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Abstract: IoT systems are designed and implemented to address specific challenges based on domain specific 
requirements, thus not taking into consideration issues of openness, scalability, interoperability and use-case 
independence. As a result, they are less principled, vendor oriented and hardly replicable since the same IoT 
architecture cannot be used in more than one use-cases. To address the fragmentation of existing IoT 
solutions, the IoT-A project proposes an architecture reference model that defines the principles and 
standards for generating IoT architectures and promoting the interoperation of IoT solutions. However, IoT-
A addresses the architecture design problem, and does not focus on whether existing cloud platforms can 
offer the tools and services to support the implementation of IoT-A compliant IoT systems. In this work we 
attempt to fill this gap and we propose an architectural approach based on IoT-A that focuses (as a use case) 
on the FIWARE open cloud platform that in turn provides the building blocks of Future Internet (FI) 
applications and services. We further correlate FIWARE and IoT-A approaches to identify the key features 
for FIWARE to support IoT-A compliant system implementations. 

1 INTRODUCTION 

Over the recent years, Cloud Computing and 
Internet of Things (IoT) have been rapidly 
advancing as the two fundamental technologies of 
the Future Internet (FI) concept as in [Galis and 
Gavras, 2013]. Focusing on  different domains, IoT 
and Cloud computing have been evolved 
independently of each other. However, certain 
correlations between the two domains can be 
identified: 
§ Cloud computing offer the ideal environment 

for hosting IoT applications. The cloud's 
virtually unlimited resource pool can be paired 
with the exponentially growing demands of 
IoT applications. As enormous amounts of 
data are generated, cloud offers the requiring 
facility to store, processes as well as to access 
this data. 

§ The cloud offers an elastic environment that 
can scale-up well on demand and according to 
the needs of an increasing number of users, 
thus allowing the creation of more flexible IoT 
systems that can effectively adapt to their 
changing requirements. 

§ High availability is crucial for any IoT system 
and can be currently guaranteed by modern 
cloud providers. 

§ Cloud computing can bridge the gap between 
devices and applications by abstracting IoT 
management and composition services, acting 
as an intermediate layer and by hiding the 
complexities and the peculiarities of the IoT 
systems. 

The lack of standardization in the IoT domain 
has resulted in the fragmentation of the approaches 
in IoT systems design and implementation. Existing 
IoT architectures have been evolved to address 
specific challenges with specific requirements, not 
taking into consideration issues of openness, 
scalability, interoperability and use-case 
independence. To address this problem, the IoT-A 
project of the EU [Bassi et al. 2013] proposes a 
Architecture Reference Model (ARM) defining the 
principles and guidelines for generating IoT 
architectures, providing the means to connect 
vertically closed systems in the communication 
(how devices interact with the system) and service 
(how services are integrated). The adoption of the 
IoT-A promotes the interoperation of IoT solutions 
by enabling interoperability as follows: 
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§ At the communication layer  to support the co-
existence of various communication 
technologies (existing or emerging). 

§ At the service layer, thus ensuring smooth 
integration into the service layer of Future 
Internet applications.  

 IoT-A compliant architectures assure that 
generated knowledge will be modular and re-usable 
across domain or use-case specific boundaries. 
Leveraging on results from EU funded research, we 
propose to design IoT systems deriving from IoT-A 
based on FIWARE [FIWARE], the EU initiative for 
cloud services provision and one the candidate 
reference cloud implementations that can be 
exploited in the Future Internet. FIWARE platform 
comprises a set of Generic Enablers (GEs) that are 
considered general purpose and common to several 
usage areas. We compare the functionality of 
FIWARE GEs against IoT-A requirements and 
guidelines and point out weaknesses and missing 
points along with suggestions.  

2 BACKGROUND WORK 

IoT-A’s Architecture Reference Model (ARM) is an 
abstract framework that comprises of a minimal set 
of unifying concepts, axioms and relationships for 
understanding significant relationships between 
entities of the IoT domain. It consists of several sub-
models that set the scope for the IoT design space: 
§ IoT domain model: It is a top-level description 

(a UML diagram or ontology) of the IoT 
domain that describes the main concepts of the 
IoT like Devices, IoT Services and Virtual 
Entities (VEs) that is, anything that has a 
distinct existence, and also relations between 
these concepts. 

§ IoT Information model: An abstract 
description (UML diagram or ontology) for 
explaining information about elements or 
concepts defined in the IoT Domain Model 
(e.g., applicability of concepts).  

§ IoT Functional model: It identifies Functional 
Groups (FGs) that is, groups of 
functionalities, grounded in key concepts of 
the IoT Domain Model.  

§ IoT Communication model: Introduces 
concepts for handling the complexity of 
communication in an IoT environment. It is 
one FG in the IoT Functional model. 

§ Trust, Security and Privacy (TSP) model: 
Introduces functionality related to Trust, 

Security and Privacy. TSP is also one FG in 
the IoT functional model. 

2.2 Reference Architecture 

The IoT-A Reference Architecture (RA) shows how 
qualitative requirements are mapped to design 
choices. It is designed to allow the generation of 
many, potentially different, compliant IoT 
architectures that can be tailored to specific use 
cases. The Reference Architecture is based on the 
concepts of architectural views and architectural 
perspectives. Architectural views derive from the 
concerns of stakeholders (i.e., people, groups, or 
entities with an interest in the realization of the 
architecture). Views are representations of one or 
more structural aspects of an architecture that 
illustrate how the architecture addresses the 
concerns set by its stakeholders [Rozanski and 
Woods 2011]. Views define the main building 
blocks of the IoT-A RA description with each view 
addressing one aspect of the architectural structure: 
§ Physical Entity View: It describes all physical 

entities and their relations (e.g., sensors, 
actuators, environment measurements) in an 
IoT system. This view is not covered by IoT-
A because it is use-case independent.  

§ IoT context View: It provides context 
information about physical entities such as the 
Physical Entity View, this view is also not 
covered by IoT-A as it is use-case 
independent. 

§ Functional View: It describes the system’s 
runtime Functional Components, their 
responsibilities, default functions, interfaces 
and primary interactions. The Functional View 
derives from the Functional Model and 
reflects the developer’s perspectives on the 
system. 

§ Information View: Provides an overview on 
how (a) static information (i.e., VEs by means 
of hierarchies, semantics) and (b) dynamic 
information (i.e., information processing, 
storage, flow) is represented.   

§ Deployment View: It explains the operational 
behaviour of the functional components and 
the interplay of them.  

Figure 1 demonstrates the relationship between 
IoT-A architectural views and model in the process 
of designing  the actual system architecture. IoT-A 
also introduces architectural perspectives in IoT 
system architectures [Rozanski and Woods 2011] 
that are collections of activities, checklists, tactics 



 

and guidelines to guide the process of ensuring that a 
system exhibits a particular set of quality properties. 

 
Figure 1: Relationship of IoT-A architectural views and 

models 

 The quality properties that have been identified 
as the most important in the IoT domain are (a) 
Evolution and interoperability to enable 
communication between devices and services, (b) 
Availability and resilience as the ability of the 
system to stay operational and handle failures, (c) 
Trust, security and privacy to handle such 
parameters, (d) Performance and scalability related 
to the monitoring of system's state and configuration 
of performance thresholds. 

2.3 FIWARE Platform 

FIWARE [FIWARE] develops cloud services to 
build novel FI applications that use remotely 
accessible modules (GEs) as APIs on a pay on 
demand model. FIWARE is the leading cloud 
vendor of the EU that offers open specification for 
services that could be spread at different 
geographically locations (and hosted in various 
nodes-namely XIFI nodes), and are available for 
utilization over the Internet. In FIWARE, the cloud 
model defines three main roles namely as the service 
consumer (the developer), the service provider (the 
FIWARE open specification) and the service creator 
(the GE implementer). Traditionally, the service 
creator generates a service that is hosted by 
FIWARE and represents the user requirements. 

FIWARE is an innovative, open cloud-based 
infrastructure for cost-effective creation and delivery 
of Future Internet applications and services named 
GEs. GEs are considered as software modules that 
offer various functionalities along with protocols 
and interfaces for operation and communication. 
These include the cloud management of the 
infrastructure, the utilization of various IoT devices 
for data collection and the provision of APIs (e.g., 

tools for data analytics) and communication 
interfaces (e.g., gateways, messaging etc.). GEs are 
implementations of open specifications of the most 
common functionalities that are provided by WARE 
and are stored in a public catalogue, thus developers 
can easily browse and select appropriate APIs to use. 

3 CORRELATION BETWEEN 
FIWARE AND IOT-A 

The role of reference architectures such as IoT-A 
in the process of creating actual systems is to 
provide the key building blocks for the generation of 
the system's architecture. The generated architecture 
can then be used to guide the process of the actual 
system implementation. Reference architectures are 
application independent being more abstract than 
architecture which are designed with specific 
constraints and requirements in mind. On the other 
hand, architectures, which are generated by 
extracting essentials (parts of existing architectures, 
mechanisms, standards) from references 
architectures, should be application specific but 
platform independent allowing various 
implementations across different platforms  
 In the following we propose an architecture 
deriving from IoT-A and decide whether this 
architecture can be implemented on FIWARE. 
Although architectures should be composed by 
several views, reflecting the concerns of the 
different stakeholders on the system, in our study we 
focus on the Functional View of IoT-A adopting the 
developers’ perspective, as our main concern on the 
system is the implementation.  

Figure 2 illustrates the Functional View diagram 
of IoT-A Reference Architecture along with the nine 
Functionality Groups (FGs) of the Functional 
Model, which are discussed below. Each FG consists 
of Functional Components (FC). Each FCs describes 
a unique functionality and is able to communicate 
with the others in a distributed environment. Figure 
2 shows also existing FIWARE GE mapped to FCs.   
Process Management FG: Provides the functional 
concepts necessary to conceptually integrate the IoT 
world into traditional (business) processes. The 
Process Modeling FC which provides the tools 
required for modeling IoT-aware business processes 
that will be serialized and executed in the Process 
Execution FC, which is responsible for deploying 
process models to the execution environments. 
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Figure 2: IoT-A Reference Architecture and FIWARE GEs mapped to FCs 

 Service Organization FG: Acts as a 
communication hub between several other 
Functional Groups by composing and orchestrating 
Services of different levels of abstraction. The 
Service Orchestration FC resolves the IoT Services 
that are suitable to fulfill service requests coming 
from the Process Execution FC or from Users while 
the Service Composition FC is responsible for 
creating services with extended functionality by 
composing IoT services with other services. Finally, 
the Service Choreography FC offers a broker that 
handles Publish/Subscribe communication between 
services. 

Virtual Entity FG: Provides functionality for the 
interaction of VEs with the IoT system, for VE look-
up and discovery and for providing information 
concerning VEs. The VE Resolution FC provides 
discovery services for associations between VEs and 
IoT. VE & IoT Service Monitoring FC is responsible 
for automatically finding new associations based on 
service descriptions and information about VE’s. 
Finally, the VE Service FC handles entity services 
(e.g., access to an entity for reading and/or updating 
the value(s) of the entity's attributes). 

Service FG: Provides IoT services as well as 
functionalities for discovery, look-up, and name 
resolution of IoT Services. The IoT Service FC 
exposes IoT resources (e.g., information retrieved 
from sensors) making them accessible to other parts 
of the IoT system. This FC can also be used for 
delivering information to a resource in order to 
control actuator devices or to configure the resource 
(e.g., manage access control and permissions on the 
resource). IoT Services can be invoked either in a 

synchronous way by responding to service requests 
or in an asynchronous way by sending notifications 
according to subscriptions. Finally, the IoT Service 
Resolution FC provides service discovery and 
resolution functionalities along with service 
description management capabilities. 

Communication FG: Abstracts the interaction 
schemes derived from the variety of communication 
technologies in IoT systems in order to provide a 
common interface to the IoT Service FG. The Hop 
To Hop Communication FC provides the first layer 
of abstraction from the device’s physical 
communication technology, the Network 
Communication FC enables communication between 
networks and, finally, the End to End 
Communication FC offers reliable transfer, transport 
and, translation functionalities, proxy/gateway 
support and setting configuration parameters when 
the communication crosses different networking 
environments. 

Security FG: It is responsible for security and 
privacy matters in IoT-A-compliant IoT systems.  
The Authorization FC is used to apply access control 
and access policy management (i.e., to determine 
whether an action is authorized or not, and to 
manage access policies) while, the Authentication 
FC is used for user and service authentication. The 
Identity Management FC addresses privacy by 
issuing and managing pseudonyms and accessory 
information to trusted subjects so that they can 
operate anonymously. The Key Exchange and 
Management (KEM) FC enables secure 
communications ensuring integrity and 
confidentiality by distributing keys upon request in a 
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secure way. Finally, Trust and Reputation FC 
collects user reputation scores and calculates service 
trust levels. 

Management FG: It is responsible for the 
composition and tracking of actions that involve the 
other FGs. The Configuration FC is responsible for 
initialising the system's configuration (e.g., 
gathering applying configurations from FC’s and 
Devices). It is also responsible for tracking 
configuration changes and planning for future 
extensions of the system. The Fault FC is used to 
identify, isolate, correct and log faults that occur in 
the IoT system. The Member FC is responsible for 
the management of the membership of any relevant 
entity (FG, FC, VE, IoT Service, Device, 
Application, User) to an IoT system working in 
cooperation with the Authorisation and Identity 
Management FCs of the Security FG. The Reporting 
FC generates reports about the system and, finally, 
the State FC can change or enforce a particular state 
on the system by issuing a sequence of commands to 
the other FCs. Moreover, it is constantly monitoring 
the state of the system notifying subscribers about 
changes. 

3.1 FIWARE IMPLEMENTATION 

In the following we show how the IoT-A Reference 
Architecture can be realized and implemented in 
FIWARE using FIWARE GEs. We go through each 
FG which GEs can supply the functionality of FCs 
pointing out missing points and weaknesses and 
making suggestions.  

Service Organization FG: The functionality of 
the Service Choreography FC is encapsulated by the 
Orion Context Broker GE. The broker offers 
Publish/Subscribe capabilities, providing NGSI9/10 
interfaces as in FIWARE Catalogue, allowing clients 
to do several operations like register context 
producer applications, update context information 
and get notifications when context information 
changes take place or with a given frequency. The 
broker allows also querying context information and 
stores context information update so queries are 
resolved based on that information. The 
functionalities of the other two FCs of this FG are 
not covered by any FIWARE GE.  

Service FG: The functionality of the two FCs in 
the IoT Service FG is partially covered by the IoT 
Discovery, the IoT Broker and the Backend Device 
Management (IDAS) GEs. The IoT Discovery GE 
allows context producers to register their IoT 
Objects in linked-data format and, in turn allows 

context consumers to discover them using search 
techniques. Although the IoT Discovery GE offers a 
device discovery mechanism, it does not offer a 
service resolution mechanism thus, covers only 
partially the functionality of the IoT Service 
Resolution FC. A service discovery and resolution 
mechanism should be added to this GE.  

The IoT Broker GE and the Backend Device 
Management GE, each encapsulate part of the 
functionality of the IoT Service FC. The IoT Broker 
GE retrieves and aggregates information from IoT 
devices acting as a middleware component that 
separates IoT applications from devices. The GE is 
based on NGSI9/10 and closes the gap between 
information-centric applications and device-centric 
IoT installations by communicating simultaneously 
with large quantities of IoT gateways and devices in 
order to obtain exactly the information that is 
required by the running IoT applications. By using 
the IoT Broker GE, all IoT devices can be abstracted 
to be viewed as NGSI entities on a higher level 
hiding the complexity of the IoTs from developers. 
The IoT Broker GE does not currently support 
delivering information to resources in order to 
control them or configure them. This is supported by 
the Backend Device Management GE which 
provides an API for M2M application developers 
and a device communication API for device 
(sensor/actuators/gateways) communication which 
currently implements the SensorML and Lightweight 
SensorML protocols.  

The Backend Device Management GE collects 
data from devices and translates them into NGSI 
events available at a context broker. Application 
developers can use data and send commands through 
the broker. An open source Reference Gateway 
referred to as FIGWAY is also offered for Raspberry 
PI and Z-wave devices. Although this GE 
complements the IoT Broker GE towards supporting 
the specifications of the IoT Service FC it does not 
make a clear separation of the layers as they are 
defined by IoT-A and it's functionality intervenes 
into the communication layer. Moreover, this GE 
currently works only with FIGWAY meaning that it 
can collect data and manage only specific devices 
controlled by the Raspberry PI and Z-wave 
gateways. It should be extended to support any kind 
of gateway and support all protocols other than 
CoaP (e.g., XMPP, MQTT, REST). 

Communication FG: The Protocol Adapter GE 
handles low-level communication between devices 
and the rest of the IoT system encapsulating the 
functionality of the Hop to Hop Communication FC.  

 



Although it does cover the required functionality, 
the Protocol Adapter GE is currently working with 
specific devices over a specific platform and, thus, 
needs to be extended to be compatible with all 
available devices and platforms. The Network 
Communication FC functionality is partially covered 
by the Gateway Data Handling GE, which is 
designed to provide a common access in real time to 
all data. Using a simple local XML storage, the GE 
locally stores relevant processed data. 

 
Figure 3: IoT-A FIWARE Correlation Table 

 
 Security FG: KeyRock Identity Management 
(IDM) GE provides secure and private 
authentication from users to devices, networks and 
services, authorization, user profile management and 
privacy-preserving disposition of personal data, 
encapsulating the functionality of four out of five 
FCs. The Key Exchange and Management FC 
functionalities are not supported by an FIWARE 
GE. Also, as the KeyRock architecture encapsulates 
the functionality of four out of five FCs, the 

architecture becomes less modular as there is no 
clear separation of modules. 
 Management FG: The functionality of the 
Member FC is covered by the KeyRock Identity 
Management (IDM) GE which handles all entities 
membership in the IoT system. This GE 
encapsulates functionality of FCs in two different 
layers of the architecture demoting modularity and 
task separation. The functionality of the remaining 
Management FG FCs is not offered by any 
FIWARE GE.  
 Figure 2 illustrates the IoT-A Reference 
Architecture substituting FCs with FIWARE GEs. 
Green color denotes that the GE can effectively 
providing the specified functionality of the FC, 
yellow that it does so partially and red denotes there 
is currently no GE that can provide the functionality 
of the FC. Finally, we provide an array with all FCs 
and the corresponding GEs in Figure 3. 

4 CONCLUSIONS 

In this work, we focused on the relationship between 
FIWARE and IoT-A. We proposed an architecture 
based on IoT-A and showed how it can be 
implemented on FIWARE using GEs. The results 
show that FIWARE cannot currently support IoT 
architectures fully compatible with the IoT-A 
standards and specifications as it is lacking the tools 
(GEs) to do so. New GEs need to be designed and 
implemented to provide the required functionality 
while a clear distinction of the architecture layers 
specified by IoT-A should be as well. 
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