant system implementations.

1 INTRODUCTION

Over the recent years, Cloud Computing and
Internet of Things (IoT) have been rapidly
advancing as the two fundamental technologies of
the Future Internet (FI) concept as in [Galis and
Gavras, 2013]. Focusing on different domains, IoT
and Cloud computing have been evolved
independently of each other. However, certain
correlations between the two domains can be
identified:
§ Cloud computing offer the ideal environment

for hosting IoT applications. The cloud's
virtually unlimited resource pool can be paired
with the exponentially growing demands of
IoT applications. As enormous amounts of
data are generated, cloud offers the requiring
facility to store, processes as well as to access
this data.

§ The cloud offers an elastic environment that
can scale-up well on demand and according to
the needs of an increasing number of users,
thus allowing the creation of more flexible IoT
systems that can effectively adapt to their
changing requirements.

§ High availability is crucial for any IoT system
and can be currently guaranteed by modern
cloud providers.

§ Cloud computing can bridge the gap between
devices and applications by abstracting IoT
management and composition services, acting
as an intermediate layer and by hiding the
complexities and the peculiarities of the IoT
systems.

The lack of standardization in the IoT domain
has resulted in the fragmentation of the approaches
in IoT systems design and implementation. Existing
IoT architectures have been evolved to address
specific challenges with specific requirements, not
taking into consideration issues of openness,
scalability, interoperability and use-case
independence. To address this problem, the IoT-A
project of the EU [Bassi et al. 2013] proposes a
Architecture Reference Model (ARM) defining the
principles and guidelines for generating IoT
architectures, providing the means to connect
vertically closed systems in the communication
(how devices interact with the system) and service
(how services are integrated). The adoption of the
IoT-A promotes the interoperation of IoT solutions
by enabling interoperability as follows:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357584934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

§ At the communication layer to support the co-
existence of various communication
technologies (existing or emerging).

§ At the service layer, thus ensuring smooth
integration into the service layer of Future
Internet applications.

 IoT-A compliant architectures assure that
generated knowledge will be modular and re-usable
across domain or use-case specific boundaries.
Leveraging on results from EU funded research, we
propose to design IoT systems deriving from IoT-A
based on FIWARE [FIWARE], the EU initiative for
cloud services provision and one the candidate
reference cloud implementations that can be
exploited in the Future Internet. FIWARE platform
comprises a set of Generic Enablers (GEs) that are
considered general purpose and common to several
usage areas. We compare the functionality of
FIWARE GEs against IoT-A requirements and
guidelines and point out weaknesses and missing
points along with suggestions.

2 BACKGROUND WORK

IoT-A’s Architecture Reference Model (ARM) is an
abstract framework that comprises of a minimal set
of unifying concepts, axioms and relationships for
understanding significant relationships between
entities of the IoT domain. It consists of several sub-
models that set the scope for the IoT design space:
§ IoT domain model: It is a top-level description

(a UML diagram or ontology) of the IoT
domain that describes the main concepts of the
IoT like Devices, IoT Services and Virtual
Entities (VEs) that is, anything that has a
distinct existence, and also relations between
these concepts.

§ IoT Information model: An abstract
description (UML diagram or ontology) for
explaining information about elements or
concepts defined in the IoT Domain Model
(e.g., applicability of concepts).

§ IoT Functional model: It identifies Functional
Groups (FGs) that is, groups of
functionalities, grounded in key concepts of
the IoT Domain Model.

§ IoT Communication model: Introduces
concepts for handling the complexity of
communication in an IoT environment. It is
one FG in the IoT Functional model.

§ Trust, Security and Privacy (TSP) model:
Introduces functionality related to Trust,

Security and Privacy. TSP is also one FG in
the IoT functional model.

2.2 Reference Architecture

The IoT-A Reference Architecture (RA) shows how
qualitative requirements are mapped to design
choices. It is designed to allow the generation of
many, potentially different, compliant IoT
architectures that can be tailored to specific use
cases. The Reference Architecture is based on the
concepts of architectural views and architectural
perspectives. Architectural views derive from the
concerns of stakeholders (i.e., people, groups, or
entities with an interest in the realization of the
architecture). Views are representations of one or
more structural aspects of an architecture that
illustrate how the architecture addresses the
concerns set by its stakeholders [Rozanski and
Woods 2011]. Views define the main building
blocks of the IoT-A RA description with each view
addressing one aspect of the architectural structure:
§ Physical Entity View: It describes all physical

entities and their relations (e.g., sensors,
actuators, environment measurements) in an
IoT system. This view is not covered by IoT-
A because it is use-case independent.

§ IoT context View: It provides context
information about physical entities such as the
Physical Entity View, this view is also not
covered by IoT-A as it is use-case
independent.

§ Functional View: It describes the system’s
runtime Functional Components, their
responsibilities, default functions, interfaces
and primary interactions. The Functional View
derives from the Functional Model and
reflects the developer’s perspectives on the
system.

§ Information View: Provides an overview on
how (a) static information (i.e., VEs by means
of hierarchies, semantics) and (b) dynamic
information (i.e., information processing,
storage, flow) is represented.

§ Deployment View: It explains the operational
behaviour of the functional components and
the interplay of them.

Figure 1 demonstrates the relationship between
IoT-A architectural views and model in the process
of designing the actual system architecture. IoT-A
also introduces architectural perspectives in IoT
system architectures [Rozanski and Woods 2011]
that are collections of activities, checklists, tactics

and guidelines to guide the process of ensuring that a
system exhibits a particular set of quality properties.

Figure 1: Relationship of IoT-A architectural views and

models

 The quality properties that have been identified
as the most important in the IoT domain are (a)
Evolution and interoperability to enable
communication between devices and services, (b)
Availability and resilience as the ability of the
system to stay operational and handle failures, (c)
Trust, security and privacy to handle such
parameters, (d) Performance and scalability related
to the monitoring of system's state and configuration
of performance thresholds.

2.3 FIWARE Platform

FIWARE [FIWARE] develops cloud services to
build novel FI applications that use remotely
accessible modules (GEs) as APIs on a pay on
demand model. FIWARE is the leading cloud
vendor of the EU that offers open specification for
services that could be spread at different
geographically locations (and hosted in various
nodes-namely XIFI nodes), and are available for
utilization over the Internet. In FIWARE, the cloud
model defines three main roles namely as the service
consumer (the developer), the service provider (the
FIWARE open specification) and the service creator
(the GE implementer). Traditionally, the service
creator generates a service that is hosted by
FIWARE and represents the user requirements.

FIWARE is an innovative, open cloud-based
infrastructure for cost-effective creation and delivery
of Future Internet applications and services named
GEs. GEs are considered as software modules that
offer various functionalities along with protocols
and interfaces for operation and communication.
These include the cloud management of the
infrastructure, the utilization of various IoT devices
for data collection and the provision of APIs (e.g.,

tools for data analytics) and communication
interfaces (e.g., gateways, messaging etc.). GEs are
implementations of open specifications of the most
common functionalities that are provided by WARE
and are stored in a public catalogue, thus developers
can easily browse and select appropriate APIs to use.

3 CORRELATION BETWEEN
FIWARE AND IOT-A

The role of reference architectures such as IoT-A
in the process of creating actual systems is to
provide the key building blocks for the generation of
the system's architecture. The generated architecture
can then be used to guide the process of the actual
system implementation. Reference architectures are
application independent being more abstract than
architecture which are designed with specific
constraints and requirements in mind. On the other
hand, architectures, which are generated by
extracting essentials (parts of existing architectures,
mechanisms, standards) from references
architectures, should be application specific but
platform independent allowing various
implementations across different platforms
 In the following we propose an architecture
deriving from IoT-A and decide whether this
architecture can be implemented on FIWARE.
Although architectures should be composed by
several views, reflecting the concerns of the
different stakeholders on the system, in our study we
focus on the Functional View of IoT-A adopting the
developers’ perspective, as our main concern on the
system is the implementation.

Figure 2 illustrates the Functional View diagram
of IoT-A Reference Architecture along with the nine
Functionality Groups (FGs) of the Functional
Model, which are discussed below. Each FG consists
of Functional Components (FC). Each FCs describes
a unique functionality and is able to communicate
with the others in a distributed environment. Figure
2 shows also existing FIWARE GE mapped to FCs.
Process Management FG: Provides the functional
concepts necessary to conceptually integrate the IoT
world into traditional (business) processes. The
Process Modeling FC which provides the tools
required for modeling IoT-aware business processes
that will be serialized and executed in the Process
Execution FC, which is responsible for deploying
process models to the execution environments.

Functional View Information
View

IoT Context
View

Physical Entity
View

Deployment
View

IoT Functional
Model

Trust,Security
and Privacy Model

IoT Communication
 Model

IoT Information
 Model

IoT Domain
Model

System Design

Informs
Based
upon

Based
uponInforms

Informs

provides input
for inpact
assesment

defines runtime
environment

Informs Informs

Informs

defines
scope,

context,
external entities

Figure 2: IoT-A Reference Architecture and FIWARE GEs mapped to FCs

 Service Organization FG: Acts as a
communication hub between several other
Functional Groups by composing and orchestrating
Services of different levels of abstraction. The
Service Orchestration FC resolves the IoT Services
that are suitable to fulfill service requests coming
from the Process Execution FC or from Users while
the Service Composition FC is responsible for
creating services with extended functionality by
composing IoT services with other services. Finally,
the Service Choreography FC offers a broker that
handles Publish/Subscribe communication between
services.

Virtual Entity FG: Provides functionality for the
interaction of VEs with the IoT system, for VE look-
up and discovery and for providing information
concerning VEs. The VE Resolution FC provides
discovery services for associations between VEs and
IoT. VE & IoT Service Monitoring FC is responsible
for automatically finding new associations based on
service descriptions and information about VE’s.
Finally, the VE Service FC handles entity services
(e.g., access to an entity for reading and/or updating
the value(s) of the entity's attributes).

Service FG: Provides IoT services as well as
functionalities for discovery, look-up, and name
resolution of IoT Services. The IoT Service FC
exposes IoT resources (e.g., information retrieved
from sensors) making them accessible to other parts
of the IoT system. This FC can also be used for
delivering information to a resource in order to
control actuator devices or to configure the resource
(e.g., manage access control and permissions on the
resource). IoT Services can be invoked either in a

synchronous way by responding to service requests
or in an asynchronous way by sending notifications
according to subscriptions. Finally, the IoT Service
Resolution FC provides service discovery and
resolution functionalities along with service
description management capabilities.

Communication FG: Abstracts the interaction
schemes derived from the variety of communication
technologies in IoT systems in order to provide a
common interface to the IoT Service FG. The Hop
To Hop Communication FC provides the first layer
of abstraction from the device’s physical
communication technology, the Network
Communication FC enables communication between
networks and, finally, the End to End
Communication FC offers reliable transfer, transport
and, translation functionalities, proxy/gateway
support and setting configuration parameters when
the communication crosses different networking
environments.

Security FG: It is responsible for security and
privacy matters in IoT-A-compliant IoT systems.
The Authorization FC is used to apply access control
and access policy management (i.e., to determine
whether an action is authorized or not, and to
manage access policies) while, the Authentication
FC is used for user and service authentication. The
Identity Management FC addresses privacy by
issuing and managing pseudonyms and accessory
information to trusted subjects so that they can
operate anonymously. The Key Exchange and
Management (KEM) FC enables secure
communications ensuring integrity and
confidentiality by distributing keys upon request in a

APPLICATIONS

DEVICES

Management Service
Organization

IoT Process
Management

Virtual Entity IoT Service Security

Communication

Network
Communication

Hop to Hop
Communication

IoT Service

IoT Service
Resolution

VE Service

VE Service
Resolution

VE & IoT
Service

Monitoring

Process
Modelling

Process
Execution

Service
Composition

Service
Orchestration

Service
Choreography

Keyrock IDM

Authorization

Identity
Management

Authentication

Trust &
Reputation

Key Exchange
&

Management

Configuration

Fault

Reporting

Member

State

IoT Discovery

IoT Broker

Protocol Adapter End to End
Communication

KeyRock IDM

ORION
Contex Broker

BackEnd
Device

Manager

Gateway
Data Handling

secure way. Finally, Trust and Reputation FC
collects user reputation scores and calculates service
trust levels.

Management FG: It is responsible for the
composition and tracking of actions that involve the
other FGs. The Configuration FC is responsible for
initialising the system's configuration (e.g.,
gathering applying configurations from FC’s and
Devices). It is also responsible for tracking
configuration changes and planning for future
extensions of the system. The Fault FC is used to
identify, isolate, correct and log faults that occur in
the IoT system. The Member FC is responsible for
the management of the membership of any relevant
entity (FG, FC, VE, IoT Service, Device,
Application, User) to an IoT system working in
cooperation with the Authorisation and Identity
Management FCs of the Security FG. The Reporting
FC generates reports about the system and, finally,
the State FC can change or enforce a particular state
on the system by issuing a sequence of commands to
the other FCs. Moreover, it is constantly monitoring
the state of the system notifying subscribers about
changes.

3.1 FIWARE IMPLEMENTATION

In the following we show how the IoT-A Reference
Architecture can be realized and implemented in
FIWARE using FIWARE GEs. We go through each
FG which GEs can supply the functionality of FCs
pointing out missing points and weaknesses and
making suggestions.

Service Organization FG: The functionality of
the Service Choreography FC is encapsulated by the
Orion Context Broker GE. The broker offers
Publish/Subscribe capabilities, providing NGSI9/10
interfaces as in FIWARE Catalogue, allowing clients
to do several operations like register context
producer applications, update context information
and get notifications when context information
changes take place or with a given frequency. The
broker allows also querying context information and
stores context information update so queries are
resolved based on that information. The
functionalities of the other two FCs of this FG are
not covered by any FIWARE GE.

Service FG: The functionality of the two FCs in
the IoT Service FG is partially covered by the IoT
Discovery, the IoT Broker and the Backend Device
Management (IDAS) GEs. The IoT Discovery GE
allows context producers to register their IoT
Objects in linked-data format and, in turn allows

context consumers to discover them using search
techniques. Although the IoT Discovery GE offers a
device discovery mechanism, it does not offer a
service resolution mechanism thus, covers only
partially the functionality of the IoT Service
Resolution FC. A service discovery and resolution
mechanism should be added to this GE.

The IoT Broker GE and the Backend Device
Management GE, each encapsulate part of the
functionality of the IoT Service FC. The IoT Broker
GE retrieves and aggregates information from IoT
devices acting as a middleware component that
separates IoT applications from devices. The GE is
based on NGSI9/10 and closes the gap between
information-centric applications and device-centric
IoT installations by communicating simultaneously
with large quantities of IoT gateways and devices in
order to obtain exactly the information that is
required by the running IoT applications. By using
the IoT Broker GE, all IoT devices can be abstracted
to be viewed as NGSI entities on a higher level
hiding the complexity of the IoTs from developers.
The IoT Broker GE does not currently support
delivering information to resources in order to
control them or configure them. This is supported by
the Backend Device Management GE which
provides an API for M2M application developers
and a device communication API for device
(sensor/actuators/gateways) communication which
currently implements the SensorML and Lightweight
SensorML protocols.

The Backend Device Management GE collects
data from devices and translates them into NGSI
events available at a context broker. Application
developers can use data and send commands through
the broker. An open source Reference Gateway
referred to as FIGWAY is also offered for Raspberry
PI and Z-wave devices. Although this GE
complements the IoT Broker GE towards supporting
the specifications of the IoT Service FC it does not
make a clear separation of the layers as they are
defined by IoT-A and it's functionality intervenes
into the communication layer. Moreover, this GE
currently works only with FIGWAY meaning that it
can collect data and manage only specific devices
controlled by the Raspberry PI and Z-wave
gateways. It should be extended to support any kind
of gateway and support all protocols other than
CoaP (e.g., XMPP, MQTT, REST).

Communication FG: The Protocol Adapter GE
handles low-level communication between devices
and the rest of the IoT system encapsulating the
functionality of the Hop to Hop Communication FC.

Although it does cover the required functionality,
the Protocol Adapter GE is currently working with
specific devices over a specific platform and, thus,
needs to be extended to be compatible with all
available devices and platforms. The Network
Communication FC functionality is partially covered
by the Gateway Data Handling GE, which is
designed to provide a common access in real time to
all data. Using a simple local XML storage, the GE
locally stores relevant processed data.

Figure 3: IoT-A FIWARE Correlation Table

 Security FG: KeyRock Identity Management
(IDM) GE provides secure and private
authentication from users to devices, networks and
services, authorization, user profile management and
privacy-preserving disposition of personal data,
encapsulating the functionality of four out of five
FCs. The Key Exchange and Management FC
functionalities are not supported by an FIWARE
GE. Also, as the KeyRock architecture encapsulates
the functionality of four out of five FCs, the

architecture becomes less modular as there is no
clear separation of modules.
 Management FG: The functionality of the
Member FC is covered by the KeyRock Identity
Management (IDM) GE which handles all entities
membership in the IoT system. This GE
encapsulates functionality of FCs in two different
layers of the architecture demoting modularity and
task separation. The functionality of the remaining
Management FG FCs is not offered by any
FIWARE GE.
 Figure 2 illustrates the IoT-A Reference
Architecture substituting FCs with FIWARE GEs.
Green color denotes that the GE can effectively
providing the specified functionality of the FC,
yellow that it does so partially and red denotes there
is currently no GE that can provide the functionality
of the FC. Finally, we provide an array with all FCs
and the corresponding GEs in Figure 3.

4 CONCLUSIONS

In this work, we focused on the relationship between
FIWARE and IoT-A. We proposed an architecture
based on IoT-A and showed how it can be
implemented on FIWARE using GEs. The results
show that FIWARE cannot currently support IoT
architectures fully compatible with the IoT-A
standards and specifications as it is lacking the tools
(GEs) to do so. New GEs need to be designed and
implemented to provide the required functionality
while a clear distinction of the architecture layers
specified by IoT-A should be as well.

REFERENCES

Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Kranenburg,
R. v., Lange, S. & Meissner, S. (eds.) (2013). Enabling
Things to Talk: Designing IoT Solutions with the IoT
Architectural Reference Model. Heidelberg: Springer.

Galis A. and Gavras, A. (2013) The Future Internet:
Future Internet Assembly 2013 Validated Results and
New Horizons. Springer Publishing Company,
Incorporated.

Rozanski, N., Woods, E., (2011) Software systems
architecture – working with stakeholders using
viewpoints and perspectives. Addison Wesley, Boston.

FIWARE: https://www.fiware.org

IoT Process Management

Process Modelling

Process Execution

FCs GEs

Virtual Entity

VE Service

VE Service Resolution

VE & IoT Service Monitoring

IoT Service

IoT Service

IoT Service Resolution

Service Organization

Service Composition

Service Orchistration

Service Choreography

Communication

End to End Communication

Network Communication

Hop to Hop Communication

Security

Authorization

Authentication

Identity Management

Key Exchange & Management

Trust & Reputation

Management

Configuration

Fault

Reporting

Member

State

KeyRock IDM

KeyRock IDM

KeyRock IDM

KeyRock IDM

-

KeyRock IDM

-

-

-

-

-

Protocol Adapter

Gateway Data Handling

-

-

ORION Context Broker

IoT Discovery

IoT Broker & IDAS

-

-

-

-

-

